1
|
Rallis D, Baltogianni M, Kapetaniou K, Kosmeri C, Giapros V. Bioinformatics in Neonatal/Pediatric Medicine-A Literature Review. J Pers Med 2024; 14:767. [PMID: 39064021 PMCID: PMC11277633 DOI: 10.3390/jpm14070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bioinformatics is a scientific field that uses computer technology to gather, store, analyze, and share biological data and information. DNA sequences of genes or entire genomes, protein amino acid sequences, nucleic acid, and protein-nucleic acid complex structures are examples of traditional bioinformatics data. Moreover, proteomics, the distribution of proteins in cells, interactomics, the patterns of interactions between proteins and nucleic acids, and metabolomics, the types and patterns of small-molecule transformations by the biochemical pathways in cells, are further data streams. Currently, the objectives of bioinformatics are integrative, focusing on how various data combinations might be utilized to comprehend organisms and diseases. Bioinformatic techniques have become popular as novel instruments for examining the fundamental mechanisms behind neonatal diseases. In the first few weeks of newborn life, these methods can be utilized in conjunction with clinical data to identify the most vulnerable neonates and to gain a better understanding of certain mortalities, including respiratory distress, bronchopulmonary dysplasia, sepsis, or inborn errors of metabolism. In the current study, we performed a literature review to summarize the current application of bioinformatics in neonatal medicine. Our aim was to provide evidence that could supply novel insights into the underlying mechanism of neonatal pathophysiology and could be used as an early diagnostic tool in neonatal care.
Collapse
Affiliation(s)
- Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| | - Konstantina Kapetaniou
- Department of Pediatrics, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (K.K.); (C.K.)
| | - Chrysoula Kosmeri
- Department of Pediatrics, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (K.K.); (C.K.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| |
Collapse
|
2
|
Sikdar O, Harris C, Greenough A. Improving early diagnosis of bronchopulmonary dysplasia. Expert Rev Respir Med 2024; 18:283-294. [PMID: 38875260 DOI: 10.1080/17476348.2024.2367584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Bronchopulmonary disease (BPD) is associated with long-term neurodevelopmental and cardiorespiratory complications, often requiring significant use of resources. To reduce this healthcare burden, it is essential that those at high risk of BPD are identified early so that strategies are introduced to prevent disease progression. Our aim was to discuss potential methods for improving early diagnosis in the first week after birth. AREAS COVERED A narrative review was undertaken. The search strategy involved searching PubMed, Embase and Cochrane databases from 1967 to 2024. The results of potential biomarkers and imaging modes are discussed. Furthermore, the value of scoring systems is explored. EXPERT OPINION BPD occurs as a result of disruption to pulmonary vascular and alveolar development, thus abnormal levels of factors regulating those processes are promising avenues to explore with regard to early detection of high-risk infants. Data from twin studies suggests genetic factors can be attributed to 82% of the observed difference in moderate to severe BPD, but large genome-wide studies have yielded conflicting results. Comparative studies are required to determine which biomarker or imaging mode may most accurately diagnose early BPD development. Models which include the most predictive factors should be evaluated going forward.
Collapse
Affiliation(s)
- Oishi Sikdar
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christopher Harris
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Lavoie PM, Rayment JH. Genetics of bronchopulmonary dysplasia: An update. Semin Perinatol 2023; 47:151811. [PMID: 37775368 DOI: 10.1016/j.semperi.2023.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a multi-factorial disease that results from multiple clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, pulmonary congestion due to increasing cardiac blood shunting, nutritional and immunological factors. Twin studies have indicated that susceptibility to BPD can be strongly inherited in some settings. Studies have reported associations between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette, sub-family A, member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also result in severe form of neonatal-onset interstitial lung diseases and may also potentially affect the course of BPD. This chapter summarizes the current state of knowledge on the genetics of BPD.
Collapse
Affiliation(s)
- Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Jonathan H Rayment
- BC Children's Hospital Research Institute, Vancouver, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
4
|
Cho HY, Wang X, Campbell MR, Panduri V, Coviello S, Caballero MT, Bennett BD, Kleeberger SR, Polack FP, Ofman G, Bell DA. Prospective epigenome and transcriptome analyses of cord and peripheral blood from preterm infants at risk of bronchopulmonary dysplasia. Sci Rep 2023; 13:12262. [PMID: 37507442 PMCID: PMC10382533 DOI: 10.1038/s41598-023-39313-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease of prematurity with limited treatment options. To uncover biomarkers of BPD risk, this study investigated epigenetic and transcriptomic signatures of prematurity at birth and during the neonatal period at day 14 and 28. Peripheral blood DNAs from preterm infants were applied to methylation arrays and cell-type composition was estimated by deconvolution. Covariate-adjusted robust linear regression elucidated BPD- and prolonged oxygen (≥ 14 days) exposure-associated CpGs. RNAs from cord and peripheral blood were sequenced, and differentially expressed genes (DEGs) for BPD or oxygen exposure were determined. Estimated neutrophil-lymphocyte ratios in peripheral blood at day 14 in BPD infants were significantly higher than nonBPD infants, suggesting an heightened inflammatory response in developing BPD. BPD-DEGs in cord blood indicated lymphopoiesis inhibition, altered Th1/Th2 responses, DNA damage, and organ degeneration. On day 14, BPD-associated CpGs were highly enriched in neutrophil activation, infection, and CD4 + T cell quantity, and BPD-DEGs were involved in DNA damage, cellular senescence, T cell homeostasis, and hyper-cytokinesis. On day 28, BPD-associated CpGs along with BPD-DEGs were enriched for phagocytosis, neurological disorder, and nucleotide metabolism. Oxygen supplementation markedly downregulated mitochondrial biogenesis genes and altered CpGs annotated to developmental genes. Prematurity-altered DNA methylation could cause abnormal lymphopoiesis, cellular assembly and cell cycle progression to increase BPD risk. Similar pathways between epigenome and transcriptome networks suggest coordination of the two in dysregulating leukopoiesis, adaptive immunity, and innate immunity. The results provide molecular insights into biomarkers for early detection and prevention of BPD.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xuting Wang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Michelle R Campbell
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Vijayalakshmi Panduri
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | | | - Mauricio T Caballero
- Fundación INFANT, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brian D Bennett
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Fernando P Polack
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Gaston Ofman
- Fundación INFANT, Buenos Aires, Argentina
- Section of Neonatal-Perinatal Medicine, Center for Pregnancy and Newborn Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Douglas A Bell
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Building 101, MD C3-03, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
5
|
Dauengauer-Kirlienė S, Domarkienė I, Pilypienė I, Žukauskaitė G, Kučinskas V, Matulevičienė A. Causes of preterm birth: Genetic factors in preterm birth and preterm infant phenotypes. J Obstet Gynaecol Res 2023; 49:781-793. [PMID: 36519629 DOI: 10.1111/jog.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
AIM The aim is to provide an overview of recent research on genetic factors that influence preterm birth in the context of neonatal phenotypic assessment. METHODS This is a nonsystematic review of the recent scientific literature. RESULTS Maternal and fetal genetic diversity and rare genome variants are linked with crucial immune response sites. In addition, more frequent in preterm neonates, de novo variants may lead to attention deficits, hyperactivity, autism spectrum disorders, and infertility of both sexes later in life. Environmental factors may also greatly burden fetal, and consequently, neonatal development and neurodevelopment through a failure in the fetal epigenome reprogramming process and even influence the initiation of spontaneous preterm pregnancy termination. Minimally invasive analysis of the transcription factors associated with preterm birth helps elucidate labor mechanisms and predict its timing. We also provide valuable summaries of genomic and transcriptomic factors that contribute to preterm birth. CONCLUSIONS Investigation of the human genome, epigenome, and transcriptome helps to identify molecular mechanisms linked with preterm delivery and premature newborn clinical appearance in early and late neonatal life and even predict developmental outcomes. Further studies are needed to fully understand the implications of genetic changes in preterm births. These data could be used to develop targeted interventions aimed at selecting the most effective individual treatment and rehabilitation plan.
Collapse
Affiliation(s)
- Svetlana Dauengauer-Kirlienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Domarkienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Pilypienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabrielė Žukauskaitė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Kimble A, Robbins ME, Perez M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from 'Omics' Studies. Antioxidants (Basel) 2022; 11:2380. [PMID: 36552588 PMCID: PMC9774798 DOI: 10.3390/antiox11122380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review 'omics' data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional 'omics' studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Ashley Kimble
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mary E. Robbins
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Wang X, Cho HY, Campbell MR, Panduri V, Coviello S, Caballero MT, Sambandan D, Kleeberger SR, Polack FP, Ofman G, Bell DA. Epigenome-wide association study of bronchopulmonary dysplasia in preterm infants: results from the discovery-BPD program. Clin Epigenetics 2022; 14:57. [PMID: 35484630 PMCID: PMC9052529 DOI: 10.1186/s13148-022-01272-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a lung disease in premature infants caused by therapeutic oxygen supplemental and characterized by impaired pulmonary development which persists into later life. While advances in neonatal care have improved survival rates of premature infants, cases of BPD have been increasing with limited therapeutic options for prevention and treatment. This study was designed to explore the relationship between gestational age (GA), birth weight, and estimated blood cell-type composition in premature infants and to elucidate early epigenetic biomarkers associated with BPD. METHODS Cord blood DNA from preterm neonates that went on to develop BPD (n = 14) or not (non-BPD, n = 93) was applied to Illumina 450 K methylation arrays. Blood cell-type compositions were estimated using DNA methylation profiles. Multivariable robust regression analysis elucidated CpGs associated with BPD risk. cDNA microarray analysis of cord blood RNA identified differentially expressed genes in neonates who later developed BPD. RESULTS The development of BPD and the need for oxygen supplementation were strongly associated with GA (BPD, p < 1.0E-04; O2 supplementation, p < 1.0E-09) and birth weight (BPD, p < 1.0E-02; O2 supplementation, p < 1.0E-07). The estimated nucleated red blood cell (NRBC) percent was negatively associated with birth weight and GA, positively associated with hypomethylation of the tobacco smoke exposure biomarker cg05575921, and high-NRBC blood samples displayed a hypomethylation profile. Epigenome-wide association study (EWAS) identified 38 (Bonferroni) and 275 (false discovery rate 1%) differentially methylated CpGs associated with BPD. BPD-associated CpGs in cord blood were enriched for lung maturation and hematopoiesis pathways. Stochastic epigenetic mutation burden at birth was significantly elevated among those who developed BPD (adjusted p = 0.02). Transcriptome changes in cord blood cells reflected cell cycle, development, and pulmonary disorder events in BPD. CONCLUSIONS While results must be interpreted with caution because of the small size of this study, NRBC content strongly impacted DNA methylation profiles in preterm cord blood and EWAS analysis revealed potential insights into biological pathways involved in BPD pathogenesis.
Collapse
Affiliation(s)
- Xuting Wang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Michelle R Campbell
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Vijayalakshmi Panduri
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | | | - Mauricio T Caballero
- Fundación INFANT, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Deepa Sambandan
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
- The Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC, 27606, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Fernando P Polack
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Gaston Ofman
- Fundación INFANT, Buenos Aires, Argentina
- Section of Neonatal-Perinatal Medicine, Center for Pregnancy and Newborn Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Douglas A Bell
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Building 101, MD C3-03, PO Box 12233, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
8
|
Verification of immunology-related genetic associations in BPD supports ABCA3 and five other genes. Pediatr Res 2022; 92:190-198. [PMID: 34465876 PMCID: PMC9411063 DOI: 10.1038/s41390-021-01689-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory processes are key drivers of bronchopulmonary dysplasia (BPD), a chronic lung disease in preterm infants. In a large sample, we verify previously reported associations of genetic variants of immunology-related genes with BPD. METHODS Preterm infants with a gestational age ≤32 weeks from PROGRESS and the German Neonatal Network (GNN) were included. Through a consensus case/control definition, 278 BPD cases and 670 controls were identified. We identified 49 immunity-related genes and 55 single-nucleotide polymorphisms (SNPs) previously associated with BPD through a comprehensive literature survey. Additionally, a quantitative genetic association analysis regarding oxygen supplements, mechanical ventilation, and continuous positive air pressure (CPAP) was performed. RESULTS Five candidate SNPs were nominally associated with BPD-related phenotypes with effect directions not conflicting the original studies: rs11265269-CRP, rs1427793-NUAK1, rs2229569-SELL, rs1883617-VNN2, and rs4148913-CHST3. Four of these genes are involved in cell adhesion. Extending our analysis to all well-imputed SNPs of all candidate genes, the strongest association was rs45538638-ABCA3 with CPAP (p = 4.9 × 10-7, FDR = 0.004), an ABC transporter involved in surfactant formation. CONCLUSIONS Most of the previously reported associations could not be replicated. We found additional support for SNPs in CRP, NUAK1, SELL, VNN2, and ABCA3. Larger studies and meta-analyses are required to corroborate these findings. IMPACT Larger cohort for improved statistical power to detect genetic associations with bronchopulmonary dysplasia (BPD). Most of the previously reported genetic associations with BPD could not be replicated in this larger study. Among investigated immunological relevant candidate genes, additional support was found for variants in genes CRP, NUAK1, SELL, VNN2, and CHST3, four of them related to cell adhesion. rs45538638 is a novel candidate SNP in reported candidate gene ABC-transporter ABCA3. Results help to prioritize molecular candidate pathomechanisms in follow-up studies.
Collapse
|
9
|
Yang Y, Li J, Mao J. Early diagnostic value of C-reactive protein as an inflammatory marker for moderate-to-severe bronchopulmonary dysplasia in premature infants with birth weight less than 1500 g. Int Immunopharmacol 2021; 103:108462. [PMID: 34952464 DOI: 10.1016/j.intimp.2021.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a serious respiratory complication in premature infants and moderate-to-severe BPD may affect the long-term quality of life and lack of specific treatment once it happened. Therefore, it is necessary to identify early diagnostic biomarkers for moderate-to-severe BPD. METHODS This retrospective cohort study included all premature infants with birth weight <1500 g from March 1, 2015 to June 30, 2017. Patients were categorized into mild BPD, moderate-to-severe BPD and non BPD groups. Data collected included patient characteristics, C-reactive protein (CRP) tested at six time points, including 1d (2 h after birth and before the first feeding), 3d, 7d, 2w, 3w, and 4w after birth, and maternal factors. Ordinal regression analysis was used to identify independent predictors of moderate-to-severe BPD and receiver operating characteristic (ROC) curve was used to evaluate the value of CRP as an early diagnostic marker for moderate-to-severe BPD. RESULTS A total of 831 patients were recruited. BPD occurred in 156/831 premature infants with birth weight less than 1500 g. Lower birth weight (OR = 0.998, 95% CI 0.997-0.999, P = 0.004), higher CRP level 3 days after birth (OR = 1.287, 95% CI 1.195-1.384, P = 0.000), and hemodynamically significant patent ductus arteriosus (HsPDA) (OR = 12.256, 95% CI 3.766-39.845, P = 0.000) were independent risk factors for moderate-to-severe BPD. The area under curve of the CRP level 3 days after birth for diagnosing moderate-to-severe BPD was 0.867 (95% CI, 0.823-0.912, P = 0.000). The sensitivity was 83.0% and the specificity was 78.3% when the cut-off value was set at 4.105 mg/L. CONCLUSION The CRP level 3 days after birth may be used as an early diagnostic marker for moderate-to-severe BPD in preterm infants who have the risk factors for BPD with birth weight less than 1500 g.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Mao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Abuelhamd WA, Gomaa NAS, Gad A, El-Wakeel R. Potential role of vitamin D receptor-related polymorphisms in bronchopulmonary dysplasia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The potential contribution of vitamin D and its receptor (VDR) to bronchopulmonary dysplasia (BPD) in preterm neonates is still unknown. The objective of the study was to test the relationship between VDR Taq 1 and Fok 1 gene polymorphisms and BPD in preterm neonates. VDR Fok 1 and Taq 1 gene polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.
Result
No statistically significant differences of genotypic distributions and allele frequencies of Fok 1 and Taq 1 VDR polymorphisms were detected between cases and controls. Moreover, no risk association was detected between both polymorphisms and BPD development in preterm neonates. Homozygous mutant (ff) genotype was the least frequent genotype among BPD and non-BPD groups (2.6%, 13.0% respectively) (p = 0.1). The same was detected for the mutant (CC) genotype frequency in both groups (10.5% and 15.2%, respectively). However, Taq 1 VDR polymorphism was significantly associated with the severity of BPD, as the genotypes with mutant allele C (CC +CT) were more frequent among severe cases (52.2%).
Conclusion
Fok 1and Taq 1 VDR polymorphisms have no role in BPD development in preterm neonates. However, the presence of a mutant allele of Taq 1 VDR polymorphism may be associated with a more severe form of the disease.
Collapse
|
11
|
Inflammatory biomarkers in very preterm infants during early intravenous paracetamol administration. Early Hum Dev 2021; 161:105464. [PMID: 34536795 DOI: 10.1016/j.earlhumdev.2021.105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Paracetamol promotes early closure of patent ductus arteriosus (PDA), and it may affect inflammation after preterm birth. OBJECTIVE The aim of this study was to evaluate the association between paracetamol treatment and serum inflammatory biomarkers in very preterm infants with respiratory distress. STUDY DESIGN The infants were randomly assigned to intravenous paracetamol or placebo during the first 4 days of life, and others received a lower dose of paracetamol unblinded. Serum samples were used for the analysis of 10 cytokines, C-reactive protein (CRP) and malondialdehyde (MDA). The impact of paracetamol on the biomarkers was evaluated, based on the levels during the early (<60 h) and the later (60-120 h) postnatal age. RESULTS Altogether, 296 serum samples from 31 paracetamol and 25 placebo group infants were analysed. Paracetamol had no effect on cytokine levels during the first 60 h when most induced PDA contractions took place. Later paracetamol treatment was associated with lower serum levels of several cytokines, including interleukin (IL-) 10, interferon gamma-induced protein (IP-) 10, and monocyte chemoattractant protein-1. CRP levels were lower in the paracetamol group during the early treatment. Amongst the infants who had severe morbidities, MDA was higher (p = .045), regardless of paracetamol treatment. CONCLUSION No significant differences in the cytokine levels were evident between the treatment and placebo groups. However, during early treatment, CRP levels were lower in the paracetamol group. To clarify whether this was due to a decrease in cardiopulmonary distress, or a distinct anti-inflammatory effect, requires further studies.
Collapse
|
12
|
Hadchouel A, Franco-Montoya ML, Guerin S, Do Cruzeiro M, Lhuillier M, Ribeiro Baptista B, Boyer L, Lanone S, Delacourt C. Overexpression of Spock2 in mice leads to altered lung alveolar development and worsens lesions induced by hyperoxia. Am J Physiol Lung Cell Mol Physiol 2020; 319:L71-L81. [PMID: 32374670 DOI: 10.1152/ajplung.00191.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 2 (SPOCK2) was previously associated with genetic susceptibility to bronchopulmonary dysplasia in a French population of very preterm neonates. Its expression increases during lung development and is increased after exposure of rat pups to hyperoxia compared with controls bred in room air. To further investigate the role of SPOCK2 during lung development, we designed two mouse models, one that uses a specific anti-Spock2 antibody and one that reproduces the hyperoxia-induced Spock2 expression with a transgenic mouse model resulting in a conditional and lung-targeted overexpression of Spock2. When mice were bred under hyperoxic conditions, treatment with anti-Spock2 antibodies significantly improved alveolarization. Lung overexpression of Spock2 altered alveolar development in pups bred in room air and worsened hyperoxia-induced lesions. Neither treatment with anti-Spock2 antibody nor overexpression of Spock2 was associated with abnormal activation of matrix metalloproteinase-2. These two models did not alter the expression of known players in alveolar development. This study brings strong arguments for the deleterious role of SPOCK2 on lung alveolar development especially after lung injury, suggesting its role in bronchopulmonary dysplasia susceptibility. These effects are not mediated by a deregulation in metalloproteases activity and in expression of factors essential to normal alveolarization. The balance between types 1 and 2 epithelial alveolar cells may be involved.
Collapse
Affiliation(s)
- Alice Hadchouel
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France.,Université de Paris, Paris, France
| | - Marie-Laure Franco-Montoya
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sophie Guerin
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France
| | - Marcio Do Cruzeiro
- Homologous Recombination, Cochin Institute, Université de Paris, Paris, France
| | - Mickaël Lhuillier
- U1151, Institut National de la Santé et de la Recherche Médicale, Institut Necker-Enfants Malades, Université de Paris, Paris, France
| | - Bruno Ribeiro Baptista
- Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France
| | - Laurent Boyer
- Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France
| | - Sophie Lanone
- Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France
| | - Christophe Delacourt
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,Equipe 4, U955, Institut National de la Santé et de la Recherche Médicale, Créteil, France.,Université de Paris, Paris, France
| |
Collapse
|
13
|
Exome sequencing of extreme phenotypes in bronchopulmonary dysplasia. Eur J Pediatr 2020; 179:579-586. [PMID: 31848748 DOI: 10.1007/s00431-019-03535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023]
Abstract
Bronchopulmonary dysplasia is the most common chronic respiratory disease in premature infants with growing evidence that genetic factors contribute largely to moderate and severe cases. We assessed by exome sequencing if rare genetic variants could account for extremely severe phenotypes. We selected 6 infants born very preterm with severe bronchopulmonary dysplasia and 8 very preterm born controls for exome sequencing. We filtered whole exome sequencing results to include only rare variants and selected variants and/or genes with variants that were present in at least 2 cases and absent in controls. We selected variants, all heterozygous, in 9 candidate genes, 7 with a putative role in lung development and 2 that displayed 3 variations in 3 different cases, independently of their potential role in lung development. Sequencing of 5 other severe cases for these variants did not replicate our results.Conclusion: In selected preterm born infants with severe bronchopulmonary dysplasia and controls, we failed to find any rare variant shared by several infants with an extremely severe phenotype. Our results are not consistent with the role of rare causative variants in bronchopulmonary dysplasia's development and argue for the highly polygenic nature of susceptibility of this disorder.What is Known:• Bronchopulmonary dysplasia is a multifactorial disease resulting from complex environmental and genetic interactions occurring in an immature lung.• It is not known whether rare genetic variants in coding regions could account for extreme phenotypes of the disease.What is New:• In a group of infants with an extreme phenotype of bronchopulmonary dysplasia and in comparison to controls, no common genetic variants were found, nor did variants that were select in other exome studies in this setting.• These results argue for the highly polygenic nature of susceptibility of bronchopulmonary dysplasia.
Collapse
|
14
|
Abstract
In the absence of effective interventions to prevent preterm births, improved survival of infants who are born at the biological limits of viability has relied on advances in perinatal care over the past 50 years. Except for extremely preterm infants with suboptimal perinatal care or major antenatal events that cause severe respiratory failure at birth, most extremely preterm infants now survive, but they often develop chronic lung dysfunction termed bronchopulmonary dysplasia (BPD; also known as chronic lung disease). Despite major efforts to minimize injurious but often life-saving postnatal interventions (such as oxygen, mechanical ventilation and corticosteroids), BPD remains the most frequent complication of extreme preterm birth. BPD is now recognized as the result of an aberrant reparative response to both antenatal injury and repetitive postnatal injury to the developing lungs. Consequently, lung development is markedly impaired, which leads to persistent airway and pulmonary vascular disease that can affect adult lung function. Greater insights into the pathobiology of BPD will provide a better understanding of disease mechanisms and lung repair and regeneration, which will enable the discovery of novel therapeutic targets. In parallel, clinical and translational studies that improve the classification of disease phenotypes and enable early identification of at-risk preterm infants should improve trial design and individualized care to enhance outcomes in preterm infants.
Collapse
|
15
|
Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, Degraeuwe P, Zimmermann LJI, Kramer BW, Villamor E. Association of Chorioamnionitis With Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review, Meta-analysis, and Metaregression. JAMA Netw Open 2019; 2:e1914611. [PMID: 31693123 PMCID: PMC6865274 DOI: 10.1001/jamanetworkopen.2019.14611] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Importance Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, remains one of the major and most common complications of very preterm birth. Insight into factors associated with the pathogenesis of BPD is key to improving its prevention and treatment. Objective To perform a systematic review, meta-analysis, and metaregression of clinical studies exploring the association between chorioamnionitis (CA) and BPD in preterm infants. Data Sources PubMed and Embase were searched without language restriction (last search, October 1, 2018). Key search terms included bronchopulmonary dysplasia, chorioamnionitis, and risk factors. Study Selection Included studies were peer-reviewed studies examining preterm (<37 weeks' gestation) or very low-birth-weight (<1500 g) infants and reporting primary data that could be used to measure the association between exposure to CA and the development of BPD. Data Extraction and Synthesis The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guideline was followed. Data were independently extracted by 2 researchers. A random-effects model was used to calculate odds ratios (ORs) and 95% CIs. Heterogeneity in effect size across studies was studied using multivariate, random-effects metaregression analysis. Main Outcomes and Measures The primary outcome was BPD, defined as supplemental oxygen requirement on postnatal day 28 (BPD28) or at the postmenstrual age of 36 weeks (BPD36). Covariates considered as potential confounders included differences between CA-exposed and CA-unexposed infants in gestational age, rates of respiratory distress syndrome (RDS), exposure to antenatal corticosteroids, and rates of early- and late-onset sepsis. Results A total of 3170 potentially relevant studies were found, of which 158 met the inclusion criteria (244 096 preterm infants, 20 971 CA cases, and 24 335 BPD cases). Meta-analysis showed that CA exposure was significantly associated with BPD28 (65 studies; OR, 2.32; 95% CI, 1.88-2.86; P < .001; heterogeneity: I2 = 84%; P < .001) and BPD36 (108 studies; OR, 1.29; 95% CI, 1.17-1.42; P < .001; heterogeneity: I2 = 63%; P < .001). The association between CA and BPD remained significant for both clinical and histologic CA. In addition, significant differences were found between CA-exposed and CA-unexposed infants in gestational age, birth weight, odds of being small for gestational age, exposure to antenatal corticosteroids, and early- and late-onset sepsis. Chorioamnionitis was not significantly associated with RDS (48 studies; OR, 1.10; 95% CI, 0.92-1.34; P = .24; heterogeneity: I2 = 90%; P < .001), but multivariate metaregression analysis with backward elimination revealed that a model combining the difference in gestational age and the odds of RDS was associated with 64% of the variance in the association between CA and BPD36 across studies. Conclusions and Relevance The results of this study confirm that among preterm infants, exposure to CA is associated with a higher risk of developing BPD, but this association may be modulated by gestational age and risk of RDS.
Collapse
Affiliation(s)
- Eduardo Villamor-Martinez
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Amro M. T. Ghazi
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter Degraeuwe
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Luc J. I. Zimmermann
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Boris W. Kramer
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
16
|
Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, Collins CT, Makrides M, Gibson RA, Rogers GB, Lynn DJ. Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems 2019; 4:e00484-19. [PMID: 31662429 PMCID: PMC6819732 DOI: 10.1128/msystems.00484-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically.IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Damian P Drew
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Chloe Douglas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lex E X Leong
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Max Moldovan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miriam Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Naomi Fink
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Irmeli Penttila
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
17
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
18
|
Torgerson DG, Ballard PL, Keller RL, Oh SS, Huntsman S, Hu D, Eng C, Burchard EG, Ballard RA. Ancestry and genetic associations with bronchopulmonary dysplasia in preterm infants. Am J Physiol Lung Cell Mol Physiol 2018; 315:L858-L869. [PMID: 30113228 PMCID: PMC6295513 DOI: 10.1152/ajplung.00073.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023] Open
Abstract
Bronchopulmonary dysplasia in premature infants is a common and often severe lung disease with long-term sequelae. A genetic component is suspected but not fully defined. We performed an ancestry and genome-wide association study to identify variants, genes, and pathways associated with survival without bronchopulmonary dysplasia in 387 high-risk infants treated with inhaled nitric oxide in the Trial of Late Surfactant study. Global African genetic ancestry was associated with increased survival without bronchopulmonary dysplasia among infants of maternal self-reported Hispanic white race/ethnicity [odds ratio (OR) = 4.5, P = 0.01]. Admixture mapping found suggestive outcome associations with local African ancestry at chromosome bands 18q21 and 10q22 among infants of maternal self-reported African-American race/ethnicity. For all infants, the top individual variant identified was within the intron of NBL1, which is expressed in midtrimester lung and is an antagonist of bone morphogenetic proteins ( rs372271081 , OR = 0.17, P = 7.4 × 10-7). The protective allele of this variant was significantly associated with lower nitric oxide metabolites in the urine of non-Hispanic white infants ( P = 0.006), supporting a role in the racial differential response to nitric oxide. Interrogating genes upregulated in bronchopulmonary dysplasia lungs indicated association with variants in CCL18, a cytokine associated with fibrosis and interstitial lung disease, and pathway analyses implicated variation in genes involved in immune/inflammatory processes in response to infection and mechanical ventilation. Our results suggest that genetic variation related to lung development, drug metabolism, and immune response contribute to individual and racial/ethnic differences in respiratory outcomes following inhaled nitric oxide treatment of high-risk premature infants.
Collapse
Affiliation(s)
- Dara G Torgerson
- Department of Pediatrics, University of California , San Francisco, California
| | - Philip L Ballard
- Department of Pediatrics, University of California , San Francisco, California
| | - Roberta L Keller
- Department of Pediatrics, University of California , San Francisco, California
| | - Sam S Oh
- Department of Medicine, University of California , San Francisco, California
| | - Scott Huntsman
- Department of Medicine, University of California , San Francisco, California
| | - Donglei Hu
- Department of Medicine, University of California , San Francisco, California
| | - Celeste Eng
- Department of Medicine, University of California , San Francisco, California
| | - Esteban G Burchard
- Department of Medicine, University of California , San Francisco, California
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California
| | - Roberta A Ballard
- Department of Pediatrics, University of California , San Francisco, California
| |
Collapse
|