1
|
Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic screening reveals cone cell-specific factors as common genetic targets modulating rival-induced prolonged mating in male Drosophila melanogaster. G3 (BETHESDA, MD.) 2025; 15:jkae255. [PMID: 39489492 PMCID: PMC11708226 DOI: 10.1093/g3journal/jkae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Male-male social interactions exert a substantial impact on the transcriptional regulation of genes associated with aggression and mating behavior in male Drosophila melanogaster. Throughout our comprehensive genetic screening of aggression-related genes, we identified that the majority of mutants for these genes are associated with rival-induced and visually oriented mating behavior, longer-mating duration (LMD). The majority of mutants with upregulated genes in single-housed males significantly altered LMD behavior but not copulation latency, suggesting a primary regulation of mating duration. Single-cell RNA-sequencing revealed that LMD-related genes are predominantly co-expressed with male-specific genes like dsx and Cyp6a20 in specific cell populations, especially in cone cells. Functional validation confirmed the roles of these genes in mediating LMD. Expression of LMD genes like Cyp6a20, Cyp4d21, and CrzR was enriched in cone cells, with disruptions in cone cell-specific expression of CrzR and Cyp4d21 leading to disrupted LMD. We also identified a novel gene, CG10026/Macewindu, that reversed LMD when overexpressed in cone cells. These findings underscore the critical role of cone cells as a pivotal site for the expression of genes involved in the regulation of LMD behavior. This study provides valuable insights into the intricate mechanisms underlying complex sexual behaviors in Drosophila.
Collapse
Affiliation(s)
- Yanying Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Wenjing Li
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
- Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. PLoS Genet 2024; 20:e1011450. [PMID: 39509462 PMCID: PMC11584131 DOI: 10.1371/journal.pgen.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/22/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Wulff JP, Hickner PV, Watson DW, Denning SS, Belikoff EJ, Scott MJ. Antennal transcriptome analysis reveals sensory receptors potentially associated with host detection in the livestock pest Lucilia cuprina. Parasit Vectors 2024; 17:308. [PMID: 39026238 PMCID: PMC11256703 DOI: 10.1186/s13071-024-06391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) is the main causative agent of flystrike of sheep in Australia and New Zealand. Female flies lay eggs in an open wound or natural orifice, and the developing larvae eat the host's tissues, a condition called myiasis. To improve our understanding of host-seeking behavior, we quantified gene expression in male and female antennae based on their behavior. METHODS A spatial olfactometer was used to evaluate the olfactory response of L. cuprina mated males and gravid females to fresh or rotting beef. Antennal RNA-Seq analysis was used to identify sensory receptors differentially expressed between groups. RESULTS Lucilia cuprina females were more attracted to rotten compared to fresh beef (> fivefold increase). However, males and some females did not respond to either type of beef. RNA-Seq analysis was performed on antennae dissected from attracted females, non-attracted females and males. Transcripts encoding sensory receptors from 11 gene families were identified above a threshold (≥ 5 transcript per million) including 49 ATP-binding cassette transporters (ABCs), two ammonium transporters (AMTs), 37 odorant receptors (ORs), 16 ionotropic receptors (IRs), 5 gustatory receptors (GRs), 22 odorant-binding proteins (OBPs), 9 CD36-sensory neuron membrane proteins (CD36/SNMPs), 4 chemosensory proteins (CSPs), 4 myeloid lipid-recognition (ML) and Niemann-Pick C2 disease proteins (ML/NPC2), 2 pickpocket receptors (PPKs) and 3 transient receptor potential channels (TRPs). Differential expression analyses identified sex-biased sensory receptors. CONCLUSIONS We identified sensory receptors that were differentially expressed between the antennae of both sexes and hence may be associated with host detection by female flies. The most promising for future investigations were as follows: an odorant receptor (LcupOR46) which is female-biased in L. cuprina and Cochliomyia hominivorax Coquerel, 1858; an ABC transporter (ABC G23.1) that was the sole sensory receptor upregulated in the antennae of females attracted to rotting beef compared to non-attracted females; a female-biased ammonia transporter (AMT_Rh50), which was previously associated with ammonium detection in Drosophila melanogaster Meigen, 1830. This is the first report suggesting a possible role for ABC transporters in L. cuprina olfaction and potentially in other insects.
Collapse
Affiliation(s)
- Juan P Wulff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paul V Hickner
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX, 78028-9184, USA
| | - David W Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Steven S Denning
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Wuyun Q, Zhang Y, Yuan J, Zhang J, Ren C, Wang Q, Yan S, Liu W, Wang G. A classic screening marker does not affect antennal electrophysiology but strongly regulates reproductive behaviours in Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2024; 33:136-146. [PMID: 37877756 DOI: 10.1111/imb.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. Bactrocera dorsalis is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in B. dorsalis. In this study, the impacts of the white gene on electrophysiology and reproductive behaviour in B. dorsalis were tested. The results indicated that knocking out Bdwhite disrupted eye pigmentation in adults, consistent with previous reports. Bdwhite did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in Bdwhite-/- . Both pre-copulatory and copulation behaviours were significantly reduced in Bdwhite-/- , and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that Bdwhite might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on B. dorsalis sexual behaviours, the downstream genes regulated by Bdwhite or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.
Collapse
Affiliation(s)
- QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jinxi Yuan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Cong Ren
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen, China
| | - Guirong Wang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen, China
| |
Collapse
|
5
|
Janzen A, Pothula R, Sychla A, Feltman NR, Smanski MJ. Predicting thresholds for population replacement gene drives. BMC Biol 2024; 22:40. [PMID: 38369493 PMCID: PMC10875781 DOI: 10.1186/s12915-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.
Collapse
Affiliation(s)
- Anna Janzen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Ratnasri Pothula
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA.
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA.
| |
Collapse
|
6
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Yamanouchi HM, Kamikouchi A, Tanaka R. Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system. STAR Protoc 2023; 4:102623. [PMID: 37788165 PMCID: PMC10551656 DOI: 10.1016/j.xpro.2023.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
In internal fertilization animals, maintaining a copulation posture facilitates the process of transporting gametes from male to female. Here, we present a protocol to investigate the neural basis for copulation posture of fruit flies using a closed-loop real-time optogenetic system. We describe steps for using deep learning analysis to enable optogenetic manipulation of neural activity only during copulation with high efficiency. This system can be applied to various animal behaviors other than copulation. For complete details on the use and execution of this protocol, please refer to Yamanouchi et al. (2023).1.
Collapse
Affiliation(s)
- Hayato M Yamanouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
8
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568397. [PMID: 38045402 PMCID: PMC10690251 DOI: 10.1101/2023.11.23.568397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Zhang Y, Wuyun Q, Wang Q, Luo Z, Yuan J, Zhang J, Yan S, Liu W, Wang G. MFS Transporter Bdorwp Does Not Affect Antennal Electrophysiology but Regulates Reproductive Behaviors in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910823 DOI: 10.1021/acs.jafc.3c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Developing behavioral modifying chemicals through molecular targets is a promising way to improve semiochemical-based technology for pest management. Identifying molecular targets that affect insect behavior largely relies on functional genetic techniques such as deletions, insertions, and substitutions. Selectable markers have thus been developed to increase the efficiency of screening for successful editing events. However, the effect of selectable markers on relevant phenotypic traits needs to be considered. In this study, we cloned the wp gene ofBactrocera dorsalis. Knocking out Bdorwp causes white pupae phenotypes. Reproductive behaviors in both males and females were strongly regulated by Bdorwp. Remarkably, Bdorwp did not affect the antennal electrophysiology response to 63 chemical components with various structures. It is recommended to indirectly apply Bdorwp as a selectable marker in functional gene research on behavioral modifying chemicals. Moreover, Bdorwp could also be a potential molecular target for developing new insecticides for tephritid species control.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| | - Jie Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| | - Guirong Wang
- Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen 518120, China
| |
Collapse
|
10
|
Seong KH, Uemura T, Kang S. Road to sexual maturity: Behavioral event schedule from eclosion to first mating in each sex of Drosophila melanogaster. iScience 2023; 26:107502. [PMID: 37636050 PMCID: PMC10448111 DOI: 10.1016/j.isci.2023.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Animals achieve their first mating through the process of sexual maturation. This study examined the precise and detailed timing of a series of behavioral events, including wing expansion, first feeding, first excretion, and courtship, during sexual maturation from eclosion to first mating in D. melanogaster. We found that the time of first mating is genetically invariant and is not affected by light/dark cycle or food intake after eclosion. We also found sexual dimorphism in locomotor activity after eclosion, with females increasing locomotor activity earlier than males. In addition, we found a time rapidly changing from extremely low to high sexual activity in males post eclosion (named "drastic male courtship arousal" or DMCA). These behavioral traits leading up to the first mating could serve as clear indicators of sexual maturation and establish precisely timed developmental landmarks to explore further the mechanisms underlying the integration of behavioral and physiological sexual maturation.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Department of Liberal Arts and Human Development, Kanagawa University of Human Services, 1-10-1 Heiseicho, Yokosuka, Kanagawa 238-8522, Japan
- Japan Agency for Medical Research and Development (AMED)-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center for Living Systems Information Science, Kyoto University, Kyoto 606-8501, Japan
- Japan Agency for Medical Research and Development (AMED)-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Siu Kang
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Japan Agency for Medical Research and Development (AMED)-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
11
|
Pantalia M, Lin Z, Tener SJ, Qiao B, Tang G, Ulgherait M, O'Connor R, Delventhal R, Volpi J, Syed S, Itzhak N, Canman JC, Fernández MP, Shirasu-Hiza M. Drosophila mutants lacking the glial neurotransmitter-modifying enzyme Ebony exhibit low neurotransmitter levels and altered behavior. Sci Rep 2023; 13:10411. [PMID: 37369755 PMCID: PMC10300103 DOI: 10.1038/s41598-023-36558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Inhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep. Indeed, ebony mutants have been described since 1960 as "aggressive mutants," though this behavior has not been quantified. Using automated machine learning-based analyses, we quantitatively confirmed that ebony mutants exhibited increased aggressive behaviors such as boxing but also decreased courtship behaviors and increased sleep. Through tissue-specific knockdown, we found that ebony's role in these behaviors was specific to glia. Unexpectedly, direct measurement of amine neurotransmitters in ebony brains revealed that their levels were not increased but reduced. Thus, increased aggression is the anomalous behavior for this neurotransmitter profile. We further found that ebony mutants exhibited increased aggression only when fighting each other, not when fighting wild-type controls. Moreover, fights between ebony mutants were less likely to end with a clear winner than fights between controls or fights between ebony mutants and controls. In ebony vs. control fights, ebony mutants were more likely to win. Together, these results suggest that ebony mutants exhibit prolonged aggressive behavior only in a specific context, with an equally dominant opponent.
Collapse
Affiliation(s)
- Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bing Qiao
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Grace Tang
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Reed O'Connor
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Nissim Itzhak
- Division of Human Genetics and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - María Paz Fernández
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Zhuravlev AV, Zalomaeva ES, Egozova ES, Sokurova VV, Nikitina EA, Savvateeva-Popova EV. LIM-kinase 1 effects on memory abilities and male courtship song in Drosophila depend on the neuronal type. Vavilovskii Zhurnal Genet Selektsii 2023; 27:250-263. [PMID: 37293442 PMCID: PMC10244584 DOI: 10.18699/vjgb-23-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/10/2023] Open
Abstract
The signal pathway of actin remodeling, including LIM-kinase 1 (LIMK1) and its substrate cofilin, regulates multiple processes in neurons of vertebrates and invertebrates. Drosophila melanogaster is widely used as a model object for studying mechanisms of memory formation, storage, retrieval and forgetting. Previously, active forgetting in Drosophila was investigated in the standard Pavlovian olfactory conditioning paradigm. The role of specific dopaminergic neurons (DAN) and components of the actin remodeling pathway in different forms of forgetting was shown. In our research, we investigated the role of LIMK1 in Drosophila memory and forgetting in the conditioned courtship suppression paradigm (CCSP). In the Drosophila brain, LIMK1 and p-cofilin levels appeared to be low in specific neuropil structures, including the mushroom body (MB) lobes and the central complex. At the same time, LIMK1 was observed in cell bodies, such as DAN clusters regulating memory formation in CCSP. We applied GAL4 × UAS binary system to induce limk1 RNA interference in different types of neurons. The hybrid strain with limk1 interference in MB lobes and glia showed an increase in 3-h short-term memory (STM), without significant effects on long-term memory. limk1 interference in cholinergic neurons (CHN) impaired STM, while its interference in DAN and serotoninergic neurons (SRN) also dramatically impaired the flies' learning ability. By contrast, limk1 interference in fruitless neurons (FRN) resulted in increased 15-60 min STM, indicating a possible LIMK1 role in active forgetting. Males with limk1 interference in CHN and FRN also showed the opposite trends of courtship song parameters changes. Thus, LIMK1 effects on the Drosophila male memory and courtship song appeared to depend on the neuronal type or brain structure.
Collapse
Affiliation(s)
- A V Zhuravlev
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E S Zalomaeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, RussiaHerzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E S Egozova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - V V Sokurova
- Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E A Nikitina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E V Savvateeva-Popova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
13
|
Roles for the RNA-Binding Protein Caper in Reproductive Output in Drosophila melanogaster. J Dev Biol 2022; 11:jdb11010002. [PMID: 36648904 PMCID: PMC9844462 DOI: 10.3390/jdb11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
RNA binding proteins (RBPs) play a fundamental role in the post-transcriptional regulation of gene expression within the germline and nervous system. This is underscored by the prevalence of mutations within RBP-encoding genes being implicated in infertility and neurological disease. We previously described roles for the highly conserved RBP Caper in neurite morphogenesis in the Drosophila larval peripheral system and in locomotor behavior. However, caper function has not been investigated outside the nervous system, although it is widely expressed in many different tissue types during embryogenesis. Here, we describe novel roles for Caper in fertility and mating behavior. We find that Caper is expressed in ovarian follicles throughout oogenesis but is dispensable for proper patterning of the egg chamber. Additionally, reduced caper function, through either a genetic lesion or RNA interference-mediated knockdown of caper in the female germline, results in females laying significantly fewer eggs than their control counterparts. Moreover, this phenotype is exacerbated with age. caper dysfunction also results in partial embryonic and larval lethality. Given that caper is highly conserved across metazoa, these findings may also be relevant to vertebrates.
Collapse
|
14
|
Sottolano CJ, Revaitis NT, Geneva AJ, Yakoby N. Nebulous without white: annotated long-read genome assembly and CRISPR/Cas9 genome engineering in Drosophila nebulosa. G3 (BETHESDA, MD.) 2022; 12:jkac231. [PMID: 36063049 PMCID: PMC9635631 DOI: 10.1093/g3journal/jkac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The diversity among Drosophila species presents an opportunity to study the molecular mechanisms underlying the evolution of biological phenomena. A challenge to investigating these species is that, unlike the plethora of molecular and genetics tools available for D. melanogaster research, many other species do not have sequenced genomes; a requirement for employing these tools. Selecting transgenic flies through white (w) complementation has been commonly practiced in numerous Drosophila species. While tolerated, the disruption of w is associated with impaired vision, among other effects in D. melanogaster. The D. nebulosa fly has a unique mating behavior which requires vision, and is thus unable to successfully mate in dark conditions. Here, we hypothesized that the disruption of w will impede mating success. As a first step, using PacBio long-read sequencing, we assembled a high-quality annotated genome of D. nebulosa. Using these data, we employed CRISPR/Cas9 to successfully disrupt the w gene. As expected, D. nebulosa males null for w did not court females, unlike several other mutant strains of Drosophila species whose w gene has been disrupted. In the absence of mating, no females became homozygous null for w. We conclude that gene disruption via CRISPR/Cas9 genome engineering is a successful tool in D. nebulosa, and that the w gene is necessary for mating. Thus, an alternative selectable marker unrelated to vision is desirable.
Collapse
Affiliation(s)
- Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Anthony J Geneva
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
15
|
Oyeyinka A, Kansal M, O’Sullivan SM, Gualtieri C, Smith ZM, Vonhoff FJ. Corazonin Neurons Contribute to Dimorphic Ethanol Sedation Sensitivity in Drosophila melanogaster. Front Neural Circuits 2022; 16:702901. [PMID: 35814486 PMCID: PMC9256964 DOI: 10.3389/fncir.2022.702901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol has multiple effects on nervous system function, and organisms have evolved mechanisms to optimally respond to the presence of ethanol. Sex differences in ethanol-induced behaviors have been observed in several organisms, ranging from humans to invertebrates. However, the molecular mechanisms underlying the dimorphic regulation of ethanol-induced behaviors remain incompletely understood. Here, we observed sex differences in ethanol sedation sensitivity in Drosophila Genome Reference Panel (DGRP) lines of Drosophila melanogaster compared to the absence of dimorphism in standard laboratory wildtype and control lines. However, in dose response experiments, we were able to unmask dimorphic responses for the control mutant line w 1118 by lowering the testing ethanol concentration. Notably, feminization of the small population of Corazonin (Crz) neurons in males was sufficient to induce female-like sedation sensitivity. We also tested the role of the transcription factor apontic (apt) based on its known expression in Crz neurons and its regulation of sedation responses. Interestingly, loss of function apt mutations increased sedation times in both males and females as compared to controls. No significant difference between male and female apt mutants was observed, suggesting a possible role of apt in the regulation of dimorphic ethanol-induced responses. Thus, our results shed light into the mechanisms regulating sex-differences in ethanol-induced behaviors at the cellular and molecular level, suggesting that the genetic sex in a small neuronal population plays an important role in modulating sex differences in behavioral responses to ethanol.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando J. Vonhoff
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
16
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
17
|
Kaduskar B, Kushwah RBS, Auradkar A, Guichard A, Li M, Bennett JB, Julio AHF, Marshall JM, Montell C, Bier E. Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat Commun 2022; 13:291. [PMID: 35022402 PMCID: PMC8755802 DOI: 10.1038/s41467-021-27654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles. Insecticide resistance (IR) poses a major global health challenge. Here, the authors generate common IR mutations in laboratory Drosophila strains and use a CRISPR-based allelic-drive to replace an IR allele with a susceptible wild-type counterpart, providing a potent new tool for vector control.
Collapse
Affiliation(s)
- Bhagyashree Kaduskar
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Babu Singh Kushwah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Menglin Li
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | | | - John M Marshall
- Division of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Mutants of the white ABCG Transporter in Drosophila melanogaster Have Deficient Olfactory Learning and Cholesterol Homeostasis. Int J Mol Sci 2021; 22:ijms222312967. [PMID: 34884779 PMCID: PMC8657504 DOI: 10.3390/ijms222312967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Drosophila's white gene encodes an ATP-binding cassette G-subfamily (ABCG) half-transporter. White is closely related to mammalian ABCG family members that function in cholesterol efflux. Mutants of white have several behavioral phenotypes that are independent of visual defects. This study characterizes a novel defect of white mutants in the acquisition of olfactory memory using the aversive olfactory conditioning paradigm. The w1118 mutants learned slower than wildtype controls, yet with additional training, they reached wildtype levels of performance. The w1118 learning phenotype is also found in the wapricot and wcoral alleles, is dominant, and is rescued by genomic white and mini-white transgenes. Reducing dietary cholesterol strongly impaired olfactory learning for wildtype controls, while w1118 mutants were resistant to this deficit. The w1118 mutants displayed higher levels of cholesterol and cholesterol esters than wildtype under this low-cholesterol diet. Increasing levels of serotonin, dopamine, or both in the white mutants significantly improved w1118 learning. However, serotonin levels were not lower in the heads of the w1118 mutants than in wildtype controls. There were also no significant differences found in synapse numbers within the w1118 brain. We propose that the w1118 learning defect may be due to inefficient biogenic amine signaling brought about by altered cholesterol homeostasis.
Collapse
|
19
|
Klose MK, Shaw PJ. Sleep drive reconfigures wake-promoting clock circuitry to regulate adaptive behavior. PLoS Biol 2021; 19:e3001324. [PMID: 34191802 PMCID: PMC8277072 DOI: 10.1371/journal.pbio.3001324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/13/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms help animals synchronize motivated behaviors to match environmental demands. Recent evidence indicates that clock neurons influence the timing of behavior by differentially altering the activity of a distributed network of downstream neurons. Downstream circuits can be remodeled by Hebbian plasticity, synaptic scaling, and, under some circumstances, activity-dependent addition of cell surface receptors; the role of this receptor respecification phenomena is not well studied. We demonstrate that high sleep pressure quickly reprograms the wake-promoting large ventrolateral clock neurons to express the pigment dispersing factor receptor (PDFR). The addition of this signaling input into the circuit is associated with increased waking and early mating success. The respecification of PDFR in both young and adult large ventrolateral neurons requires 2 dopamine (DA) receptors and activation of the transcriptional regulator nejire (cAMP response element-binding protein [CREBBP]). These data identify receptor respecification as an important mechanism to sculpt circuit function to match sleep levels with demand.
Collapse
Affiliation(s)
- Markus K. Klose
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Highly Efficient Temperature Inducible CRISPR-Cas9 Gene Targeting in Drosophila suzukii. Int J Mol Sci 2021; 22:ijms22136724. [PMID: 34201604 PMCID: PMC8268499 DOI: 10.3390/ijms22136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
The spotted-wing Drosophila (Drosophila suzukii Matsumura) is native to eastern Asia, but has become a global threat to fruit production. In recent years, CRISPR/Cas9 targeting was established in this species allowing for functional genomic and genetic control studies. Here, we report the generation and characterization of Cas9-expressing strains of D. suzukii. Five independent transgenic lines were generated using a piggyBac construct containing the EGFP fluorescent marker gene and the Cas9 gene under the control of the D. melanogaster heat shock protein 70 promoter and 3’UTR. Heat-shock (HS) treated embryos were analyzed by reverse transcriptase PCR, revealing strong heat inducibility of the transgenic Cas9 expression. By injecting gRNA targeting EGFP into one selected line, 50.0% of G0 flies showed mosaic loss-of-fluorescence phenotype, and 45.5% of G0 flies produced G1 mutants without HS. Such somatic and germline mutagenesis rates were increased to 95.4% and 85.7%, respectively, by applying a HS. Parental flies receiving HS resulted in high inheritance of the mutation (92%) in their progeny. Additionally, targeting the endogenous gene yellow led to the lack of pigmentation and male lethality. We discuss the potential use of these efficient and temperature-dependent Cas9-expressing strains for the genetic studies in D. suzukii.
Collapse
|
21
|
Sasaki A, Nishimura T, Takano T, Naito S, Yoo SK. white regulates proliferative homeostasis of intestinal stem cells during ageing in Drosophila. Nat Metab 2021; 3:546-557. [PMID: 33820991 DOI: 10.1038/s42255-021-00375-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Tissue integrity is contingent on maintaining stem cells. Intestinal stem cells (ISCs) over-proliferate during ageing, leading to tissue dysplasia in Drosophila melanogaster. Here we describe a role for white, encoding the evolutionarily conserved ATP-binding cassette transporter subfamily G, with a particularly well-characterized role in eye colour pigmentation, in ageing-induced ISC proliferation in the midgut. ISCs increase expression of white during ageing. ISC-specific inhibition of white suppresses ageing-induced ISC dysregulation and prolongs lifespan. Of the proteins that form heterodimers with White, Brown mediates ISC dysregulation during ageing. Metabolomics analyses reveal previously unappreciated, profound metabolic impacts of white inhibition on organismal metabolism. Among the metabolites affected by White, tetrahydrofolate is transported by White, is accumulated in ISCs during ageing and is indispensable for ageing-induced ISC over-proliferation. Since Thomas Morgan's isolation of a white mutant as the first Drosophila mutant, white mutants have been used extensively as genetic systems and often as controls. Our findings provide insights into metabolic regulation of stem cells mediated by the classic gene white.
Collapse
Affiliation(s)
- Ayaka Sasaki
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| | | | - Tomomi Takano
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
| | - Saki Naito
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sa Kan Yoo
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan.
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.
| |
Collapse
|
22
|
Qiu S, Li C, Cao G, Xiao C. Mating experience modifies locomotor performance and promotes episodic motor activity in Drosophila melanogaster. ZOOLOGY 2020; 144:125854. [PMID: 33186862 DOI: 10.1016/j.zool.2020.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022]
Abstract
Sexual behavior is a routine among animal species. Sexual experience has several behavioral consequences in insects, but its physiological basis is less well-understood. The episodic motor activity with a periodicity around 19 s was unintentionally observed in the wildtype Canton-S flies and was greatly reduced in the white-eyed mutant w1118 flies. Episodic motor activity co-exists with several consistent locomotor performances in Canton-S flies whereas reduced episodic motor activity is accompanied by neural or behavioral abnormalities in w1118 flies. The improvements of both episodic motor activity and locomotor performance are co-inducible by a pulsed light illumination in w1118. Here we show that mating experience of w1118 males promoted fast and consistent locomotor activities and increased the power of episodic motor activities. Compared with virgin males, mated ones showed significant increases of boundary preference, travel distance over 60 s, and increased path increments per 0.2 s. In contrast, mated males of Canton-S showed decreased boundary preference, increased travel distance over 60 s, and increased path increments per 0.2 s. Additionally, mated males of w1118 displayed increased power amplitude of periodic motor activities at 0.03-0.1 Hz. These data indicated that mating experience promoted fast and consistent locomotion and improved episodic motor activities in w1118 male flies.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, Jiangsu, China.
| | - Chenxi Li
- College of Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, China
| | - Guihua Cao
- Jiangsu Tianyu Environmental Protection Group Co., Ltd, Taishan East 328, Yangzhou, 225200, Jiangsu, China
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
23
|
Peralta-Rincón JR, Aoulad FZ, Prado A, Edelaar P. Phenotype-dependent habitat choice is too weak to cause assortative mating between Drosophila melanogaster strains differing in light sensitivity. PLoS One 2020; 15:e0234223. [PMID: 33057335 PMCID: PMC7561098 DOI: 10.1371/journal.pone.0234223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneous environments. This results in individuals with similar ecologically relevant traits converging to the same patches, and hence it could indirectly cause assortative mating when mating occurs in those patches. White-eyed mutants of Drosophila fruit flies have a series of disadvantages compared to wild type flies, including a poorer performance under bright light. It has been previously reported that, when given a choice, wild type Drosophila simulans preferred a brightly lit habitat while white-eyed mutants occupied a dimly lit one. This spatial segregation allowed the eye color polymorphism to be maintained for several generations, whereas normally it is quickly replaced by the wild type. Here we compare the habitat choice decisions of white-eyed and wild type flies in another species, D. melanogaster. We released groups of flies in a light gradient and recorded their departure and settlement behavior. Departure depended on sex and phenotype, but not on the light conditions of the release point. Settlement depended on sex, and on the interaction between phenotype and light conditions of the point of settlement. Nonetheless, simulations showed that this differential habitat use by the phenotypes would only cause a minimal degree of assortative mating in this species.
Collapse
Affiliation(s)
- Juan Ramón Peralta-Rincón
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Fatima Zohra Aoulad
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Prado
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
24
|
Xu P, Ze LJ, Kang WN, Wu JJ, Jin L, Anjum AA, Li GQ. Functional divergence of white genes in Henosepilachna vigintioctopunctata revealed by RNA interference. INSECT MOLECULAR BIOLOGY 2020; 29:466-476. [PMID: 32654258 DOI: 10.1111/imb.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious pest of Solanaceae and Cucurbitaceae in many Asian countries. RNA interference (RNAi) can effectively reduce transcript abundance in this beetle, offering opportunities to explore the biological function of specific genes. The white gene encodes a half-type ATP-binding cassette transporter that plays an essential role in tryptophan, guanine and uric acid transport across membranes. Mutations that disrupt the function of white are known to cause eye pigmentation phenotypes in many insect species. Here, we found evidence for five white gene paralogues present in H. vigintioctopunctata transcriptome datasets sequenced from a range of developmental stages. We individually knocked down each of the five white genes through the injection of corresponding double-stranded RNAs (dsRNAs) to the fourth-instar larvae to determine whether functional divergence has occurred. We found that injecting 1 μg dswhite3 caused compound eye colour of pupae and adults to develop as red/brown and brown, respectively, compared with black eyes in control beetles. Injection of 2 μg dswhite3 increased RNAi efficacy and produced a clearer eye colour phenotype. At both doses, the ocular diaphragm (a ring of black pigment surrounding each eye) did not change in the white3 RNAi hypomorphs. Moreover, our data revealed that injection of dswhite2 at the fourth-instar larval stage impaired the climbing ability of both male and female adults. Our results confirmed, for the first time, functional divergence of duplicated white genes in an insect species.
Collapse
Affiliation(s)
- P Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - L-J Ze
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - W-N Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-J Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - L Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - A A Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Yan Y, Ziemek J, Schetelig MF. CRISPR/Cas9 mediated disruption of the white gene leads to pigmentation deficiency and copulation failure in Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104091. [PMID: 32745561 DOI: 10.1016/j.jinsphys.2020.104091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The Spotted-wing Drosophila (Drosophila suzukii) is a devastating invasive pest of fruit crops. In D. melanogaster, the white (w) gene was associated with pigmentation and mating behavior, which are also important aspects to understand the invasion biology as well as to develop control strategies for D. suzukii. Here, we show that the generation of D. suzukii white-eyed mutants by CRISPR/Cas9 mutagenesis of the w gene resulted in the complete failure of copulation when w- males were individually paired with w- females in small circular arenas (diameter 0.7 cm) for 24 h. Further analysis showed that the mating defect was associated with w- males and could not be rectified by two years of inbreeding by crossing sibling w- females with w+ males, dim red illumination, male-female sexual training, changing to large arenas (diameter 3.5 cm), or different sex ratios. Profound pigmentation deficiency was detected in the compound eyes, ocelli, Malpighian tubules and testis sheaths in the w- flies. Specifically, testis imaging showed that w- males failed to deposit any pigments into pigment cells of the testis sheath, and produced smaller sperms and less seminal fluid compared to those from wildtype males. Together these observations suggest that the w gene plays an essential role in the regulation of sexual behavior and reproduction in D. suzukii. The similarities and differences in w gene function between D. suzukii and D. melanogaster in the context of pigmentation and mating behavior are discussed.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstr. 2, 35394 Giessen, Germany.
| | - Judith Ziemek
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Giessen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstr. 2, 35394 Giessen, Germany.
| |
Collapse
|
26
|
Xiao C, Qiu S. Frequency-specific modification of locomotor components by the white gene in Drosophila melanogaster adult flies. GENES BRAIN AND BEHAVIOR 2020; 20:e12703. [PMID: 32964643 DOI: 10.1111/gbb.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 11/29/2022]
Abstract
The classic eye-color gene white (w) in Drosophila melanogaster (fruitfly) has unexpected behavioral consequences. How w affects locomotion of adult flies is largely unknown. Here, we show that a mutant allele (w1118 ) selectively increases locomotor components at relatively high frequencies (> 0.1 Hz). The w1118 flies had reduced transcripts of w+ from the 5' end of the gene. Male flies of w1118 walked continuously in circular arenas while the wildtype Canton-S walked intermittently. Through careful control of genetic and cytoplasmic backgrounds, we found that the w1118 locus was associated with continuous walking. w1118 -carrying male flies showed increased median values of path length per second (PPS) and 5-min path length compared with w+ -carrying males. Additionally, flies carrying 2-4 genomic copies of mini-white+ (mw+ ) in the w1118 background showed suppressed median PPSs and decreased 5-min path length compared with controls, and the suppression was dependent on the copy number of mw+ . Analysis of the time-series (i.e., PPSs over time) by Fourier transform indicated that w1118 was associated with increased locomotor components at relatively high frequencies (> 0.1 Hz). The addition of multiple genomic copies of mw+ (2-4 copies) suppressed the high-frequency components. Lastly, the downregulation of w+ in neurons but not glial cells resulted in increased high-frequency components. We concluded that mutation of w modified the locomotion in adult flies by selectively increasing high-frequency locomotor components.
Collapse
Affiliation(s)
- Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
27
|
High-Efficiency CRISPR/Cas9 Mutagenesis of the white Gene in the Milkweed Bug Oncopeltus fasciatus. Genetics 2020; 215:1027-1037. [PMID: 32493719 PMCID: PMC7404234 DOI: 10.1534/genetics.120.303269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, we report that clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is highly efficient in the hemipteran Oncopeltus fasciatus. The white gene is well characterized in Drosophila where mutation causes loss of eye pigmentation; white is a reliable marker for transgenesis and other genetic manipulations. Accordingly, white has been targeted in a number of nonmodel insects to establish tools for genetic studies. Here, we generated mutations in the Of-white (Of-w) locus using CRISPR/Cas9. We found that Of-w is required for pigmentation throughout the body of Oncopeltus, not just the ommatidia. High rates of somatic mosaicism were observed in the injected generation, reflecting biallelic mutations, and a high rate of germline mutation was evidenced by the large proportion of heterozygous G1s. However, Of-w mutations are homozygous lethal; G2 homozygotes lacked pigment dispersion throughout the body and did not hatch, precluding the establishment of a stable mutant line. Embryonic and parental RNA interference (RNAi) were subsequently performed to rule out off-target mutations producing the observed phenotype and to evaluate the efficacy of RNAi in ablating gene function compared to a loss-of-function mutation. RNAi knockdowns phenocopied Of-w homozygotes, with an unusual accumulation of orange granules observed in unhatched embryos. This is, to our knowledge, the first CRISPR/Cas9-targeted mutation generated in Oncopeltus. While we were unable to establish white as a useful visible marker for Oncopeltus, these findings are instructive for the selection of visible markers in nonmodel species and reveal an unusual role for an ortholog of a classic Drosophila gene.
Collapse
|
28
|
Kronholm I, Ormsby T, McNaught KJ, Selker EU, Ketola T. Marked Neurospora crassa Strains for Competition Experiments and Bayesian Methods for Fitness Estimates. G3 (BETHESDA, MD.) 2020; 10:1261-1270. [PMID: 32001556 PMCID: PMC7144071 DOI: 10.1534/g3.119.400632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this need, we constructed N. crassa strains that contain a modified csr-1 locus and developed an assay for detecting the proportion of the marked strain using a post PCR high resolution melting assay. DNA extraction from spore samples can be performed on 96-well plates, followed by a PCR step, which allows many samples to be processed with ease. Furthermore, we suggest a Bayesian approach for estimating relative fitness from competition experiments that takes into account the uncertainty in measured strain proportions. We show that there is a fitness effect of the mating type locus, as mating type mat a has a higher competitive fitness than mat A The csr-1* marker also has a small fitness effect, but is still a suitable marker for competition experiments. As a proof of concept, we estimate the fitness effect of the qde-2 mutation, a gene in the RNA interference pathway, and show that its competitive fitness is lower than what would be expected from its mycelial growth rate alone.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | | | | | | | - Tarmo Ketola
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
29
|
Bai X, Zeng T, Ni XY, Su HA, Huang J, Ye GY, Lu YY, Qi YX. CRISPR/Cas9-mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2019; 28:837-849. [PMID: 31106480 DOI: 10.1111/imb.12592] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The intensely studied white gene is widely used as a genetic marker in Drosophila melanogaster. Here, we cloned and characterized the white gene in an important pest of the fruit industry, Bactrocera dorsalis, to understand its functional role in pigmentation. We obtained BdWhite knockout strains, based on the wild-type strain, using the CRISPR/Cas9 genome editing system, and found that mutants lost pigmentation in the compound eye and their black head spots. We then examined differences in the expression levels of genes associated with melanin pigmentation between mutants and the wild-type strain using quantitative reverse transcription PCR. We found that transcription levels of the Bd-yellow1 were lower in the head of mutants than in the wild-type strain, and there were no significant differences in expression of the other six genes between mutants and the wild type. Since yellow is critical for melanin biosynthesis (Heinze et al., Scientific Reports. 2017;7:4582), the lower levels of expression of Bd-yellow1 in mutants led to reduced dark pigmentation in head spots. Our results provide the first evidence, to our knowledge, that white may play a functional role in cuticle pigmentation by affecting the expression of yellow.
Collapse
Affiliation(s)
- X Bai
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - T Zeng
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - X-Y Ni
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - H-A Su
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - J Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - G-Y Ye
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Y Lu
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Y-X Qi
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Scaplen KM, Mei NJ, Bounds HA, Song SL, Azanchi R, Kaun KR. Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Sci Rep 2019; 9:4427. [PMID: 30872709 PMCID: PMC6418093 DOI: 10.1038/s41598-019-40952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
Recent advances in neurogenetics have highlighted Drosophila melanogaster as an exciting model to study neural circuit dynamics and complex behavior. Automated tracking methods have facilitated the study of complex behaviors via high throughput behavioral screening. Here we describe a newly developed low-cost assay capable of real-time monitoring and quantifying Drosophila group activity. This platform offers reliable real-time quantification with open source software and a user-friendly interface for data acquisition and analysis. We demonstrate the utility of this platform by characterizing ethanol-induced locomotor activity in a dose-dependent manner as well as the effects of thermo and optogenetic manipulation of ellipsoid body neurons important for ethanol-induced locomotor activity. As expected, low doses of ethanol induced an initial startle and slow ramping of group activity, whereas high doses of ethanol induced sustained group activity followed by sedation. Advanced offline processing revealed discrete behavioral features characteristic of intoxication. Thermogenetic inactivation of ellipsoid body ring neurons reduced group activity whereas optogenetic activation increased activity. Together, these data establish the fly Group Activity Monitor (flyGrAM) platform as a robust means of obtaining an online read out of group activity in response to manipulations to the environment or neural activity, with an opportunity for more advanced post-processing offline.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown University Providence, Providence, USA
| | - Nicholas J Mei
- Department of Neuroscience, Brown University Providence, Providence, USA
| | - Hayley A Bounds
- Department of Neuroscience, Brown University Providence, Providence, USA
| | - Sophia L Song
- Department of Neuroscience, Brown University Providence, Providence, USA
| | - Reza Azanchi
- Department of Neuroscience, Brown University Providence, Providence, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University Providence, Providence, USA.
| |
Collapse
|
31
|
Tanaka KM, Kamimura Y, Takahashi A. Mechanical incompatibility caused by modifications of multiple male genital structures using genomic introgression in Drosophila. Evolution 2018; 72:2406-2418. [PMID: 30198555 DOI: 10.1111/evo.13592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023]
Abstract
Mechanical incompatibility of male and female genitalia is common in animals with internal fertilization. However, our knowledge regarding the precise mechanisms is limited. One key question regards the susceptibility of the match between male and female genitalia to morphological modification. To address this issue, we generated six different second-chromosome introgression lines possessing partially Drosophila mauritiana-like genital morphology in multiple structures in D. simulans background. Three of the six introgression males showed elevated mobility at some stages during copulation with D. simulans females; this was assumed to be an indication of genital mismatch. Notably, one of the introgression males with D. mauritiana-like enlarged anal plates showed occasional leakage of adhesive ejaculate on the body surface when mated with pure D. simulans females, suggesting apparent structural incompatibility in genital coupling. These observations suggested that both sexual and natural selection shape the anal plate morphology, highlighting the role of this structure as an important component of mechanical isolation. Partial replacement (introgression) by a sibling species genome can induce perturbations in genital coupling mechanics, suggesting that genital compatibility can be susceptible to subtle genomic changes at the early stages of divergence in these species.
Collapse
Affiliation(s)
- Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Yoshitaka Kamimura
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama, 233-8521, Japan
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan.,Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| |
Collapse
|
32
|
Qiu S, Xiao C. Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w1118 line. Physiol Behav 2018; 188:227-238. [DOI: 10.1016/j.physbeh.2018.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
|
33
|
Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain. Behav Genet 2017; 48:80-93. [DOI: 10.1007/s10519-017-9881-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
|