1
|
Fracasso I, Zaccone C, Oskolkov N, Da Ros L, Dinella A, Belelli Marchesini L, Buzzini P, Sannino C, Turchetti B, Cesco S, Le Roux G, Tonon G, Vernesi C, Mimmo T, Ventura M, Borruso L. Exploring different methodological approaches to unlock paleobiodiversity in peat profiles using ancient DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168159. [PMID: 37923262 DOI: 10.1016/j.scitotenv.2023.168159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Natural and human-induced environmental changes deeply affected terrestrial ecosystems throughout the Holocene. Paleoenvironmental reconstructions provide information about the past and allow us to predict/model future scenarios. Among potential records, peat bogs are widely used because they present a precise stratigraphy and act as natural archives of highly diverse organic remains. Over the decades, several techniques have been developed to identify debris occurring in peat, including their morphological description. However, this is strongly constrained by the researcher's ability to distinguish residues at the species level, which typically requires many years of experience. In addition, potential contamination hampers using these techniques to obtain information from organisms such as fungi or bacteria. Environmental DNA metabarcoding and shotgun metagenome sequencing could represent a solution to detect specific groups of organisms without any a priori knowledge of their characteristics and/or to identify organisms that have rarely been considered in previous investigations. Moreover, shotgun metagenomics may allow the identification of bacteria and fungi (including both yeast and filamentous life forms), ensuring discrimination between ancient and modern organisms through the study of deamination/damage patterns. In the present review, we aim to i) present the state-of-the-art methodologies in paleoecological and paleoclimatic studies focusing on peat core analyses, proposing alternative approaches to the classical morphological identification of plant residues, and ii) suggest biomolecular approaches that will allow the use of proxies such as invertebrates, fungi, and bacteria, which are rarely employed in paleoenvironmental reconstructions.
Collapse
Affiliation(s)
- Ilaria Fracasso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Luca Da Ros
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Anna Dinella
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luca Belelli Marchesini
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06123 Perugia, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Gael Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR5245 CNRS/UPS/INPT), Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Giustino Tonon
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| |
Collapse
|
2
|
Bech TB, Hellal J, Badawi N, Jakobsen R, Aamand J. Linking denitrification and pesticide transformation potentials with community ecology and groundwater discharge in hyporheic sediments in a lowland stream. WATER RESEARCH 2023; 242:120174. [PMID: 37343333 DOI: 10.1016/j.watres.2023.120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Contamination of rivers by nitrate and pesticides poses a risk for aquatic ecosystems in lowland catchments that are often intensively used for agriculture. Here, the hyporheic zone, the streambed underneath the stream, plays a vital role due to its efficient self-purification capacity. The present study aims to evaluate the denitrification and transformation potential of 14 pesticides and three transformation products in the hyporheic sediment from a lowland stream with a high N load and by comparing an agricultural straightened section to a natural meandering part of the stream influenced by different groundwater discharges. Batch experiments were set up to evaluate the denitrification and pesticide transformation potentials in hyporheic sediment from two depths (5-15 cm (a) and 15-25 cm (b)). Our results revealed that (i) differences between the agricultural and natural sections of the river did not influence pollutant attenuation, (ii) both the nitrate and pesticide attenuation processes were more rapid in the upper "a" layer compared to the "b" layer due to higher microbial abundance, (iii) high groundwater discharge reduced the denitrification potential while pesticide transformation was unaffected, (iv) denitrification correlated with denitrifier abundance (nirK) in the "b" layer, while this correlation was not seen in the "a" layer, and (v) a microbial community with low diversity can explain limited transformation for the majority of tested pesticides. Overall, our results suggest that high groundwater discharge zones with reduced residence time in the hyporheic zone can be an important source of pesticides and nitrate to surface water.
Collapse
Affiliation(s)
- Tina B Bech
- Department of Geochemistry, Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, Copenhagen DK-1350, Denmark; Rambøll Danmark A/S, Hannemanns Allé 53, Copenhagen 2300, Denmark.
| | | | - Nora Badawi
- Department of Geochemistry, Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Rasmus Jakobsen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, Copenhagen DK-1350, Denmark
| |
Collapse
|
3
|
Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, Li JT, Huang LN, Li WJ, Jiang HC, Dong HL, Shu WS. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. THE ISME JOURNAL 2019; 13:2044-2057. [PMID: 30962514 PMCID: PMC6776010 DOI: 10.1038/s41396-019-0415-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
Abstract
Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | - Yun Fang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Guangdong Magigene Biotechnology Co. Ltd., 510000, Guangzhou, China
| | - Li-Ying Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hai-Liang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
4
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
5
|
Vuillemin A, Horn F, Friese A, Winkel M, Alawi M, Wagner D, Henny C, Orsi WD, Crowe SA, Kallmeyer J. Metabolic potential of microbial communities from ferruginous sediments. Environ Microbiol 2018; 20:4297-4313. [PMID: 29968357 DOI: 10.1111/1462-2920.14343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023]
Abstract
Ferruginous (Fe-rich, SO4 -poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - André Friese
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,University of Potsdam, Faculty of Mathematics and Natural Sciences, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology (LIPI), Indonesian Institute of Sciences, Division of Inland Waterways Dynamics, Cibinong-Bogor, Indonesia
| | - William D Orsi
- Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Geobio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sean A Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| |
Collapse
|
6
|
Zaccone C, Lobianco D, Raber G, D'Orazio V, Shotyk W, Miano TM, Francesconi K. Methylated arsenic species throughout a 4-m deep core from a free-floating peat island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:67-74. [PMID: 29175622 DOI: 10.1016/j.scitotenv.2017.11.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) occurs in soils mostly in inorganic forms, whereas the organic forms usually occur only in trace amounts. Peatlands are waterlogged, generally anoxic, organic soils representing the first step in coal formation; the contribution of organic vs. inorganic As species in this environment has received little research attention. Here, 57 peat samples collected throughout a 4-m deep, free-floating mire were analysed for total As and for its organic species, including dimethylarsinic acid (DMA), methylarsonic acid (MA), trimethylarsine oxide (TMAO) and arsenobetaine (AB), by HPLC-ICPMS. Aqueous trifluoroacetic acid was used as extractant, resulting in an average extraction efficiency of almost 80%. Total As concentration throughout the profile ranged between 0.2 and 9.8mg/kgpeat (mean: 1.4±1.2mg/kgpeat). Organic As species (DMA+MA+TMAO+AB) accounted, on average, for 28±10% of total As (range: 6-51%), and for 37±13% of the extracted As (range: 7-64%). The relative abundance of organoarsenicals generally followed the order DMA>TMAO~MA≫AB. A positive correlation (p<0.001) was found among all organic As compounds, whereas their concentrations were negatively correlated with total sulfur content. The submerged zone (bottom 300cm) showed average and maximum concentrations of organoarsenic compounds that were almost twice those found in the top 100cm. This study shows that significant proportions of methylated As species occur even in peat samples characterized by low total As concentration (mostly <2mg/kg). Finally, this work provides the first evidence of organoarsenic species in free-floating mires, i.e., a globally distributed but scarcely investigated ecosystem.
Collapse
Affiliation(s)
- Claudio Zaccone
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy.
| | - Daniela Lobianco
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", via Amendola 165/A, 70126 Bari, Italy
| | - Georg Raber
- Institute of Chemistry, NAWI Graz, University of Graz, Austria
| | - Valeria D'Orazio
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", via Amendola 165/A, 70126 Bari, Italy
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, T6G 2H1 Edmonton, Canada
| | - Teodoro M Miano
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", via Amendola 165/A, 70126 Bari, Italy
| | | |
Collapse
|