1
|
Pukalski J, Mokrzyński K, Chyc M, Potrzebowski MJ, Makowski T, Dulski M, Latowski D. Synthesis and characterization of allomelanin model from 1,8-dihydroxynaphthalene autooxidation. Sci Rep 2025; 15:567. [PMID: 39747342 PMCID: PMC11695988 DOI: 10.1038/s41598-024-84405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene. Performed analyses revealed that the solubility, optical and paramagnetic properties are typical for melanins, and in the EPR spectra an unusual hyperfine structure was observed. The molecular structure of the pigment consists of three different layers forming polar and non-polar surfaces. Additionally, the presence of ether bonds presence was revealed. The developed method creates new opportunities for melanin research and eliminates the need to extract melanins from biological samples, which often lead to structural changes in isolated melanins, which undermines the reliability of analyses of the properties and structure of these polymers. On the other hand, the ubiquity of melanins in living organisms and the diversity of their biological functions have let to the growing interest of researchers in this group of pigments. The analyses carried out show that the obtained synthetic DHN polymer can be considered as a model DHN-melanin in mycological studies and material research.
Collapse
Affiliation(s)
- Jan Pukalski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Krystian Mokrzyński
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marek Chyc
- University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
2
|
Diaz Appella MN, Kolender A, Oppezzo OJ, López NI, Tribelli PM. The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles. FEBS Lett 2024; 598:2702-2716. [PMID: 39152523 DOI: 10.1002/1873-3468.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
Collapse
Affiliation(s)
- Mateo N Diaz Appella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adriana Kolender
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pirdaus NA, Ahmad N, Dahlan NY, Redzuan AN, Zalizan AH, Muhammad-Sukki F, Bani NA, Abdul Patah MF, Wan-Mohtar WAAQI. Performance of yellow and pink oyster mushroom dyes in dye sensitized solar cell. Sci Rep 2024; 14:23757. [PMID: 39390088 PMCID: PMC11467313 DOI: 10.1038/s41598-024-73865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
A solar photovoltaic (PV) cell, is an electrical device that uses the PV effect to convert light energy into electricity. The application of oyster mushroom dyes in dye sensitized solar cell (DSSC) is a novel strategy to substitute the costly chemical production process with easily extractable, environmentally acceptable dyes. Both dyes of yellow and pink oyster mushrooms were extracted using the same process but dried into powder form using two techniques, warm drying and freeze drying. The characterization was carried out utilizing current-voltage (I-V) characterization for electrical properties, Ultraviolet-Visible (UV-Vis) spectrophotometer for optical properties, Field Emission Scanning Electron Microscopy (FESEM), and Atomic Force Microscopy (AFM) for the structural properties. It was found that freeze-dried pink and yellow oyster mushroom had shown the good properties for DSSC application as it produced energy bandgap which lies within the range of efficient dye sensitizer; 1.7 eV and 2.2 eV, the most uniform distribution of pores and a nearly spherical form in FESEM analysis, and AFM result obtained with the highest root mean square (RMS) roughness value (26.922 and 34.033) with stereoscopic morphologies. The data proved that mushroom dyes can be incorporated in DSSC with the optimization of drying method in the extraction process, dilution of dye and the layer of deposition on the glass substrate. The current density-voltage (J-V) characteristics of fabricated DSSC was characterized using Newport Oriel Sol3A solar simulator under AM 1.5 Sun condition (100 mW/cm2, 25 oC). From the result obtained by solar simulator, the fabricated FTO/TiO2/Pleurotus djamor dye/Pt indicated the Voc of 0.499 V and Jsc of 0.397 mA/cm2.
Collapse
Affiliation(s)
- Nur Alfarina Pirdaus
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Nurfadzilah Ahmad
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
| | - Nofri Yenita Dahlan
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Ainur Nisha Redzuan
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Aisyatul Husna Zalizan
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia
| | - Firdaus Muhammad-Sukki
- School of Computing, Engineering & the Built Environment, Merchiston Campus, Edinburgh Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, UK.
| | - Nurul Aini Bani
- Smart Engineering and Advanced Technology Department, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Solar Research Institute (SRI), Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Malaysia.
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Park S, Yeo CS, Jung W, Choi KY. Gallic acid melanin pigment hydrogel as a flexible macromolecule for articular motion sensing. N Biotechnol 2024; 84:85-95. [PMID: 39326785 DOI: 10.1016/j.nbt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In this study, water-soluble melanin was synthesized through the genetic recombination of Escherichia coli using gallic acid as a substrate. The recombinant host produced 2.83 g/L of gallic acid-based melanin (GA melanin) from 20 mM gallic acid. Notably, the isolated GA melanin demonstrated exceptional antioxidant and antimicrobial activities, exhibiting a 25.7 % inhibition ratio against Candida albicans. The structure and composition of GA melanin were analyzed using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and X-ray diffraction (XRD). Remarkably, GA melanin displayed high thermal stability, maintaining integrity up to 1000 °C. Additionally, it exhibited unique electrical properties in terms of conductivity and resistivity compared to other common types of melanin. Subsequently, GA melanin was cross-linked with hydrogel to create a sensing template. The resulting GA melanin hydrogel demonstrated lower resistance (80.08 ± 3.0 kohm) compared to conventional hydrogels (108.62 ± 10.4 kohm), indicating an approximately 1.77-fold improvement in adhesion. Given its physical, biological, and electrical properties, the GA melanin hydrogel was further utilized as a flexible motion-sensing material to detect resistivity changes induced by knee, wrist, and finger bending, as well as vocal cord vibrations. In all cases, the sensing module displayed notable sensitivity to motion-induced resistivity variations.
Collapse
Affiliation(s)
- SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, Republic of Korea
| | - Chan-Seo Yeo
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, Republic of Korea
| | - Wonjong Jung
- Department of Mechanical, Smart, and Industrial Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Kwon-Young Choi
- Advanced college of Bio-Convergence Engineering, Ajou University, Suwon-si, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon-si, Republic of Korea.
| |
Collapse
|
5
|
Ashraf N, Anas A, Sukumaran V, James J, Bilutheth MN, Chekkillam AR, Jasmin C, Raj K D, Babu I. Biofilm-forming bacteria associated with corals secrete melanin with UV-absorption properties. World J Microbiol Biotechnol 2024; 40:313. [PMID: 39210155 DOI: 10.1007/s11274-024-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corals are colonized by a plethora of microorganisms, and their diversity plays a significant role in the health and resilience of corals when they face oxidative stress leading to bleaching. In the current study, we examined 238 bacteria isolated from five different coral species (Acropora hyacinthus, Pocillopora damicornis, Podabacea crustacea, Porites lobata, and Pavona venosa) collected from the coral reef ecosystems of Kavaratti, Lakshadweep Islands, India. We found that bacteria such as Psychrobacter sp., Halomonas sp., Kushneria sp., Staphylococcus sp., Bacillus sp., Brachybacterium sp., Citrobacter sp., and Salinicola sp. were commonly present in the corals. On the other hand, Qipengyuania sp., Faucicola sp., Marihabitans sp., Azomonas sp., Atlantibacter sp., Cedecea sp., Krasalinikoviella sp., and Aidingimonas sp. were not previously reported from the corals. Among the bacterial isolates, a significant number showed high levels of biofilm formation (118), UV absorption (119), and melanin production (127). Considering these properties, we have identified a combination of seven bacteria from the genera Halomonas sp., Psychrobacter sp., Krasalinikoviella sp., and Micrococcus sp. as a potential probiotic consortium for protecting corals from oxidative stress. Overall, this study provides valuable insights into the coral microbiome and opens up possibilities for microbiome-based interventions to protect these crucial ecosystems in the face of global environmental challenges.
Collapse
Affiliation(s)
- Nizam Ashraf
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Abdulaziz Anas
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Vrinda Sukumaran
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, India
| | - Jibin James
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | | | | | - C Jasmin
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- ENFYS Lifesciences, Kochi, 683578, India
| | - Devika Raj K
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | - Idrees Babu
- Department of Science and Technology, Kavaratti, 682555, India
| |
Collapse
|
6
|
Kolipakala R, Basu S, Sarkar S, Biju BM, Salazar D, Reddy L, Pradeep P, Yuvapriya MK, Nath S, Gall R, Samprathi AH, Balaji H, Koundinya EAB, Shetye A, Nagarajan D. Fungal Peptidomelanin: A Novel Biopolymer for the Chelation of Heavy Metals. ACS OMEGA 2024; 9:36353-36370. [PMID: 39220543 PMCID: PMC11359623 DOI: 10.1021/acsomega.4c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Melanin is an amorphous, highly heterogeneous polymer found across all kingdoms of life. Although the properties of melanin can greatly vary, most forms are insoluble and strongly absorb light, appearing dark brown to black. Here, we describe a water-soluble form of melanin (peptidomelanin) secreted by the spores of Aspergillus niger (strain: melanoliber) during germination. Peptidomelanin is composed of an insoluble L-DOPA core polymer that is solubilized via short, copolymerized heterogeneous peptide chains forming a "corona" with a mean amino acid length of 2.6 ± 2.3. Based on in vitro experiments, we propose a biochemical copolymerization mechanism involving the hydroxylation of tyrosynylated peptides. Peptidomelanin is capable of chelating heavy metals such as lead, mercury, and uranium (as uranyl) in large quantities. Preliminary data indicates that peptidomelanin may have applications for the remediation of heavy metals in situ, including in agricultural settings.
Collapse
Affiliation(s)
| | - Suranjana Basu
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Senjuti Sarkar
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Beneta Merin Biju
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Daniela Salazar
- Ecology
and Genetics Research Unit, University of
Oulu, Oulu 90014, Finland
| | - Likhit Reddy
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Pushya Pradeep
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Muniraj Krishnaveni Yuvapriya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Shrijita Nath
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Riley Gall
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Anish Hemanth Samprathi
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Biotechnology, Fergusson College (Autonomous), Pune 411004, India
| | - Harshitha Balaji
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Eeshaan A. B. Koundinya
- Department
of Biotechnology, Manipal Institute of Technology,
Manipal University, Manipal 576104, India
| | - Aparna Shetye
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| | - Deepesh Nagarajan
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| |
Collapse
|
7
|
Zhou R, Ma L, Qin X, Zhu H, Chen G, Liang Z, Zeng W. Efficient Production of Melanin by Aureobasidium Melanogenum Using a Simplified Medium and pH-Controlled Fermentation Strategy with the Cell Morphology Analysis. Appl Biochem Biotechnol 2024; 196:1122-1141. [PMID: 37335457 DOI: 10.1007/s12010-023-04594-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Natural melanin is a biopolymer with wide application prospects in medicine, food, cosmetics, environmental protection, agriculture, and so on. Microbial fermentation is an important and effective way to produce melanin. In this study, Aureobasidium melanogenum, known as black yeast with cellular pleomorphism, was used for the production of melanin. Based on the characteristic of A. melanogenum secreting melanin under oligotrophic stress, a simple medium containing only glucose, MgSO4·7H2O, and KCl was constructed for the production of melanin. The melanin titer of 6.64 ± 0.22 g/L was obtained after 20 days of fermentation without pH control. The cell morphological changes of A. melanogenum during the production of melanin were recorded, and the results showed that chlamydospore might be the most favorable cell morphology for melanin synthesis. Then, different fermentation strategies with cell morphology analysis were developed to further improve the production of melanin in a 5-L fermenter. Results showed that the maximum titer of melanin reached 18.50 g/L by using the fermentation strategy integrating pH control, ammonium salt addition, and H2O2 stimulation, which increased by 178.6% than that of the strategy without pH control. Furthermore, the melanin obtained from the fermentation broth was characterized as eumelanin containing an indole structure. This study provided a potentially feasible fermentation strategy for the industrial production of melanin.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xuwen Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Wei Zeng
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology , Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Sankhwar R, Kumar A, Yadav S, Singh V, Gupta RK. Emycin-E purified from Streptomyces sp. RG1011 from Himalayan soil has antibiofilm activity against Staphylococcus aureus. Microb Pathog 2023; 182:106256. [PMID: 37454942 DOI: 10.1016/j.micpath.2023.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen that causes deadly infections in human as well as animals. The intricate network of virulence factors and biofilms are the major hindrance for the antibiotics in the successful treatment of the infection. The aim of this study is to isolate, identify and characterize natural antimicrobial agent against S. aureus from natural resources. METHODS Himalayan soils were subjected to primary, secondary and tertiary screening to isolate soil Actinobacteria. Identification and characterization of the isolate was done by various biochemical assays and 16s rDNA sequencing. Partial purification of the potent antimicrobial agent was done by n-butanol from the culture supernatant, TLC and HPLC were performed to purify the active component and subjected to FTIR and ESI-MS analysis. RESULTS The potent isolate RM-1(13) was confirmed as Streptomyces griseus strain RG1011 (NCBI accession no: 0M780275) by biochemical and molecular analysis. The partially purified antimicrobial agent was active against various Gram-positive and Gram-negative pathogens. The active component was purified by HPLC and identified as Emycin-E by ESI-MS analysis. The Emycin-E has calculated MIC of 0.31 μg/ml against S. aureus ATCC 25923. Emycin-E inhibits the biofilm formation of S. aureus in in vitro microtiter plate assay. CONCLUSIONS The identified antimicrobial agent was found active against various Gram-positive and Gram-negative pathogens. We have successfully identified the active compound as Emycin-E by FTIR and ESI-MS analysis. Our study suggests the role of Emycin-E in the inhibition of biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Ruchi Sankhwar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226025, Uttar Pradesh, India
| | - Shilpi Yadav
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226025, Uttar Pradesh, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, India
| | - Ravi Kr Gupta
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
9
|
Alcalá-Alcalá S, Casarrubias-Anacleto JE, Mondragón-Guillén M, Tavira-Montalvan CA, Bonilla-Hernández M, Gómez-Galicia DL, Gosset G, Meneses-Acosta A. Melanin Nanoparticles Obtained from Preformed Recombinant Melanin by Bottom- Up and Top- Down Approaches. Polymers (Basel) 2023; 15:polym15102381. [PMID: 37242955 DOI: 10.3390/polym15102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Melanin is an insoluble, amorphous polymer that forms planar sheets that aggregate naturally to create colloidal particles with several biological functions. Based on this, here, a preformed recombinant melanin (PRM) was utilized as the polymeric raw material to generate recombinant melanin nanoparticles (RMNPs). These nanoparticles were prepared using bottom-up (nanocrystallization-NC, and double emulsion-solvent evaporation-DE) and top-down (high-pressure homogenization-HP) manufacturing approaches. The particle size, Z-potential, identity, stability, morphology, and solid-state properties were evaluated. RMNP biocompatibility was determined in human embryogenic kidney (HEK293) and human epidermal keratinocyte (HEKn) cell lines. RMNPs prepared by NC reached a particle size of 245.9 ± 31.5 nm and a Z-potential of -20.2 ± 1.56 mV; 253.1 ± 30.6 nm and -39.2 ± 0.56 mV compared to that obtained by DE, as well as RMNPs of 302.2 ± 69.9 nm and -38.6 ± 2.25 mV using HP. Spherical and solid nanostructures in the bottom-up approaches were observed; however, they were an irregular shape with a wide size distribution when the HP method was applied. Infrared (IR) spectra showed no changes in the chemical structure of the melanin after the manufacturing process but did exhibit an amorphous crystal rearrangement according to calorimetric and PXRD analysis. All RMNPs presented long stability in an aqueous suspension and resistance to being sterilized by wet steam and ultraviolet (UV) radiation. Finally, cytotoxicity assays showed that RMNPs are safe up to 100 μg/mL. These findings open new possibilities for obtaining melanin nanoparticles with potential applications in drug delivery, tissue engineering, diagnosis, and sun protection, among others.
Collapse
Affiliation(s)
- Sergio Alcalá-Alcalá
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - José Eduardo Casarrubias-Anacleto
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Maximiliano Mondragón-Guillén
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Carlos Alberto Tavira-Montalvan
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Marcos Bonilla-Hernández
- Laboratorio de Investigación en Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Diana Lizbeth Gómez-Galicia
- Farmacia Hospitalaria, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico
| | - Angélica Meneses-Acosta
- Laboratorio de Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
10
|
Urbaniak MM, Gazińska M, Rudnicka K, Płociński P, Nowak M, Chmiela M. In Vitro and In Vivo Biocompatibility of Natural and Synthetic Pseudomonas aeruginosa Pyomelanin for Potential Biomedical Applications. Int J Mol Sci 2023; 24:ijms24097846. [PMID: 37175552 PMCID: PMC10178424 DOI: 10.3390/ijms24097846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a black-brown negatively charged extracellular polymer of homogentisic acid produced during L-tyrosine catabolism. Due to its chemical properties and the presence of active functional groups, pyomelanin is a candidate for the development of new antioxidant, antimicrobial and immunomodulatory formulations. This work aimed to obtain bacterial water-soluble (Pyosol), water-insoluble (Pyoinsol) and synthetic (sPyo) pyomelanin variants and characterize their chemical structure, thermosensitivity and biosafety in vitro and in vivo (Galleria mallonella). FTIR analysis showed that aromatic ring connections in the polymer chains were dominant in Pyosol and sPyo, whereas Pyoinsol had fewer Car-Car links between rings. The differences in chemical structure influence the solubility of various forms of pyomelanins, their thermal stability and biological activity. Pyosol and Pyoinsol showed higher biological safety than sPyo. The obtained results qualify Pyosol and Pyoinsol for evaluation of their antimicrobial, immunomodulatory and proregenerative activities.
Collapse
Affiliation(s)
- Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- The Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), 50-370 Wrocław, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Monika Nowak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| |
Collapse
|
11
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Kim KJ, Yun YH, Je JY, Kim DH, Hwang HS, Yoon SD. Photothermally controlled drug release of naproxen-incorporated mungbean starch/PVA biomaterials adding melanin nanoparticles. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Characterization of Physicochemical Properties of Melanin Produced by Gluconobacter oxydans FBFS 97. FERMENTATION 2022. [DOI: 10.3390/fermentation8110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to characterize melanin pigment extracted from Gluconobacter oxydans FBFS 97. After 14 days of culture at 28 °C in GY (glucose and yeast extract) liquid-state medium, G. oxydans FBFS97 produce the maximum melanin, up to about 12–15 mg/L. The physicochemical characteristics of the extracted melanin showed an ability to dissolve in 1 mol/L NaOH or 1 mol/L KOH, and insolubility in water and most organic solvents, such as chloroform and petroleum ether. The extracted melanin was confirmed to be exact melanin by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectroscopy, thin-layer chromatography, elemental analysis, and scanning electron microscopy. The UV-visible spectrum of G. oxydans FBFS97 exhibited a maximum absorption peak at 230 nm. Extracted melanin demonstrated significant free radical-scavenging activity by DPPH and ABTS methods. The IC50 value of the extracted melanin for scavenging 50% DPPH radicals was 36.94 μg/mL, and the IC50 value of antioxidant activity for ABTS was 4.06 μg/mL. Hence, G. oxydans FBFS97 has the potential to be a new candidate for melanin production.
Collapse
|
14
|
Mathew D, G Bhat S. Pseudomonas Stutzeri as Biofactories for Melanin Nanoparticle Synthesis and Its Anti-Oxidative and Antibiofilm Potential Evaluation. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Rudrappa M, Kumar M S, Kumar RS, Almansour AI, Perumal K, Nayaka S. Bioproduction, purification and physicochemical characterization of melanin from Streptomyces sp. strain MR28. Microbiol Res 2022; 263:127130. [PMID: 35870343 DOI: 10.1016/j.micres.2022.127130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Melanin has been produced and extracted from various microorganisms because of its therapeutic nature and diverse applications in various fields. Hence we isolated actinomycetes from soil which is capable of producing melanin pigment from L-tyrosine and it was identified as Streptomyces sp. strain MR28 on the basis of biochemical, morphological characterization, and 16S rRNA gene sequencing. Production of melanin pigment was achieved by using standardized tyrosine broth. The melanin pigment was purified, and characterized by using various techniques such as Ultraviolet-Visible spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), Thin Layer Chromatography (TLC), 1H NMR spectroscopy, Scanning Electron Microscopy (SEM), Elemental analysis (EDX), and Thermogravimetric analysis (TGA). The pigment exhibit maximum UV-Vis absorption spectrum at 299 nm, FTIR peaks confirm the occurrence of C-H, C-N, C-O, and CC functional groups which are key functional groups in indole/pyrrole structure. TLC analysis showed a single band with a significant Retardation factor (Rf) of 0.68, Resonance peaks at 6.66, 7.18, and 7.28 ppm exhibit aromatic hydrogen in the indole/pyrole system in 1H NMR. The EDX reports the presence of carbon, nitrogen, oxygen, and sulfur which are key elements in melanin structure, and TGA exhibits the thermal stability of the melanin. Overall, the successful production and extraction of melanin was achieved by using soil actinomycetes Streptomyces sp. strain MR28, and its characterization confirms the nature of the melanin pigment which has significant value in the industrial and biomedical field.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Santosh Kumar M
- Department of Biochemistry, Davanagere University, 577007 Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India.
| |
Collapse
|
16
|
Mathew D, Bhat SG. Statistical design for biogenesis of melanin nanoparticles from producer strain pseudomonas stutzeri BTCZ 109 through taguchi DOE. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bisht H, Jeong J, Hong Y, Park S, Hong D. Development of Universal and Clickable Film by Mimicking Melanogenesis: On-Demand Oxidation of Tyrosine-Based Azido Derivative by Tyrosinase. Macromol Rapid Commun 2022; 43:e2200089. [PMID: 35332614 DOI: 10.1002/marc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 11/10/2022]
Abstract
In this study, we synthesized a tyrosine-based azido derivative (TBAD) that permits both substrate-independent surface coating and clickable film functionalization by mimicking natural melanogenesis. In contrast to catechol derivatives, which are generally susceptible to oxidation by air under ambient conditions, the monophenol-based TBAD remains stable under alkaline and neutral conditions, and is activated to oxidized quinone in situ by tyrosinase to initiate melanin-like polymerization. The resulting poly(TBAD) film can be formed on various substrates including noble metals, metal oxides, and synthetic polymers, which can undergo click reaction with terminal alkyne moieties on the entire surface or a specific region through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The enzyme-mediated coating can rapidly form thin films (∼10 nm) and produce a uniform film morphology, which are important aspects in surface chemistry. This on-demand, clickable coating may become a significant tool for bioconjugation, soft lithography, and labeling techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
18
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
19
|
Adhikari S, Essandoh MA, Starr WC, Sah P, La Force CN, Eleshy RG, Lutter EI, Nelson TL. Eumelanin-Inspired Antimicrobial with Biocidal Activity against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2022; 5:545-551. [PMID: 35113537 DOI: 10.1021/acsabm.1c01036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reliance on antibiotics and antimicrobials to treat bacterial infectious diseases is threatened by the emergence of antibiotic resistance and multi-drug-resistant organisms, thus having the potential to greatly impact human health. Thus, the discovery and development of antimicrobials capable of acting on antibiotic-resistant bacteria is a major area of significance in scientific research. Herein, we present the development of a eumelanin-inspired antimicrobial capable of killing methicillin-resistant Staphylococcus aureus (MRSA). By ligating quaternary ammonium-functionalized "arms" to a eumelanin-inspired indole with intrinsic antimicrobial activity, an antimicrobial agent with enhanced activity was prepared. This resulting antimicrobial, EIPE-1, had a minimum inhibitory concentration of 16 μg/mL (17.1 μM) against a clinical isolate of MRSA obtained from an adult cystic fibrosis patient. The biocidal activity occurred within 30 min of exposure and resulted in changes to the bacterial cell surface as visualized with a scanning electron microscope. Taken together, these studies demonstrate that EIPE-1 is effective at killing MRSA.
Collapse
Affiliation(s)
- Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Martha A Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - William C Starr
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Prakash Sah
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Colleen N La Force
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rawan G Eleshy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Erika I Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Toby L Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
20
|
Wibowo JT, Kellermann MY, Petersen LE, Alfiansah YR, Lattyak C, Schupp PJ. Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Mar Drugs 2022; 20:md20010054. [PMID: 35049909 PMCID: PMC8777673 DOI: 10.3390/md20010054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.
Collapse
Affiliation(s)
- Joko Tri Wibowo
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| | - Lars-Erik Petersen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
| | - Yustian R. Alfiansah
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia;
- Center for Aquaculture Research (ZAF), Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Colleen Lattyak
- DLR Institute of Networked Energy Systems, 26129 Oldenburg, Germany;
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, 26129 Oldenburg, Germany
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| |
Collapse
|
21
|
Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosinase gene sequences. BIOTECHNOLOGIA 2021; 102:411-424. [PMID: 36605604 PMCID: PMC9642935 DOI: 10.5114/bta.2021.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Background Melanin finds enormous applications in different industries for its unique photoprotective and anti-oxidant properties. Due to its emerging demand, scientific researchers are putting efforts to unravel more microorganisms with a potential of producing melanin on large scale. Hence, the present study was aimed at the isolation of extracellular melanin producing microorganisms from lime quarries of Karnataka, India. Besides this, the tyrosinase gene governing melanin synthesis in different organisms were compared in silico to understand its evolutionary aspects. Material and methods Melanin producing microorganisms were screened on tyrosine gelatin beef extract agar medium. Potential isolate was explored for submerged production of melanin in broth containing L-tyrosine. Melanin was characterized by UV-Vis spectroscopy, thin layer and high performance liquid chromatographic techniques. Antibacterial activity of melanin was performed by agar well assay. Comparative tyrosinase gene sequence analysis was performed by using Geneious 2021.1 trial version software. Results Pseudomonas otitidis DDB2 was found to be potential for melanin production. No antibacterial activity was exerted by the melanin against tested pathogens. The in silico studies showed that the common central domain of tyrosinase protein sequence of selected Pseudomonas sps. exhibited 100% identity with the common central domain of Homo sapiens tyrosinase (NP_000363.1). Conclusions Our study shows the production of melanin in good quantities by the isolate Pseudomonas otitidis DDB2 which can be explored for scale-up process. Since the melanin formed is of eumelanin type and the tyrosinase gene sequence of several Pseudomonas sp. showed relatedness to humans, this molecule may be further developed for sunscreen formulations.
Collapse
|
22
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
23
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Łopusiewicz Ł, Kwiatkowski P, Drozłowska E, Trocer P, Kostek M, Śliwiński M, Polak-Śliwińska M, Kowalczyk E, Sienkiewicz M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymers (Basel) 2021; 13:polym13040499. [PMID: 33562865 PMCID: PMC7914822 DOI: 10.3390/polym13040499] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Preparation of biodegradable packaging materials and valorisation of food industry residues to achieve "zero waste" goals is still a major challenge. Herein, biopolymer-based (carboxymethyl cellulose-CMC) bioactive films were prepared by the addition, alone or in combination, of carvacrol and fungal melanin isolated from champignon mushroom (Agaricus bisporus) agro-industrial residues. The mechanical, optical, thermal, water vapour, and UV-Vis barrier properties were studied. Fourier-transform infrared (FT-IR) spectroscopy studies were carried out to analyse the chemical composition of the resulting films. Antibacterial, antifungal, and antioxidant activities were also determined. Both CMC/melanin and CMC/melanin/carvacrol films showed some antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of melanin increased the UV-blocking, mechanical, water vapour barrier, and antioxidant properties without substantially reducing the transparency of the films. The addition of carvacrol caused loss of transparency, however, composite CMC/melanin/carvacrol films showed excellent antioxidant activity and enhanced mechanical strength. The developed bioactive biopolymer films have a good potential to be green bioactive alternatives to plastic films in food packaging applications.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
- Correspondence: ; Tel.: +48-91-449-6135
| | - Paweł Kwiatkowski
- Chair of Microbiology, Immunology and Laboratory Medicine, Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Mariusz Śliwiński
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland;
| | - Magdalena Polak-Śliwińska
- Chair of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Łódź, 90-752 Łódź, Poland;
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, Żeligowskiego 7/9, 90-752 Łódź, Poland;
| |
Collapse
|
25
|
Roy S, Rhim JW. New insight into melanin for food packaging and biotechnology applications. Crit Rev Food Sci Nutr 2021; 62:4629-4655. [PMID: 33523716 DOI: 10.1080/10408398.2021.1878097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanin is a dark brown to black biomacromolecule with biologically active multifunctional properties that do not have a precise chemical structure, but its structure mainly depends on the polymerization conditions during the synthesis process. Natural melanin can be isolated from various animal, plant, and microbial sources, while synthetic melanin-like compounds can be synthesized by simple polymerization of dopamine. Melanin is widely used in various areas due to its functional properties such as photosensitivity, light barrier property, free radical scavenging ability, antioxidant activity, etc. It also has an excellent ability to act as a reducing agent and capping agent to synthesize various metal nanoparticles. Melanin nanoparticles (MNP) or melanin-like nanoparticles (MLNP) have the unique potential to act as functional materials to improve nanocomposite films' physical and functional properties. Various food packaging and biomedical applications have been made alone or by mixing melanin or MLNP. In this review, the general aspects of melanin that highlight biological activity, along with a description of MNP and the use as nanofillers in packaging films as well as reducing and capping agents and biomedical applications, were comprehensively reviewed.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
27
|
Velmurugan P, Venil CK, Veera Ravi A, Dufossé L. Marine Bacteria Is the Cell Factory to Produce Bioactive Pigments: A Prospective Pigment Source in the Ocean. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.589655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The course of investigations of bioactive compounds like bacterial pigments from the marine environment has greatly expanded in the recent decades. Despite the huge concern in secluding and collecting marine bacteria, microbial metabolites are progressively alluring to science due to their wide ranging applications in various fields, particularly those with distinctive color pigments. This review is a short appraisal of the studies undertaken over the past 5 years on the bacterial pigments sourced from the marine environment. Herein, we have reviewed the potential of different bacterial species isolated from marine environment in diverse studies that are producing bioactive pigments that have potential commercial applications.
Collapse
|
28
|
Tran-Ly AN, Reyes C, Schwarze FWMR, Ribera J. Microbial production of melanin and its various applications. World J Microbiol Biotechnol 2020; 36:170. [PMID: 33043393 PMCID: PMC7548279 DOI: 10.1007/s11274-020-02941-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.
Collapse
Affiliation(s)
- Anh N Tran-Ly
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland.
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| | - Carolina Reyes
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland
| | | | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland.
| |
Collapse
|
29
|
Łopusiewicz Ł, Drozłowska E, Trocer P, Kostek M, Śliwiński M, Henriques MHF, Bartkowiak A, Sobolewski P. Whey Protein Concentrate/Isolate Biofunctional Films Modified with Melanin from Watermelon ( Citrullus lanatus) Seeds. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3876. [PMID: 32887321 PMCID: PMC7503266 DOI: 10.3390/ma13173876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
Valorization of food industry waste and plant residues represents an attractive path towards obtaining biodegradable materials and achieving "zero waste" goals. Here, melanin was isolated from watermelon (Citrullus lanatus) seeds and used as a modifier for whey protein concentrate and isolate films (WPC and WPI) at two concentrations (0.1% and 0.5%). The modification with melanin enhanced the ultraviolet (UV) blocking, water vapor barrier, swelling, and mechanical properties of the WPC/WPI films, in addition to affecting the apparent color. The modified WPC/WPI films also exhibited high antioxidant activity, but no cytotoxicity. Overall, the effects were melanin concentration-dependent. Thus, melanin from watermelon seeds can be used as a functional modifier to develop bioactive biopolymer films with good potential to be exploited in food packaging and biomedical applications.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Mariusz Śliwiński
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland
| | - Marta H F Henriques
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, PT-3045-601 Coimbra, Portugal
- CERNAS-Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin 45 Piastów Ave, 70-311 Szczecin, Poland
| |
Collapse
|
30
|
Poulose N, Sajayan A, Ravindran A, Sreechithra TV, Vardhan V, Selvin J, Kiran GS. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111816. [DOI: 10.1016/j.jphotobiol.2020.111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
|
31
|
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol 2019; 104:1357-1370. [PMID: 31811318 DOI: 10.1007/s00253-019-10245-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Di Mauro E, Camaggi M, Vandooren N, Bayard C, De Angelis J, Pezzella A, Baloukas B, Silverwood R, Ajji A, Pellerin C, Santato C. Eumelanin for nature‐inspired UV‐absorption enhancement of plastics. POLYM INT 2019. [DOI: 10.1002/pi.5790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Eduardo Di Mauro
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
| | - Matteo Camaggi
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
- Department of Electrical Engineering (DEI)University of Bologna Bologna Italy
| | - Nils Vandooren
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
| | - Caleb Bayard
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
| | - Jordan De Angelis
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
- Department of Electrical Engineering (DEI)University of Bologna Bologna Italy
| | - Alessandro Pezzella
- Institute for Polymers, Composites and Biomaterials (IPCB)CNR Pozzuoli Italy
| | - Bill Baloukas
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
| | - Richard Silverwood
- CREPEC, Department of Chemical EngineeringPolytechnique Montréal Montreal Canada
| | - Abdellah Ajji
- CREPEC, Department of Chemical EngineeringPolytechnique Montréal Montreal Canada
| | | | - Clara Santato
- Département de Génie PhysiquePolytechnique Montréal Montréal Canada
| |
Collapse
|
33
|
Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101037] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Do thermal treatments influence the ultrafast opto-thermal processes of eumelanin? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:153-160. [DOI: 10.1007/s00249-018-1342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
35
|
Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9392-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Łopusiewicz Ł, Jędra F, Mizielińska M. New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers (Basel) 2018; 10:E386. [PMID: 30966422 PMCID: PMC6415272 DOI: 10.3390/polym10040386] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, fungal melanin was used for the first time to prepare poly(lactic acid)-based composites. The films of various melanin concentrations (0.025%, 0.05% and 0.2% w/w) were prepared using an extrusion method. The mechanical, antioxidant, antimicrobial, water vapor and UV-Vis barrier properties, as well as available polyphenolics on the surface, were studied. FT-IR and Raman spectroscopy studies were carried out to analyze the chemical composition of the resulting films. The hydrophobicity, color response, thermal, optical properties, and opacity values were also determined. The results of this study show that the addition of fungal melanin to poly(lactic acid) (PLA) as a modifier influenced mechanical and water vapor barrier properties depending on melanin concentration. In low concentration, melanin enhanced the mechanical and barrier properties of the modified films, but in larger amounts, the properties were decreased. The UV-Vis barrier properties of PLA/melanin composites were marginally improved. Differential Scanning Calorimetry (DSC) analysis indicated that crystallinity of PLA increased by the addition of melanin, but this did not affect the thermal stability of the films. Modified PLA/melanin films showed good antioxidant activity and were active against Enterococcus faecalis, Pseudomonas aeruginosa and Pseudomonas putida. The addition of melanin caused changes in color values, decreasing lightness and increasing the redness and yellowness of films. Based on the results of this study, fungal melanin has good potential to be exploited as a value-added modifier that can improve the overall properties of PLA.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Filip Jędra
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Małgorzata Mizielińska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| |
Collapse
|
37
|
Vitiello G, Zanfardino A, Tammaro O, Di Napoli M, Caso MF, Pezzella A, Varcamonti M, Silvestri B, D'Errico G, Costantini A, Luciani G. Bioinspired hybrid eumelanin–TiO2 antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Adv 2018; 8:28275-28283. [PMID: 35542468 PMCID: PMC9084248 DOI: 10.1039/c8ra04315a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Intrinsic biocide efficacy of eumelanins can be markedly enhanced through a templated formation in the presence of a TiO2-sol, leading to hybrid TiO2–melanin nanostructures. However, mechanisms and processes behind biocide activity still remain poorly understood. This paper discloses the fundamental mechanism of action of these systems providing mechanistic information on their peculiar interaction with Escherichia coli strains. To this purpose biocide characterization is combined with Electron Paramagnetic Resonance (EPR) spectroscopy to investigate radical species produced by the hybrids as well as their interactions with Gram(−) external bacterial membranes. Experimental results indicate that TiO2 mediated eumelanin polymerization leads to a peculiar mechanism of action of hybrid nanostructures, whose strong interactions with bacterial membranes enhance the action of reactive oxygen species (ROS) produced by eumelanin degradation itself, also concurring with the final biocide action. These findings provide strategic information for the development of eumelanin-based systems with enhanced activity against drug-resistant strains. Hybrid TiO2/eumelanin nanostructures showed a peculiar biocide mechanism against Gram(−) bacteria, based on the ROS action, produced by eumelanin degradation under visible light irradiation, and the interactions with external bacterial membranes.![]()
Collapse
|