1
|
Gamage CDB, Kim JH, Zhou R, Park SY, Pulat S, Varlı M, Nam SJ, Kim H. Plectalibertellenone A suppresses colorectal cancer cell motility and glucose metabolism by targeting TGF-β/Smad and Wnt pathways. Biofactors 2025; 51:e2120. [PMID: 39291722 DOI: 10.1002/biof.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death and represents a serious worldwide health problem. CRC metastasis decreases the survival rate of cancer patients, underscoring the need to identify novel anticancer agents and therapeutic targets. Here, we introduce Plectalibertellenone A (B) as a promising agent for the inhibition of CRC cell motility and glucose metabolism and explore its mechanism of action in CRC cells. Plectalibertellenone A suppressed TGF-β gene expression and the activation of the TGF-β/Smad signaling pathway, leading to reverse epithelial to mesenchymal transition (EMT) by modulating the expressions of EMT markers and transcriptional factors such as E-cadherin, N-cadherin, vimentin, Slug, Snail, Twist, and ZEB1/2. Furthermore, disruption of Wnt signaling inhibited CRC motility and glucose metabolism including glycolysis and oxidative phosphorylation, primarily affecting glycolytic enzymes, GLUT1, HK2, PKM2, LDHA, and HIF-1α under hypoxic condition. Therefore, Plectalibertellenone A is a potential drug candidate that can be developed into a promising anticancer treatment to prevent CRC metastasis and inhibit glucose metabolism.
Collapse
Affiliation(s)
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Woman University, Seoul, Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Woman University, Seoul, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Jeonnam, Korea
| |
Collapse
|
2
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
3
|
Saha S, Ray R, Paul S. Depside and depsidone-rich hydroalcoholic extract, resourced from the lichen Parmelinella wallichiana (Taylor) Elix & Hale selectively restricts Non-Small Cell Lung Cancer by modulating p53, FOXO1 and PALLADIN genes. Fitoterapia 2024; 179:106211. [PMID: 39277022 DOI: 10.1016/j.fitote.2024.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The non-specificity of contemporary cancer therapeutics has enticed us to develop safer, anticancer alternatives from natural resources. Lichens are unique natural entities which have long been neglected for explorations in cancer therapy, despite their vast potential. Our present study aims to investigate the anti-cancer potential of a wild lichen Parmelinella wallichiana. The anti-proliferative efficacy of the lichen extracts were screened through MTT assay against a panel of cell lines and the potent hydroalcoholic extract was selected for further evaluation against the most sensitive lung-cancer cell line A549 by implementing a wide range of microscopic and flow cytometric applications. The observations suggest that the extract could selectively induce apoptosis by augmenting ROS and disrupting the mitochondrial membrane potentiality. It was also found that the lichen-induced apoptosis was regulated by two crucial tumor suppressor genes, FOXO1, and p53, along with cell cycle inhibitor p21 which ultimately resulted in robust apoptosis through the up-regulation of pro-apoptotic BAX expression. Moreover, the extract also restricted the cancer progression by down-regulating the PALLADIN expression. Further, an LC-MS-based metabolomic profile highlighted a number of depsides, depsidones and dibenzofurans, which included atranorin, physodalic acid, salazinic acid, constictic acid and usnic acid. Then, an in silico docking with these lichen-derived metabolites against the PI3Kα receptor predicted these compounds has a binding affinity close to a standard PI3Kα inhibitor copanlisib. The study concludes that the extract restricts lung cancer possibly through the PI3Kα/FOXO1 axis and thus Parmelinella wallichiana represents a potential resource for anti-lung cancer drug development in future.
Collapse
Affiliation(s)
- Saparja Saha
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700 019, West Bengal, India
| | - Ribhu Ray
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700 019, West Bengal, India
| | - Santanu Paul
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
4
|
Ensoy M, Cansaran-Duman D. Targeting Ferroptosis with Small Molecule Atranorin (ATR) as a Novel Therapeutic Strategy and Providing New Insight into the Treatment of Breast Cancer. Pharmaceuticals (Basel) 2024; 17:1380. [PMID: 39459017 PMCID: PMC11509994 DOI: 10.3390/ph17101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Ferroptosis results from the accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS). Previous research has determined the effect of atranorin (ATR) on other cell death mechanisms, but its potential for a ferroptotic effect depending on ROS levels is unclear. This study details the therapeutic role of small-molecule ATR through ferroptosis by suppressing MDA-MB-231, MCF-7, BT-474, and SK-BR-3 breast cancer cells. Methods: The anti-proliferative effect of ATR on cells was evaluated by xCELLigence analysis, and ferroptotic activity was evaluated by enzymatic assay kits. The changes in gene and protein expression levels of ATR were investigated by the qRT-PCR and western blot. In addition, mitochondrial changes were examined by transmission electron microscopy. Results: ATR was found to reduce cell viability in cancer cells in a dose- and time-dependent manner without showing cytotoxic effects on normal breast cells. In BT-474 and MDA-MB-231 cells, ATR, which had a higher anti-proliferative effect, increased iron, lipid peroxidation, and ROS levels in cells and decreased the T-GSH/GSSG ratio. The results revealed for the first time that small-molecule ATR exhibited anti-cancer activity by inducing the glutathione pathway and ferroptosis. Conclusions: This study highlights the potential of ATR as a drug candidate molecule that can be used in the development of new therapeutic strategies for the treatment of triple-negative and luminal-B breast cancer subtypes.
Collapse
|
5
|
Makhloufi H, Pinon A, Champavier Y, Saliba J, Millot M, Fruitier-Arnaudin I, Liagre B, Chemin G, Mambu L. In Vitro Antiproliferative Activity of Echinulin Derivatives from Endolichenic Fungus Aspergillus sp. against Colorectal Cancer. Molecules 2024; 29:4117. [PMID: 39274965 PMCID: PMC11397142 DOI: 10.3390/molecules29174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis of extracts and subfractions enabled the annotation of 22 molecules, guiding the purification process. The EtOAc extract displayed an antiproliferative activity of 3.2 ± 0.4 µg/mL at 48 h against human colorectal cancer cells (HT-29) and no toxicity at 30 µg/mL against human triple-negative breast cancer (TNBC) cells (MDA-MB-231) and human embryonic kidney (HEK293) non-cancerous cells. Among the five prenylated compounds isolated, of which four are echinulin derivatives, compounds 1 and 2 showed the most important activity, with IC50 values of 1.73 µM and 8.8 µM, respectively, against HT-29 cells.
Collapse
Affiliation(s)
- Hind Makhloufi
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Aline Pinon
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Yves Champavier
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, F-87025 Limoges, France
| | - Jennifer Saliba
- Laboratoire LIENSs, Université de La Rochelle, UMR CNRS 7266, F-17000 La Rochelle, France
| | - Marion Millot
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | | | - Bertrand Liagre
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Guillaume Chemin
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| | - Lengo Mambu
- LABCiS, UR 22722, Faculté de Pharmacie, Univ. Limoges, F-87000 Limoges, France
| |
Collapse
|
6
|
Zhou R, Liu R, Kang KB, Kim W, Hur JS, Kim H. The Depside Derivative Pericodepside Inhibits Cancer Cell Metastasis and Proliferation by Suppressing Epithelial-Mesenchymal Transition. ACS OMEGA 2024; 9:6828-6836. [PMID: 38371795 PMCID: PMC10870356 DOI: 10.1021/acsomega.3c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
A depside derivative, named pericodepside (2), along with the known depside proatranorin III (1), was isolated from the solid cultivation of an Ascochyta rabiei strain that heterologously expresses atr1 and atr2 that are involved in the biosynthesis of atranorin in a fruticose lichen, Stereocaulon alpinum. The structure of 2 was determined by 1D and 2D NMR and MS spectroscopic data. The structure of 2 consisted of a depside-pericosine conjugate, with the depside moiety being identical to that found in 1, suggesting that 1 acted as an intermediate during the formation of 2 through the esterification process. Pericodepside (2) strongly suppressed cell invasion and proliferation by inhibiting epithelial-mesenchymal transition and the transcriptional activities of β-catenin, STAT, and NF-κB in U87 (glioma cancer), MCF-7 (breast cancer), and PC3 (prostate cancer) cell lines.
Collapse
Affiliation(s)
- Rui Zhou
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Rundong Liu
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Kyo Bin Kang
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Wonyong Kim
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
- Department
of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seoun Hur
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
7
|
Cho M, Lee SJ, Choi E, Kim J, Choi S, Lee JH, Park H. An Antarctic lichen isolate (Cladonia borealis) genome reveals potential adaptation to extreme environments. Sci Rep 2024; 14:1342. [PMID: 38228797 PMCID: PMC10792129 DOI: 10.1038/s41598-024-51895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Cladonia borealis is a lichen that inhabits Antarctica's harsh environment. We sequenced the whole genome of a C. borealis culture isolated from a specimen collected in Antarctica using long-read sequencing technology to identify specific genetic elements related to its potential environmental adaptation. The final genome assembly produced 48 scaffolds, the longest being 2.2 Mbp, a 1.6 Mbp N50 contig length, and a 36 Mbp total length. A total of 10,749 protein-coding genes were annotated, containing 33 biosynthetic gene clusters and 102 carbohydrate-active enzymes. A comparative genomics analysis was conducted on six Cladonia species, and the genome of C. borealis exhibited 45 expanded and 50 contracted gene families. We identified that C. borealis has more Copia transposable elements and expanded transporters (ABC transporters and magnesium transporters) compared to other Cladonia species. Our results suggest that these differences contribute to C. borealis' remarkable adaptability in the Antarctic environment. This study also provides a useful resource for the genomic analysis of lichens and genetic insights into the survival of species isolated from Antarctica.
Collapse
Affiliation(s)
- Minjoo Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| | - Hyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
8
|
Gaikwad SB, Mapari SV, Sutar RR, Syed M, Khare R, Behera BC. In Vitro and in Silico Studies of Lichen Compounds Atranorin and Salazinic Acid as Potential Antioxidant, Antibacterial and Anticancer Agents. Chem Biodivers 2023; 20:e202301229. [PMID: 37888876 DOI: 10.1002/cbdv.202301229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Lichens are symbiotic organisms made up of alga/cyanobacterium and fungus. We investigated antioxidant, antibacterial and anticancer properties of two lichen compounds, atranorin and salazinic acid, and five lichen species: Heterodermia boryi, Heterodermia diademata, Heterodermia hypocaesia, Parmotrema reticulatum, and Stereocaulon foliolosum. Free radical scavenging, Ferric reducing potential, Nitric oxide scavenging, and Trolox equivalent capacity were used to measure antioxidant activity. Strong radical scavenging action was demonstrated by atranorin and salazinic acid, with IC50 values of 39.31 μM and 12.14 μM, respectively. The Minimum Inhibitory Concentration (MIC) assay based on resazurin, was used to measure antibacterial activity. Parmotrema reticulatum demonstrated significant antibacterial activity against Raoultella planticola with MIC of 7.8 μg/mL. Cytotoxicity assay on breast cancer cell line was used to assess anticancer activity. To further understand the binding locations on the target proteins Er (Estrogen Receptor alpha), EGFR (Epidermal Growth Factor Receptor), mTOR (Mammalian Target of Rapamycin), and PgR (Progesterone Receptor), molecular docking experiments were conducted. Docking study showed that the binding energies of atranorin and salazinic acid with mTOR were -5.31 kcal/mol and -3.43 kcal/mol, respectively. The results suggest that atranorin has the potential to be a multitargeted molecule with natural antioxidant, antibacterial, and anticancer properties.
Collapse
Affiliation(s)
- Subhash B Gaikwad
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Sachin V Mapari
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ruchira R Sutar
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Muntjeeb Syed
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Roshni Khare
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Bhaskar C Behera
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
| |
Collapse
|
9
|
Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Front Pharmacol 2023; 14:1251856. [PMID: 38026927 PMCID: PMC10646315 DOI: 10.3389/fphar.2023.1251856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to characterize the chemical composition of ethanolic extracts of the lichen species Placopsis contortuplicata, Ochrolechia frigida, and Umbilicaria antarctica, their antioxidant activity, and enzymatic inhibition through in vitro and molecular docking analysis. In total phenol content, FRAP, ORAC, and DPPH assays, the extracts showed significant antioxidant activity, and in in vitro assays for the inhibition of pancreatic lipase, α-glucosidase, and α-amylase enzymes, together with in silico studies for the prediction of pharmacokinetic properties, toxicity risks, and intermolecular interactions of compounds, the extracts evidenced inhibitory potential. A total of 13 compounds were identified by UHPLC-ESI-QTOF-MS in P. contortuplicata, 18 compounds in O. frigida, and 12 compounds in U. antarctica. This study contributes to the knowledge of the pool of bioactive compounds present in lichens of temperate and polar distribution and biological characteristics that increase interest in the discovery of natural products that offer alternatives for treatment studies of diseases related to oxidative stress and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Nicolás Jara-Pinuer
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones, Iquitos, Peru
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
10
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
11
|
Pulat S, Kim DA, Hillman PF, Oh DC, Kim H, Nam SJ, Fenical W. Actinoquinazolinone, a New Quinazolinone Derivative from a Marine Bacterium Streptomyces sp. CNQ-617, Suppresses the Motility of Gastric Cancer Cells. Mar Drugs 2023; 21:489. [PMID: 37755102 PMCID: PMC10532864 DOI: 10.3390/md21090489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed the planar structure of 1. Furthermore, compound 1 suppressed invasion ability by inhibiting epithelial-mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition, compound 1 decreased the expression of seventeen genes related to human cell motility and slightly suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS cells. Together, these results demonstrate that 1 is a potent inhibitor of gastric cancer cells.
Collapse
Affiliation(s)
- Sultan Pulat
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Da-Ae Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - Prima F. Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - William Fenical
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
12
|
Varlı M, Kim SJ, Noh MG, Kim YG, Ha HH, Kim KK, Kim H. KITENIN promotes aerobic glycolysis through PKM2 induction by upregulating the c-Myc/hnRNPs axis in colorectal cancer. Cell Biosci 2023; 13:146. [PMID: 37553596 PMCID: PMC10410973 DOI: 10.1186/s13578-023-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE The oncoprotein KAI1 C-terminal interacting tetraspanin (KITENIN; vang-like 1) promotes cell metastasis, invasion, and angiogenesis, resulting in shorter survival times in cancer patients. Here, we aimed to determine the effects of KITENIN on the energy metabolism of human colorectal cancer cells. EXPERIMENTAL DESIGN The effects of KITENIN on energy metabolism were evaluated using in vitro assays. The GEPIA web tool was used to extrapolate the clinical relevance of KITENIN in cancer cell metabolism. The bioavailability and effect of the disintegrator of KITENIN complex compounds were evaluated by LC-MS, in vivo animal assay. RESULTS KITENIN markedly upregulated the glycolytic proton efflux rate and aerobic glycolysis by increasing the expression of GLUT1, HK2, PKM2, and LDHA. β-catenin, CD44, CyclinD1 and HIF-1A, including c-Myc, were upregulated by KITENIN expression. In addition, KITENIN promoted nuclear PKM2 and PKM2-induced transactivation, which in turn, increased the expression of downstream mediators. This was found to be mediated through an effect of c-Myc on the transcription of hnRNP isoforms and a switch to the M2 isoform of pyruvate kinase, which increased aerobic glycolysis. The disintegration of KITENIN complex by silencing the KITENIN or MYO1D downregulated aerobic glycolysis. The disintegrator of KITENIN complex compound DKC1125 and its optimized form, DKC-C14S, exhibited the inhibition activity of KITENIN-mediated aerobic glycolysis in vitro and in vivo. CONCLUSIONS The oncoprotein KITENIN induces PKM2-mediated aerobic glycolysis by upregulating the c-Myc/hnRNPs axis.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sung Jin Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwanju, 61469, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandaero, Dongnam-gu, 31116, Cheonan-si, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
13
|
Poulsen-Silva E, Gordillo-Fuenzalida F, Atala C, Moreno AA, Otero MC. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023; 13:805. [PMID: 37512512 PMCID: PMC10383681 DOI: 10.3390/metabo13070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Lichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.
Collapse
Affiliation(s)
- Erick Poulsen-Silva
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| |
Collapse
|
14
|
Yu X, Xi Y, Sui Y, Liu Y, Chen G, Zhang M, Zhang Y, Luo G, Long Y, Yang W. Hydroxide-Mediated S NAr Rearrangement for Synthesis of Novel Depside Derivatives Containing Diaryl Ether Skeleton as Antitumor Agents. Molecules 2023; 28:molecules28114303. [PMID: 37298778 DOI: 10.3390/molecules28114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
A simple and efficient hydroxide-mediated SNAr rearrangement was reported to synthesize new depside derivatives containing the diaryl ether skeleton from the natural product barbatic acid. The prepared compounds were determined using 1H NMR, 13C NMR, HRMS, and X-ray crystallographic analysis and were also screened in vitro for cytotoxicity against three cancer cell lines and one normal cell line. The evaluation results showed that compound 3b possessed the best antiproliferative activity against liver cancer HepG2 cell line and low toxicity, which made it worth further study.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yinkai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yang Liu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guifen Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Minjie Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
15
|
Gamage CB, Lee K, Park SY, Varlı M, Lee CW, Kim SM, Zhou R, Pulat S, Yang Y, Taş İ, Hur JS, Kang KB, Kim H. Phthalides Isolated from the Endolichenic Arthrinium sp. EL000127 Exhibits Antiangiogenic Activity. ACS OMEGA 2023; 8:12548-12557. [PMID: 37033794 PMCID: PMC10077456 DOI: 10.1021/acsomega.3c00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Endolichenic fungi (ELF) produce specialized metabolites that have various medicinal properties. Inhibition of tumor angiogenesis efficaciously suppresses many types of cancer. This study aimed to discover novel antiangiogenic agents from specialized metabolite extracts of ELF strains isolated from Korean lichens. The EtOAc extracts of 51 ELF strains were subjected to a screening pipeline consisting of cell viability, scratch wound healing, and Transwell migration assays. The EtOAc extract of Arthrinium sp. EL000127 showed the most potent inhibitory activity against the chemotactic migration of human umbilical vein endothelial cells (HUVEC). Targeted isolation on the major LC-MS peaks exhibited a previously known phthalide, 3-O-methylcyclopolic acid (1), and two unknown analogues of 1, 3-O-phenylethylcyclopolic acid (2) and 3-O-p-hydroxyphenylethylcyclopolic acid (3). The structures were characterized by MS and NMR analyses. All the isolates were acquired and applied to bioassays as racemates due to spontaneous racemization. Among the isolates, compound 3 effectively inhibits HUVEC motility by suppressing mRNA expressions of genes regulating epithelial cell survival and motility, which suggested that compound 3 is a potent antiangiogenic agent suitable for further exploration as a potential novel therapeutic against cancers.
Collapse
Affiliation(s)
- Chathurika
D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Kyungha Lee
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47 gil, Seoul 04310, Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Chang Wook Lee
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Seong-Min Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Jae-Seoun Hur
- Korean
Lichen Research Institute, Sunchon National
University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Kyo Bin Kang
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47 gil, Seoul 04310, Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| |
Collapse
|
16
|
Marinobazzanan, a Bazzanane-Type Sesquiterpenoid, Suppresses the Cell Motility and Tumorigenesis in Cancer Cells. Mar Drugs 2023; 21:md21030153. [PMID: 36976200 PMCID: PMC10056982 DOI: 10.3390/md21030153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of NOESY data. The absolute configurations of 1 were determined by the modified Mosher’s method as well as vibrational circular dichroism (VCD) spectra calculation and it was determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below the concentration of 25 μM. However, compound 1 was shown to significantly decrease cancer-cell migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to 5 μM by downregulating the expression level of KITENIN and upregulating the expression level of KAI1. Compound 1 suppressed β-catenin-mediated TOPFLASH activity and its downstream targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft mouse model.
Collapse
|
17
|
Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J Fungi (Basel) 2023; 9:116. [PMID: 36675938 PMCID: PMC9866793 DOI: 10.3390/jof9010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Depsides and tridepsides are secondary metabolites found in lichens. In the last 10 years, there has been a growing interest in the pharmacological activity of these compounds. This review aims to discuss the research findings related to the biological effects and mechanisms of action of lichen depsides and tridepsides. The most studied compound is atranorin, followed by gyrophoric acid, diffractaic acid, and lecanoric acid. Antioxidant, cytotoxic, and antimicrobial activities are among the most investigated activities, mainly in in vitro studies, with occasional in silico and in vivo studies. Clinical trials have not been conducted using depsides and tridepsides. Therefore, future research should focus on conducting more in vivo work and clinical trials, as well as on evaluating the other activities. Moreover, despite the significant increase in research work on the pharmacology of depsides and tridepsides, there are many of these compounds which have yet to be investigated (e.g., hiascic acid, lassalic acid, ovoic acid, crustinic acid, and hypothamnolic acid).
Collapse
Affiliation(s)
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Gamage CDB, Kim JH, Yang Y, Taş İ, Park SY, Zhou R, Pulat S, Varlı M, Hur JS, Nam SJ, Kim H. Libertellenone T, a Novel Compound Isolated from Endolichenic Fungus, Induces G2/M Phase Arrest, Apoptosis, and Autophagy by Activating the ROS/JNK Pathway in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15020489. [PMID: 36672439 PMCID: PMC9857212 DOI: 10.3390/cancers15020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel compound, Libertellenone T (B), isolated from crude extracts of the endolichenic fungus from Pseudoplectania sp. (EL000327) and investigated the mechanism of action. CRC cells treated by B were subjected to apoptosis detection assays, immunofluorescence imaging, and molecular analyses such as immunoblotting and QRT-PCR. Our findings revealed that B induced CRC cell death via multiple mechanisms including G2/M phase arrest caused by microtubule stabilization and caspase-dependent apoptosis. Further studies revealed that B induced the generation of reactive oxygen species (ROS) attributed to activating the JNK signaling pathway by which apoptosis and autophagy was induced in Caco2 cells. Moreover, B exhibited good synergistic effects when combined with the well-known anticancer drug, 5-FU, and another cytotoxic novel compound D, which was isolated from the same crude extract of EL000327. Overall, Libertellenone T induces G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK pathway in CRC. Thus, B may be a potential anticancer therapeutic against CRC that is suitable for clinical applications.
Collapse
Affiliation(s)
- Chathurika D. B. Gamage
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Mücahit Varlı
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Correspondence: (S.-J.N.); (H.K.)
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
- Correspondence: (S.-J.N.); (H.K.)
| |
Collapse
|
19
|
Karagöz Y, Öztürk Karagöz B. Lichens in Pharmacological Action: What Happened in the Last Decade? Eurasian J Med 2022; 54:195-208. [PMID: 36655467 PMCID: PMC11163341 DOI: 10.5152/eurasianjmed.2022.22335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023] Open
Abstract
Lichens are a unique group of organisms, which can produce compounds that are named secondary metabolites and rarely or are not produced in other organisms. Lichens possess pharmacological actions related to their secondary metabolites. Our knowledge of lichens and their pharmacological actions rapidly increases as new technologies and devices, which facilitate the investigation of the chemical profile and biological activities of lichens, are introduced and become more readily available. In addition, new methods and perspectives, as well as suggestions for pharmacological mechanisms, accumulate daily. Furthermore, lichen substances stand as a relatively untapped source of natural products. Accordingly, researchers investigate the pharmacological actions of lichen-derived material more frequently than it was in the past. This review focused on the pharmacological activities of lichens published in the last 11 years (2012-2022). Literature data obtained from WebOfScience and PubMed databases using related search keywords revealed that anti-genotoxicity, anticancer, and anti-microbial activity studies have constantly been conducted. More recently, immunomodulatory and inflammation-related studies took to the stage. Enzyme inhibition actions were popular as well. Our selection was based on the novelty and mechanistic insight that papers presented.
Collapse
Affiliation(s)
- Yalçın Karagöz
- Department of Pharmaceutical Botany, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| | - Berna Öztürk Karagöz
- Department of Pharmacology, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| |
Collapse
|
20
|
Varlı M, Pham HT, Kim SM, Taş İ, Gamage CDB, Zhou R, Pulat S, Park SY, Sesal NC, Hur JS, Kang KB, Kim H. An acetonic extract and secondary metabolites from the endolichenic fungus Nemania sp. EL006872 exhibit immune checkpoint inhibitory activity in lung cancer cell. Front Pharmacol 2022; 13:986946. [PMID: 36160406 PMCID: PMC9495263 DOI: 10.3389/fphar.2022.986946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Endolichenic fungi (ELF), which live the inside the lichen thallus, contain many secondary metabolites that show various biological activities. Recent studies show that lichen and ELF secondary metabolites have antioxidant, antibacterial, antifungal, cytotoxic, and anticancer activities. Purpose: Here, the effects of an ELF extract and its bioactive compounds were investigated on the H1975 cell line focusing on immune checkpoint marker inhibition. Methods: An ELF was isolated from the host lichen Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw and identified the species as Nemania sp. EL006872. The fungus was cultured on agar medium and acetonic extracts were obtained. Secondary metabolites radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting. Results: The cell viability assay revealed that extracts from Nemania sp. EL006872 and the isolated secondary compounds had low cytotoxicity. The crude extract, radianspenes C and D, and dahliane D, suppressed expression of mRNA encoding PD-L1 and aromatic hydrocarbon receptor (AhR), and surface expression of PD-L1 protein by cells exposed to benzo[a] pyrene. Radianspenes C and D, and dahliane D, reduced expression of AhR, PD-L1, ICOSL, and GITRL proteins by H1975 lung cancer cells, as well as exerting anti-proliferative effects. Conclusion: Radianspenes C and D, and dahliane D, bioactive compounds isolated from Nemania sp. EL006872 ELF, have the potential for use as immunotherapy and immunoncology treatments.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Huong T. Pham
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Seong-Min Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | | | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, South Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, South Korea
- *Correspondence: Hangun Kim,
| |
Collapse
|
21
|
Simko P, Leskanicova A, Suvakova M, Blicharova A, Karasova M, Goga M, Kolesarova M, Bojkova B, Majerova P, Zidekova N, Barvik I, Kovac A, Kiskova T. Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats. Life (Basel) 2022; 12:life12071090. [PMID: 35888178 PMCID: PMC9316313 DOI: 10.3390/life12071090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.
Collapse
Affiliation(s)
- Patrik Simko
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Andrea Leskanicova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Maria Suvakova
- Institute of Chemistry, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Alzbeta Blicharova
- Institute of Pathology, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Martina Karasova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia;
| | - Michal Goga
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Mariana Kolesarova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Bianka Bojkova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Nela Zidekova
- Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University, 814 99 Bratislava, Slovakia;
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 110 00 Prague, Czech Republic;
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Terezia Kiskova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
- Correspondence: ; Tel.: +421-55-234-1216
| |
Collapse
|
22
|
Majchrzak-Celińska A, Kleszcz R, Studzińska-Sroka E, Łukaszyk A, Szoszkiewicz A, Stelcer E, Jopek K, Rucinski M, Cielecka-Piontek J, Krajka-Kuźniak V. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells 2022; 11:cells11071084. [PMID: 35406647 PMCID: PMC8997913 DOI: 10.3390/cells11071084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however, scarce. The study aimed at analyzing the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The parallel artificial membrane permeation assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using the MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied to the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited the Wnt/β-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, caperatic acid in particular, should be further analyzed as potential anti-GBM agents.
Collapse
Affiliation(s)
- Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str., 60-781 Poznań, Poland; (R.K.); (A.Ł.); (A.S.); (V.K.-K.)
- Correspondence: ; Tel.: +48-618546625
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str., 60-781 Poznań, Poland; (R.K.); (A.Ł.); (A.S.); (V.K.-K.)
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (E.S.-S.); (J.C.-P.)
| | - Agnieszka Łukaszyk
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str., 60-781 Poznań, Poland; (R.K.); (A.Ł.); (A.S.); (V.K.-K.)
| | - Anna Szoszkiewicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str., 60-781 Poznań, Poland; (R.K.); (A.Ł.); (A.S.); (V.K.-K.)
| | - Ewelina Stelcer
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcicki 6 Str., 60-781 Poznań, Poland; (E.S.); (K.J.); (M.R.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcicki 6 Str., 60-781 Poznań, Poland; (E.S.); (K.J.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcicki 6 Str., 60-781 Poznań, Poland; (E.S.); (K.J.); (M.R.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (E.S.-S.); (J.C.-P.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str., 60-781 Poznań, Poland; (R.K.); (A.Ł.); (A.S.); (V.K.-K.)
| |
Collapse
|
23
|
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, Qian H, Liu W, Liu T. Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci 2022; 19:1680-1694. [PMID: 36237989 PMCID: PMC9553860 DOI: 10.7150/ijms.73701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. In this study, we constructed Atranorin complexes comprising superparamagnetic iron oxide nanoparticles (SPION) (Atranorin@SPION). In vitro and in vivo experiments confirmed that Atranorin@SPION could significantly inhibit the proliferation, invasion, angiogenesis, and tumorigenicity of CD44+/ CD24+ GCSCs, and induce oxidative stress injury, Fe2+ accumulation, and ferroptosis. Quantitative real-time reverse transcription PCR and western blotting results showed that Atranorin@SPION not only reduced the expression levels of GCSC stem cell markers and cell proliferation and division markers, but also significantly inhibited the expression levels of key molecules in the cystine/glutamate transporter (Xc-)/glutathione peroxidase 4 (GPX4) and Tet methylcytosine dioxygenase (TET) family proteins. The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5‑hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.
Collapse
Affiliation(s)
- Zhentian Ni
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Hairong Zhang
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Lingquan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200086, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Wentao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
24
|
Taş İ, Varlı M, Son Y, Han J, Kwak D, Yang Y, Zhou R, Gamage CDB, Pulat S, Park SY, Yu YH, Moon KS, Lee KH, Ha HH, Hur JS, Kim H. Physciosporin suppresses mitochondrial respiration, aerobic glycolysis, and tumorigenesis in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153674. [PMID: 34333327 DOI: 10.1016/j.phymed.2021.153674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Physciosporin (PHY) is one of the potent anticancer lichen compound. Recently, PHY was shown to suppress colorectal cancer cell proliferation, motility, and tumorigenesis through novel mechanisms of action. PURPOSE We investigated the effects of PHY on energy metabolism and tumorigenicity of the human breast cancer (BC) cells MCF-7 (estrogen and progesterone positive BC) and MDA-MB-231 (triple negative BC). METHODS The anticancer effect of PHY on cell viability, motility, cancer metabolism and tumorigenicity was evaluated by MTT assay, migration assay, clonogenic assay, anchorage-independent colony formation assay, glycolytic and mitochondrial metabolism analysis, qRT-PCR, flow cytometric analysis, Western blotting, immunohistochemistry in vitro; and by tumorigenicity study with orthotopic breast cancer xenograft model in vivo. RESULTS PHY markedly inhibited BC cell viability. Cell-cycle profiling and Annexin V-FITC/PI double staining showed that a toxic dosage of PHY triggered apoptosis in BC cell lines by regulating the B-cell lymphoma-2 (Bcl-2) family proteins and the activity of caspase pathway. At non-toxic concentrations, PHY potently decreased migration, proliferation, and tumorigenesis of BC cells in vitro. Metabolic studies revealed that PHY treatment significantly reduced the bioenergetic profile by decreasing respiration, ATP production, and glycolysis capacity. In addition, PHY significantly altered the levels of mitochondrial (PGC-1α) and glycolysis (GLUT1, HK2 and PKM2) markers, and downregulated transcriptional regulators involved in cancer cell metabolism, including β-catenin, c-Myc, HIF-1α, and NF-κB. An orthotopic implantation mouse model of BC confirmed that PHY treatment suppressed BC growth in vivo and target genes were consistently suppressed in tumor specimens. CONCLUSION The findings from our in vitro as well as in vivo studies exhibit that PHY suppresses energy metabolism as well as tumorigenesis in BC. Especially, PHY represents a promising therapeutic effect against hormone-insensitive BC (triple negative) by targeting energy metabolism.
Collapse
Affiliation(s)
- İsa Taş
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea; Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Yeseon Son
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Jin Han
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Dahye Kwak
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | | | - Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
25
|
Kim S, Lee CW, Park SY, Asolkar RN, Kim H, Kim GJ, Oh SJ, Kim Y, Lee EY, Oh DC, Yang I, Paik MJ, Choi H, Kim H, Nam SJ, Fenical W. Acremonamide, a Cyclic Pentadepsipeptide with Wound-Healing Properties Isolated from a Marine-Derived Fungus of the Genus Acremonium. JOURNAL OF NATURAL PRODUCTS 2021; 84:2249-2255. [PMID: 34387477 DOI: 10.1021/acs.jnatprod.1c00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acremonamide (1) was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was established using MS, UV, and NMR spectroscopic data analyses. Acremonamide (1) was found to contain N-Me-Phe, N-Me-Ala, Val, Phe, and 2-hydroxyisovaleric acid. The absolute configurations of the four aforementioned amino acids were determined through acid hydrolysis followed by the advanced Marfey's method, whereas the absolute configuration of 2-hydroxyisovaleric acid was determined through GC-MS analysis after formation of the O-pentafluoropropionylated derivative of the (-)-menthyl ester of 2-hydroxyisovaleric acid. As an intrinsic biological activity, acremonamide (1) did not exert cytotoxicity to cancer and noncancer cells and increased the migration and invasion. Based on these activities, the wound healing properties of acremonamide (1) were confirmed in vitro and in vivo.
Collapse
Affiliation(s)
- Sojeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Wook Lee
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Ratnakar N Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| | - Haerin Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Song Jin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Yang
- Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| |
Collapse
|
26
|
Chen G, An N, Zhu Y, Zhou R, Noh MG, Kim H, Lee HJ, Shen Y, Cho YC, Jin L, Cong W, Lee JH, Kim K. bFGF-mediated phosphorylation of δ-catenin increases its protein stability and the ability to induce the nuclear redistribution of β-catenin. Am J Cancer Res 2021; 11:3877-3892. [PMID: 34522455 PMCID: PMC8414378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023] Open
Abstract
Recently, we have shown that δ-catenin strengthened the epidermal growth factor receptor (EGFR)/Erk1/2 signaling pathway through the association between EGFR and δ-catenin. Now, we further analyzed the correlation between basic fibroblast growth factor (bFGF)/fibroblast growth factor receptor 1 (FGFR1) and δ-catenin in prostate cancer and investigated the molecular mechanism underlying the role of bFGF/FGFR1 modulation in CWR22Rv-1 (Rv-1) cells. Here, we demonstrated that bFGF phosphorylated the tyrosine residues of δ-catenin in Rv-1 cells and further proved that the bFGF mediated FGFR1/δ-catenin tyrosine phosphorylation was time dependent. Furthermore, we demonstrated that bFGF stabilized the expression of δ-catenin through weakening its association with GSK3β and enhancing its stability to induce β-catenin into the nuclear by strengthening the processing of E-cadherin. In a word, these results indicated that bFGF/FGFR1 signaling pathway could enhance the tumor progression of prostate cancer via δ-catenin.
Collapse
Affiliation(s)
- Gen Chen
- College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili HospitalNingbo 315041, P. R. China
| | - Yu Zhu
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Rui Zhou
- College of Pharmacy, Sunchon National UniversitySunchon 57922, Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST)Gwangju 61005, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National UniversitySunchon 57922, Korea
| | - Hyoung Jae Lee
- College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Yingjie Shen
- College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, P. R. China
| | - Jae-Hyuk Lee
- Chonnam National University Hwasun Hospital & Medical SchoolHwasun 58128, Korea
| | - Kwonseop Kim
- College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| |
Collapse
|
27
|
In Vitro Anticancer Activity and Oxidative Stress Biomarkers Status Determined by Usnea barbata (L.) F.H. Wigg. Dry Extracts. Antioxidants (Basel) 2021; 10:antiox10071141. [PMID: 34356377 PMCID: PMC8301184 DOI: 10.3390/antiox10071141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Lichens represent an important resource for common traditional medicines due to their numerous metabolites that can exert diverse pharmacological activities including anticancer effects. To find new anticancer compounds with fewer side effects and low tumor resistance, a bioprospective study of Usnea barbata (L.) F.H. Wigg. (U. barbata), a lichen from the Călimani Mountains (Suceava county, Romania) was performed. The aim of this research was to investigate the anticancer potential, morphologic changes, wound healing property, clonogenesis, and oxidative stress biomarker status of four extracts of U. barbata in different solvents (methanol, ethanol, acetone, and ethyl acetate), and also of usnic acid (UA) as a positive control on the CAL-27 (ATCC® CRL-2095™) oral squamous carcinoma (OSCC) cell line and V79 (ATCC® CCL-93™) lung fibroblasts as normal cells. Using the MTT assay and according to IC50 values, it was found that the most potent anticancer property was displayed by acetone and ethyl acetate extracts. All U. barbata extracts determined morphological modifications (losing adhesion capacity, membrane shrinkage, formation of abnormal cellular wrinkles, and vacuolization) with higher intensity in tumor cells than in normal ones. The most intense anti-migration effect was established in the acetone extract treatment. The clonogenic assay showed that some U. barbata extracts decreased the ability of cancer cells to form colonies compared to untreated cells, suggesting a potential anti-tumorigenic property of the tested extracts. Therefore, all the U. barbata extracts manifest anticancer activity of different intensity, based, at least partially, on an imbalance in antioxidant defense mechanisms, causing oxidative stress.
Collapse
|
28
|
Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021; 12:e0111121. [PMID: 34154413 PMCID: PMC8262933 DOI: 10.1128/mbio.01111-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sunmin Woo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
29
|
Quantum chemical calculation studies toward microscopic understanding of retention mechanism of Cs radioisotopes and other alkali metals in lichens. Sci Rep 2021; 11:8228. [PMID: 33859257 PMCID: PMC8050294 DOI: 10.1038/s41598-021-87617-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2021] [Indexed: 01/23/2023] Open
Abstract
We evaluate stability of cesium (Cs) and other alkali-metal cation complexes of lichen metabolites in both gas and aqueous phases to discuss why lichens can retain radioactive Cs in the thalli over several years. We focus on oxalic acid, (+)-usnic acid, atranorin, lecanoric acid, and protocetraric acid, which are common metabolite substances in various lichens including, e.g., Flavoparmelia caperata and Parmotrema tinctorum retaining Cs in Fukushima, Japan. By performing quantum chemical calculations, their gas-phase complexation energies and aqueous-solution complexation free energies with alkali-metal cations are computed for their neutral and deprotonated cases. Consequently, all the molecules are found to energetically favor cation complexations and the preference order is Li\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^+>$$\end{document}+>Na\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^+>$$\end{document}+>K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^+>$$\end{document}+>Rb\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^+>$$\end{document}+>Cs\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^+$$\end{document}+ for all conditions, indicating no specific Cs selectivity but strong binding with all alkali cations. Comparing complexation stabilities among these metabolites, lecanoric and protocetraric acids seen in medullary layer are found to keep higher affinity in their neutral case, while (+)-usnic acid and atranorin in upper cortex exhibit rather strong affinity only in deprotonated cases through forming stable six atoms’ ring containing alkali cation chelated by two oxygens. These results suggest that the medullary layer can catch all alkali cations in a wide pH range around the physiological one, while the upper cortex can effectively block penetration of metal ions when the metal stress grows. Such insights highlight a physiological role of metabolites like blocking of metal-cation migrations into intracellular tissues, and explain long-term retention of alkali cations including Cs in lichens containing enough such metabolites to bind them.
Collapse
|
30
|
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 2020; 13:165. [PMID: 33276800 PMCID: PMC7716495 DOI: 10.1186/s13045-020-00990-3] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
The aberrant Wnt/β-catenin signaling pathway facilitates cancer stem cell renewal, cell proliferation and differentiation, thus exerting crucial roles in tumorigenesis and therapy response. Accumulated investigations highlight the therapeutic potential of agents targeting Wnt/β-catenin signaling in cancer. Wnt ligand/ receptor interface, β-catenin destruction complex and TCF/β-catenin transcription complex are key components of the cascade and have been targeted with interventions in preclinical and clinical evaluations. This scoping review aims at outlining the latest progress on the current approaches and perspectives of Wnt/β-catenin signaling pathway targeted therapy in various cancer types. Better understanding of the updates on the inhibitors, antagonists and activators of Wnt/β-catenin pathway rationalizes innovative strategies for personalized cancer treatment. Further investigations are warranted to confirm precise and secure targeted agents and achieve optimal use with clinical benefits in malignant diseases.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,School of medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,School of medicine, Shandong University, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 250021, China.
| |
Collapse
|
31
|
Simultaneous biosynthesis of reduced graphene oxide-Ag-Cu2O nanostructures by lichen extract for catalytic reduction of textile dyes. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Lee J, Gamage CDB, Kim GJ, Hillman PF, Lee C, Lee EY, Choi H, Kim H, Nam SJ, Fenical W. Androsamide, a Cyclic Tetrapeptide from a Marine Nocardiopsis sp., Suppresses Motility of Colorectal Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:3166-3172. [PMID: 32985880 DOI: 10.1021/acs.jnatprod.0c00815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A cyclic tetrapeptide, androsamide (1), was isolated from a marine actinomycete of the genus Nocardiopsis, strain CNT-189. The planar structure of 1 was assigned by the interpretation of 1D and 2D NMR spectroscopic data. The absolute configurations of constituent amino acids of 1 were determined by application of the Marfey's and advanced Marfey's methods. Androsamide (1) strongly suppressed the motility of Caco2 cells caused by epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jihye Lee
- Laboratories of Marine New Drugs, REDONE Seoul, Seoul 08594, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Chathurika D B Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Yeungnam, Gyeongsangbukdo 38531, Republic of Korea
| | - Prima F Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Chaeyoung Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Yeungnam, Gyeongsangbukdo 38531, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| |
Collapse
|
33
|
Ingelfinger R, Henke M, Roser L, Ulshöfer T, Calchera A, Singh G, Parnham MJ, Geisslinger G, Fürst R, Schmitt I, Schiffmann S. Unraveling the Pharmacological Potential of Lichen Extracts in the Context of Cancer and Inflammation With a Broad Screening Approach. Front Pharmacol 2020; 11:1322. [PMID: 33013369 PMCID: PMC7509413 DOI: 10.3389/fphar.2020.01322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Lichen-forming fungi are symbiotic organisms that synthesize unique natural products with potential for new drug leads. Here, we explored the pharmacological activity of six lichen extracts (Evernia prunastri, Pseudevernia furfuracea, Umbilicaria pustulata, Umbilicaria crustulosa, Flavoparmelia caperata, Platismatia glauca) in the context of cancer and inflammation using a comprehensive set of 11 functional and biochemical in vitro screening assays. We assayed intracellular Ca2+ levels and cell migration. For cancer, we measured tumor cell proliferation, cell cycle distribution and apoptosis, as well as the angiogenesis-associated proliferation of endothelial cells (ECs). Targeting inflammation, we assayed leukocyte adhesion onto ECs, EC adhesion molecule expression, as well as nitric oxide production and prostaglandin (PG)E2 synthesis in leukocytes. Remarkably, none of the lichen extracts showed any detrimental influence on the viability of ECs. We showed for the first time that extracts of F. caperata induce Ca2+ signaling. Furthermore, extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca reduced cell migration. Interestingly, F. caperata extracts strongly decreased tumor cell survival. The proliferation of ECs was significantly reduced by E. prunastri, P. furfuracea, and F. caperata extracts. The extracts did not inhibit the activity of inflammatory processes in ECs. However, the pro-inflammatory activation of leukocytes was inhibited by extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca. After revealing the potential biological activities of lichen extracts by an array of screening tests, a correlation analysis was performed to evaluate particular roles of abundant lichen secondary metabolites, such as atranorin, physodic acid, and protocetraric acid as well as usnic acid in various combinations. Overall, some of the lichen extracts tested in this study exhibit significant pharmacological activity in the context of inflammation and/or cancer, indicating that the group lichen-forming fungi includes promising members for further testing.
Collapse
Affiliation(s)
- Rebecca Ingelfinger
- Faculty of Biochemistry, Institute of Pharmaceutical Biology, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Marina Henke
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Luise Roser
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Garima Singh
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Gerd Geisslinger
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany.,pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Faculty of Biochemistry, Institute of Pharmaceutical Biology, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany
| | - Imke Schmitt
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center Translational Biodiversity Genomics, Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| |
Collapse
|
34
|
Harikrishnan A, Veena V, Lakshmi B, Shanmugavalli R, Theres S, Prashantha CN, Shah T, Oshin K, Togam R, Nandi S. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. J Biomol Struct Dyn 2020; 39:1248-1258. [PMID: 32096436 DOI: 10.1080/07391102.2020.1734482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atranorin (ATR), lichenized secondary metabolite and depside molecule with several biological potentials such as antimicrobial, anticancer, anti-inflammatory, antinociceptive, wound healing and photoprotective activities. Cytotoxic reports of ATR are documented in several cancer cells and in vivo models but its molecular interaction studies are poorly understood. Therefore, in this present investigation, we have used the in silico studies with biological validation of the molecular targets for the anti-breast cancer mechanism of ATR. The molecular docking studies with the breast cancer oncoproteins such as Bcl-2, Bax, Akt, Bcl-w and Bcl-xL revealed the highest interaction was observed with the Akt followed by Bax, Bcl-xL and Bcl-2 & least with the Bcl-w proteins. The cytotoxicity studies showed ATR selectively inhibited MDA MB-231 and MCF-7 breast cancer cells in differential and dose-dependent manner with the IC50 concentration of 5.36 ± 0.85 μM and 7.55 ± 1.2 μM respectively. Further mechanistic investigations revealed that ATR significantly inhibited ROS production and significantly down-regulated the anti apoptotic Akt than Bcl-2, Bcl-xL and Bcl-w proteins with a significant increase in the Bax level and caspases-3 activity in the breast cancer cells when comparison with Akt inhibitor, ipatasertib. In vitro biological activities well correlated with the molecular interaction data suggesting that atranorin had higher interaction with Akt than Bax and Bcl-2 but weak interaction with Bcl-w and Bcl-xL. In this present study, the first time we report the interactions of atranorin with molecular targets for anti-breast cancer potential. Hence, ATR represents the nature-inspired molecule for pharmacophore moiety for design in targeted therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - B Lakshmi
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - R Shanmugavalli
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India
| | - Sonia Theres
- Department of Chemistry, Kanchi Mamunivar Centre for Postgraduate Studies (KMCPGS), Puducherry, India
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Tanya Shah
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - K Oshin
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Ringu Togam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (GIPER), Affiliated to Uttarakhand Technical University, Kashipur, Uttarakhand, India
| |
Collapse
|
35
|
Therapeutic Effects of Atranorin towards the Proliferation of Babesia and Theileria Parasites. Pathogens 2020; 9:pathogens9020127. [PMID: 32079149 PMCID: PMC7167990 DOI: 10.3390/pathogens9020127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Atranorin (ATR), is a compound with multidirectional biological activity under different in vitro and in vivo conditions and it is effective as an antibacterial, antiviral, antiprotozoal and anti-inflammatory agent. In the current study, the in vitro as well as in vivo chemotherapeutic effect of ATR as well as its combined efficacy with the existing antibabesial drugs (diminazene aceturate (DA), atovaquone (AV) and clofazimine (CF)) were investigated on six species of piroplasm parasites. ATR suppressed B. bovis, B. bigemina, B. divergens, B. caballi and T. equi multiplication in vitro with IC50 values of 98.4 ± 4.2, 64.5 ± 3.9, 45.2 ± 5.9, 46.6 ± 2.5, and 71.3 ± 2.7 µM, respectively. The CCK test was used to examine ATR's cytotoxicity and adverse effects on different animal and human cell lines, the main hosts of piroplasm parasites and it showed that ATR affected human foreskin fibroblasts (HFF), mouse embryonic fibroblast (NIH/3T3) and Madin-Darby Bovine Kidney (MDBK) cell viability in a dose-related effect with a moderate selective index. The combined efficacy of ATR with DA, CF, and AV exhibited a synergistic and additive efficacy toward all tested species. In the in vivo experiment, ATR prohibited B. microti multiplication in mice by 68.17%. The ATR-DA and ATR-AV combination chemotherapies were more potent than ATR monotherapy. These results indicate the prospects of ATR as a drug candidate for piroplasmosis treatment.
Collapse
|
36
|
Anticancer Potential of Lichens' Secondary Metabolites. Biomolecules 2020; 10:biom10010087. [PMID: 31948092 PMCID: PMC7022966 DOI: 10.3390/biom10010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lichens produce different classes of phenolic compounds, including anthraquinones, xanthones, dibenzofuranes, depsides and depsidones. Many of them have revealed effective biological activities such as antioxidant, antiviral, antibiotics, antifungal, and anticancer. Although no clinical study has been conducted yet, there are number of in vitro and in vivo studies demonstrating anticancer effects of lichen metabolites. The main goal of our work was to review most recent published papers dealing with anticancer activities of secondary metabolites of lichens and point out to their perspective clinical use in cancer management.
Collapse
|
37
|
Tas I, Yildirim A, Ozkan E, Ozyigitoglu G, Yavuz M, Turker A. Biological evaluation and phytochemical profiling of some lichen species. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.4.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- I. Tas
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14280, Bolu. Turkey
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - A.B. Yildirim
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Bolu Abant Izzet Baysal University, Bolu. Turkey
| | - E. Ozkan
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14280, Bolu. Turkey
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju. Republic of Korea
| | - G.C. Ozyigitoglu
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul. Turkey
| | - M.Z. Yavuz
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu. Turkey
| | - A.U. Turker
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14280, Bolu. Turkey
| |
Collapse
|
38
|
Song Z, Wang H, Zhang S. Negative regulators of Wnt signaling in non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed Pharmacother 2019; 118:109336. [PMID: 31545260 DOI: 10.1016/j.biopha.2019.109336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
Significant advances in the treatment of non-small cell lung cancer (NSCLC) have been made over the past decade, and they predominantly involve molecular targets such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. However, despite the initial good response, drug resistance eventually develops. The Wnt signaling pathway has recently been considered important in embryonic development and tumorigenesis in many cancers, particularly NSCLC. Moreover, the aberrant Wnt pathway plays a significant role in NSCLC and is associated with cancer cell proliferation, metastasis, invasion and drug resistance, and the suppression of canonical or noncanonical Wnt signaling through various biological or pharmacological negative regulators has been proven to produce specific anticancer effects. Thus, blocking the Wnt pathway via its negative regulators may overcome the resistance of current treatment methods and lead to new treatment strategies for NSCLC. Therefore, in this review, we summarize recent studies on the role of negative regulators in Wnt signaling in NSCLC and the therapeutic potency of these molecules as agents and targets for NSCLC treatments.
Collapse
Affiliation(s)
- Zikuan Song
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Jeon YJ, Kim S, Kim JH, Youn UJ, Suh SS. The Comprehensive Roles of ATRANORIN, A Secondary Metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC Tumorigenesis. Molecules 2019; 24:molecules24071414. [PMID: 30974882 PMCID: PMC6480312 DOI: 10.3390/molecules24071414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly genetic diseases, but surprisingly chemotherapeutic approaches against HCC are only limited to a few targets. In particular, considering the difficulty of a chemotherapeutic drug development in terms of cost and time enforces searching for surrogates to minimize effort and maximize efficiency in anti-cancer therapy. In spite of the report that approximately one thousand lichen-derived metabolites have been isolated, the knowledge about their functions and consequences in cancer development is relatively limited. Moreover, one of the major second metabolites from lichens, Atranorin has never been studied in HCC. Regarding this, we comprehensively analyze the effect of Atranorin by employing representative HCC cell lines and experimental approaches. Cell proliferation and cell cycle analysis using the compound consistently show the inhibitory effects of Atranorin. Moreover, cell death determination using Annexin-V and (Propidium Iodide) PI staining suggests that it induces cell death through necrosis. Lastly, the metastatic potential of HCC cell lines is significantly inhibited by the drug. Taken these together, we claim a novel functional finding that Atranorin comprehensively suppresses HCC tumorigenesis and metastatic potential, which could provide an important basis for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ji Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan 58554, Korea.
| |
Collapse
|
40
|
Taş İ, Han J, Park SY, Yang Y, Zhou R, Gamage CDB, Van Nguyen T, Lee JY, Choi YJ, Yu YH, Moon KS, Kim KK, Ha HH, Kim SK, Hur JS, Kim H. Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:10-20. [PMID: 30668330 DOI: 10.1016/j.phymed.2018.09.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lichens, which represent symbiotic associations of fungi and algae, are potential sources of numerous natural products. Physciosporin (PHY) is a potent secondary metabolite found in lichens and was recently reported to inhibit the motility of lung cancer cells via novel mechanisms. PURPOSE The present study investigated the anticancer potential of PHY on colorectal cancer (CRC) cells. METHODS PHY was isolated from lichen extract by preparative TLC. The effect of PHY on cell viability, motility and tumourigenicity was elucidated by MTT assay, hoechst staining, flow cytometric analysis, transwell invasion and migration assay, soft agar colony formation assay, Western blotting, qRT-PCR and PCR array in vitro as well as tumorigenicity study in vivo. RESULTS PHY decreased the viability of various CRC cell lines (Caco2, CT26, DLD1, HCT116 and SW620). Moreover, PHY elicited cytotoxic effects by inducing apoptosis at toxic concentrations. At non-toxic concentrations, PHY dose-dependently suppressed the invasion, migration and colony formation of CRC cells. PHY inhibited the motility of CRC cells by suppressing epithelial-mesenchymal transition and downregulating actin-based motility markers. In addition, PHY downregulated β-catenin and its downstream target genes cyclin-D1 and c-Myc. Moreover, PHY modulated KAI1 C-terminal-interacting tetraspanin and KAI1 expression, and downregulated the downstream transcription factors c-jun and c-fos. Finally, PHY administration showed considerable bioavailability and effectively decreased the growth of CRC xenografts in mice without causing toxicity. CONCLUSION PHY suppresses the growth and motility of CRC cells via novel mechanisms.
Collapse
Affiliation(s)
- İsa Taş
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Jin Han
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Rui Zhou
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Chathurika D B Gamage
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Tru Van Nguyen
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Hyun Yu
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Ho Ha
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea.
| | - Hangun Kim
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
41
|
Zhou R, Yang Y, Park SY, Seo YW, Jung SC, Kim KK, Kim K, Kim H. p300/CBP-associated factor promotes autophagic degradation of δ-catenin through acetylation and decreases prostate cancer tumorigenicity. Sci Rep 2019; 9:3351. [PMID: 30833716 PMCID: PMC6399259 DOI: 10.1038/s41598-019-40238-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 01/21/2023] Open
Abstract
δ-Catenin shares common binding partners with β-catenin. As acetylation and deacetylation regulate β-catenin stability, we searched for histone acetyltransferases (HATs) or histone deacetylases (HDACs) affecting δ-catenin acetylation status and protein levels. We showed that p300/CBP-associated factor (PCAF) directly bound to and acetylated δ-catenin, whereas several class I and class II HDACs reversed this effect. Unlike β-catenin, δ-catenin was downregulated by PCAF-mediated acetylation and upregulated by HDAC-mediated deacetylation. The HDAC inhibitor trichostatin A attenuated HDAC1-mediated δ-catenin upregulation, whereas HAT or autophagy inhibitors, but not proteasome inhibitors, abolished PCAF-mediated δ-catenin downregulation. The results suggested that PCAF-mediated δ-catenin acetylation promotes its autophagic degradation in an Atg5/LC3-dependent manner. Deletions or point mutations identified several lysine residues in different δ-catenin domains involved in PCAF-mediated δ-catenin downregulation. PCAF overexpression in prostate cancer cells markedly reduced δ-catenin levels and suppressed cell growth and motility. PCAF-mediated δ-catenin downregulation inhibited E-cadherin processing and decreased the nuclear distribution of β-catenin, resulting in the suppression of β-catenin/LEF-1-mediated downstream effectors. These data demonstrate that PCAF downregulates δ-catenin by promoting its autophagic degradation and suppresses δ-catenin-mediated oncogenic signals.
Collapse
Affiliation(s)
- Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
42
|
Lee Y, Jeong MH, Kim KJ, Baek SH, Hur JS, Son YJ. The Extract of Ramalina litoralis Inhibits Osteoclast Differentiation. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0407-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Biosynthetic Gene Content of the 'Perfume Lichens' Evernia prunastri and Pseudevernia furfuracea. Molecules 2019; 24:molecules24010203. [PMID: 30626017 PMCID: PMC6337363 DOI: 10.3390/molecules24010203] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Lichen-forming fungi produce a vast number of unique natural products with a wide variety of biological activities and human uses. Although lichens have remarkable potential in natural product research and industry, the molecular mechanisms underlying the biosynthesis of lichen metabolites are poorly understood. Here we use genome mining and comparative genomics to assess biosynthetic gene clusters and their putative regulators in the genomes of two lichen-forming fungi, which have substantial commercial value in the perfume industry, Evernia prunastri and Pseudevernia furfuracea. We report a total of 80 biosynthetic gene clusters (polyketide synthases (PKS), non-ribosomal peptide synthetases and terpene synthases) in E. prunastri and 51 in P. furfuracea. We present an in-depth comparison of 11 clusters, which show high homology between the two species. A ketosynthase (KS) phylogeny shows that biosynthetic gene clusters from E. prunastri and P. furfuracea are widespread across the Fungi. The phylogeny includes 15 genomes of lichenized fungi and all fungal PKSs with known functions from the MIBiG database. Phylogenetically closely related KS domains predict not only similar PKS architecture but also similar cluster architecture. Our study highlights the untapped biosynthetic richness of lichen-forming fungi, provides new insights into lichen biosynthetic pathways and facilitates heterologous expression of lichen biosynthetic gene clusters.
Collapse
|
44
|
Yang Y, Bhosle SR, Yu YH, Park SY, Zhou R, Taş İ, Gamage CDB, Kim KK, Pereira I, Hur JS, Ha HH, Kim H. Tumidulin, a Lichen Secondary Metabolite, Decreases the Stemness Potential of Colorectal Cancer Cells. Molecules 2018; 23:molecules23112968. [PMID: 30441806 PMCID: PMC6278574 DOI: 10.3390/molecules23112968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Lichens produce various unique chemicals that are used in the pharmaceutical industry. To screen for novel lichen secondary metabolites that inhibit the stemness potential of colorectal cancer cells, we tested acetone extracts of 11 lichen samples collected in Chile. Tumidulin, isolated from Niebla sp., reduced spheroid formation in CSC221, DLD1, and HT29 cells. In addition, mRNA expressions and protein levels of cancer stem markers aldehyde dehydrogenase-1 (ALDH1), cluster of differentiation 133 (CD133), CD44, Lgr5, and Musashi-1 were reduced after tumidulin treatment. Tumidulin decreased the transcriptional activity of the glioma-associated oncogene homolog zinc finger protein (Gli) promoter in reporter assays, and western blotting confirmed decreased Gli1, Gli2, and Smoothened (SMO) protein levels. Moreover, the tumidulin activity was not observed in the presence of Gli and SMO inhibitors. Together, these results demonstrate for the first time that tumidulin is a potent inhibitor of colorectal cancer cell stemness.
Collapse
Affiliation(s)
- Yi Yang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
- Korean Lichen Res. Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Suresh R Bhosle
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - İsa Taş
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
- Korean Lichen Res. Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Chathurika D B Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
- Korean Lichen Res. Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Iris Pereira
- Institute of Biological Sciences, Universidad de Talca, Talca 747-721, Chile.
| | - Jae-Seoun Hur
- Korean Lichen Res. Institute, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| |
Collapse
|
45
|
Potassium usnate, a water-soluble usnic acid salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. Sci Rep 2018; 8:16234. [PMID: 30390003 PMCID: PMC6214985 DOI: 10.1038/s41598-018-34709-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023] Open
Abstract
Usnic acid (UA), a lichen secondary substance, has considerable anticancer activity in vitro, whereas its effect in vivo is limited. Here, potassium usnate (KU) was prepared by the salinization of UA to enhance its water solubility. KU showed increased bioavailability compared with UA in the tumor, liver, and plasma of a CT26 syngeneic mouse tumor xenograft model after oral administration, as determined by LC-MS/MS analysis. KU exhibited potent anticancer effects on colorectal cancer cells and inhibited liver metastasis in an orthotopic murine colorectal cancer model. KU treatment downregulated the epithelial-mesenchymal markers Twist, Snail, and Slug and the metastasis-related genes CAPN1, CDC42, CFL1, IGF1, WASF1, and WASL in cells and tumor tissues. The present results suggest the potential application of the water-soluble form of UA, KU, in anticancer therapy.
Collapse
|