1
|
Hutton SJ, Kashiwabara L, Anderson E, Siddiqui S, Harper B, Harper S, Brander SM. Behavioral and molecular effects of micro and nanoplastics across three plastic types in fish: weathered microfibers induce a similar response to nanosized particles. FRONTIERS IN TOXICOLOGY 2024; 6:1490223. [PMID: 39659702 PMCID: PMC11628497 DOI: 10.3389/ftox.2024.1490223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Micro and nanoplastics (MNPs) are ubiquitous in the environment and have been detected in most ecosystems, including remote regions. The class of contaminants under the MNP umbrella is quite broad and encompasses variable polymer types, shapes, and sizes. Fibers are the most frequently detected in the environment, followed by fragments, but still represent only a small fraction of laboratory studies. Many toxicity studies have been done using polystyrene microbeads which represent neither the polymer nor shape most present in the environment. Additionally, most of these studies are done using virgin particles when the majority of MNP pollution is from secondary microplastics which have weathered and broken down over time. To address these data gaps, we exposed the model fish Inland Silverside, Menidia beryllina, for 21-days to micro and nano cryo-milled tire particles, micro and nano polylactic acid, and polyester microfibers, both weathered and unweathered treatments were tested. We evaluated the impacts of these particles on growth, behavior, and gene expression to compare the relative toxicities of the different particles. We found that overall, the nanoparticles and weathered fibers had the greatest effect on behavior and gene expression. Gene ontology analysis revealed strong evidence suggesting MNP exposure affected pathways involved in muscle contraction and function. Unweathered microfibers decreased growth which may be a result of food dilution. Our results also suggest that under weathering conditions polyester microfibers breakdown into smaller sizes and induce toxicity similar to nanoparticles. This study highlights the variable effects of MNPs in fish and emphasizes the importance of considering particle shape and size in toxicity studies.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lauren Kashiwabara
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| | - Erin Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Samreen Siddiqui
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Susanne M. Brander
- Fisheries, Wildlife, and Conservation Sciences Department; Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR, United States
| |
Collapse
|
2
|
Vilaça M, Lopes C, Seabra R, Rocha E. 17α-Ethynylestradiol and Levonorgestrel Exposure of Rainbow Trout RTL-W1 Cells at 18 °C and 21 °C Mainly Reveals Thermal Tolerance, Absence of Estrogenic Effects, and Progestin-Induced Upregulation of Detoxification Genes. Genes (Basel) 2024; 15:1189. [PMID: 39336780 PMCID: PMC11431550 DOI: 10.3390/genes15091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fish are exposed to increased water temperatures and aquatic pollutants, including endocrine-disrupting compounds (EDCs). Although each stressor can disturb fish liver metabolism independently, combined effects may exist. To unveil the molecular mechanisms behind the effects of EDCs and temperature, fish liver cell lines are potential models needing better characterisation. Accordingly, we exposed the rainbow trout RTL-W1 cells (72 h), at 18 °C and 21 °C, to ethynylestradiol (EE2), levonorgestrel (LNG), and a mixture of both hormones (MIX) at 10 µM. The gene expression of a selection of targets related to detoxification (CYP1A, CYP3A27, GST, UGT, CAT, and MRP2), estrogen exposure (ERα, VtgA), lipid metabolism (FAS, FABP1, FATP1), and temperature stress (HSP70b) was analysed by RT-qPCR. GST expression was higher after LNG exposure at 21 °C than at 18 °C. LNG further enhanced the expression of CAT, while both LNG and MIX increased the expressions of CYP3A27 and MRP2. In contrast, FAS expression only increased in MIX, compared to the control. ERα, VtgA, UGT, CYP1A, HSP70b, FABP1, and FATP1 expressions were not influenced by the temperature or the tested EDCs. The RTL-W1 model was unresponsive to EE2 alone, sensitive to LNG (in detoxification pathway genes), and mainly insensitive to the temperature range but had the potential to unveil specific interactions.
Collapse
Affiliation(s)
- Margarida Vilaça
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Célia Lopes
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rosária Seabra
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Boughman JW, Brand JA, Brooks RC, Bonduriansky R, Wong BBM. Sexual selection and speciation in the Anthropocene. Trends Ecol Evol 2024; 39:654-665. [PMID: 38503640 DOI: 10.1016/j.tree.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Collapse
Affiliation(s)
- Janette W Boughman
- Department of Integrative Biology & Evolution, Ecology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten, SE-907 36, Sweden
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
4
|
Fathy RF. Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios. CHEMOSPHERE 2024; 355:141810. [PMID: 38554872 DOI: 10.1016/j.chemosphere.2024.141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.
Collapse
Affiliation(s)
- Ragaa F Fathy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre (NRC), 33 El-Buhouth St, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
5
|
Kokotović I, Veseli M, Ložek F, Karačić Z, Rožman M, Previšić A. Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168751. [PMID: 38008314 DOI: 10.1016/j.scitotenv.2023.168751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Marina Veseli
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Filip Ložek
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic.
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
6
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Multigenerational, Indirect Exposure to Pyrethroids Demonstrates Potential Compensatory Response and Reduced Toxicity at Higher Salinity in Estuarine Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2224-2235. [PMID: 38267018 PMCID: PMC10851936 DOI: 10.1021/acs.est.3c06234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Samreen Siddiqui
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Emily I. Pedersen
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Christopher Y. Markgraf
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United States
| | - Amelie Segarra
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Michelle L. Hladik
- U.S.
Geological Survey, California Water Science
Center, Sacramento, California 95819, United States
| | - Richard E. Connon
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Susanne M. Brander
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| |
Collapse
|
7
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
8
|
Morais H, Arenas F, Cruzeiro C, Galante-Oliveira S, Cardoso PG. Combined effects of climate change and environmentally relevant mixtures of endocrine disrupting compounds on the fitness and gonads' maturation dynamics of Nucella lapillus (Gastropoda). MARINE POLLUTION BULLETIN 2023; 190:114841. [PMID: 36965267 DOI: 10.1016/j.marpolbul.2023.114841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas are affected by multiple stressors like climate change and endocrine disruptors (EDCs). In the laboratory, we investigated the combined effects of increased temperature and EDCs (drospirenone and mercury) on the fitness and gonads' maturation dynamics of the marine gastropod Nucella lapillus for 21 days. Survival was negatively affected by all the stressors alone, while, in combination, a synergistic negative effect was observed. Both chemicals, as single factors, did not cause any effect on the maturation stage of ovaries and testis. However, in the presence of a higher temperature, it was clear a delay in the maturation stage of the ovaries, but not in the testis, suggesting a higher negative impact of the stressors in females than in males. In summary, drospirenone caused a low negative impact in aquatic species, like gastropods, but in combination with other EDCs and/or increased temperature can be a matter of concern.
Collapse
Affiliation(s)
- H Morais
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - F Arenas
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - C Cruzeiro
- Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - S Galante-Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - P G Cardoso
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
9
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Comparative behavioral ecotoxicology of Inland Silverside larvae exposed to pyrethroids across a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159398. [PMID: 36257430 DOI: 10.1016/j.scitotenv.2022.159398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.
Collapse
Affiliation(s)
- Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Emily I Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Christopher Y Markgraf
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Amelie Segarra
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA 95819, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| |
Collapse
|
10
|
Xing K, Zhang SM, Jia MQ, Zhao F. Response of wheat aphid to insecticides is influenced by the interaction between temperature amplitudes and insecticide characteristics. Front Physiol 2023; 14:1188917. [PMID: 37168226 PMCID: PMC10165072 DOI: 10.3389/fphys.2023.1188917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Climate change not only directly affects the phenotype of organisms but also indirectly impacts their physiology, for example, by altering their susceptibility to insecticides. Changed diurnal temperature fluctuations are an important aspect of climate change; ignoring the impact of these fluctuations on the biological effects of various chemical insecticides can lead to inaccurate assessments of insecticide risk under the current and future climate change scenarios. Methods: In this study, we studied effects of different temperature amplitudes (± 0, ± 6, ± 12°C) at the same mean temperature (22°C) on the life history traits of a globally distributed pest (Sitobion avenae, wheat aphid), in response to low doses of two insecticides. The first, imidacloprid shows a positive temperature coefficient; the second, beta-cypermethrin has a negative temperature coefficient. Results: Compared with the results seen with the constant temperature (22°C), a wide temperature amplitude (± 12°C) amplified the negative effects of imidacloprid on the survival, longevity, and fecundity of S. avenae, but significantly increased the early fecundity of the wheat aphid. Beta-cypermethrin positively impacted the wheat aphid at all temperature amplitudes studied. Specifically, beta-cypermethrin significantly increased the survival, longevity, and fecundity of S. avenae under medium temperature amplitude (± 6°C). There were no significant differences in the survival, longevity, and the early fecundity of S. avenae when it was treated with beta-cypermethrin at the wide temperature amplitude (± 12°C). However, the negative effect of beta-cypermethrin on the intrinsic rate of increase of S. avenae decreased gradually with the increase in temperature amplitude. Discussion: In conclusion, the response of S. avenae to positive temperature coefficient insecticides was markedly affected by temperature amplitude, while negative temperature coefficient insecticides increased the environmental adaptability of S. avenae to various temperature amplitudes. Our results highlight the importance of the integrated consideration of diurnal temperature fluctuations and different temperature coefficient insecticide interactions in climate-change-linked insecticide risk assessment; these results emphasize the need for a more fine-scale approach within the context of climate change and poison sensitivity.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Shu-Ming Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Mei-Qi Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
- *Correspondence: Fei Zhao,
| |
Collapse
|
11
|
Brander SM, White JW, DeCourten BM, Major K, Hutton SJ, Connon RE, Mehinto A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac023. [PMID: 36518876 PMCID: PMC9730329 DOI: 10.1093/eep/dvac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 06/04/2023]
Abstract
Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.
Collapse
Affiliation(s)
- Susanne M Brander
- *Correspondence address. Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA. Tel: +541-737-5413; E-mail:
| | - J Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
| | | | - Kaley Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95656, USA
| | - Alvine Mehinto
- Toxicology Department, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
12
|
Siddiqui S, Dickens JM, Cunningham BE, Hutton SJ, Pedersen EI, Harper B, Harper S, Brander SM. Internalization, reduced growth, and behavioral effects following exposure to micro and nano tire particles in two estuarine indicator species. CHEMOSPHERE 2022; 296:133934. [PMID: 35176295 PMCID: PMC9071364 DOI: 10.1016/j.chemosphere.2022.133934] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 05/19/2023]
Abstract
Synthetic rubber emissions from automobile tires are common in aquatic ecosystems. To assess potential impacts on exposed organisms, early life stages of the estuarine indicator species Inland Silverside (Menidia beryllina) and mysid shrimp (Americamysis bahia) were exposed to three tire particle (TP) concentrations at micro and nano size fractions (0.0038, 0.0378 and 3.778 mg/L in mass concentrations for micro size particles), and separately to leachate, across a 5-25 PSU salinity gradient. Following exposure, M. beryllina and A. bahia had significantly altered swimming behaviors, such as increased freezing, changes in positioning, and total distance moved, which could lead to an increased risk of predation and foraging challenges in the wild. Growth for both A. bahia and M. beryllina was reduced in a concentration-dependent manner when exposed to micro-TP, whereas M. beryllina also demonstrated reduced growth when exposed to nano-TP (except lowest concentration). TP internalization was dependent on the exposure salinity in both taxa. The presence of adverse effects in M. beryllina and A. bahia indicate that even at current environmental levels of tire-related pollution, which are expected to continue to increase, aquatic ecosystems may be experiencing negative impacts.
Collapse
Affiliation(s)
- S Siddiqui
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA.
| | - J M Dickens
- Marine Resources Management Program, College of Earth, Atmospheric, and Oceanic Sciences, Oregon State University Corvallis, Oregon, 97331, USA
| | - B E Cunningham
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - S J Hutton
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - E I Pedersen
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA
| | - B Harper
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Oregon State University, 97331, USA
| | - S Harper
- Environmental and Molecular Toxicology, College of Agricultural and Life Sciences, Chemical, Biological and Environmental Engineering, College of Engineering, Oregon State University, 97331, USA
| | - S M Brander
- Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, College of Agricultural and Life Sciences, Oregon State University, 97365, USA
| |
Collapse
|
13
|
González-Tokman D, Bauerfeind SS, Schäfer MA, Walters RJ, Berger D, Blanckenhorn WU. Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. CHEMOSPHERE 2022; 286:131030. [PMID: 34144808 DOI: 10.1016/j.chemosphere.2021.131030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT. Red de Ecoetología, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351. El Haya, Xalapa, Veracruz, 91073, Mexico.
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Uppsala University, Sweden, Norbyvägen 18D, S-752 36, Uppsala, Sweden.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Fuller N, Huff Hartz KE, Johanif N, Magnuson JT, Robinson EK, Fulton CA, Poynton HC, Connon RE, Lydy MJ. Enhanced trophic transfer of chlorpyrifos from resistant Hyalella azteca to inland silversides (Menidia beryllina) and effects on acetylcholinesterase activity and swimming performance at varying temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118217. [PMID: 34583267 DOI: 10.1016/j.envpol.2021.118217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos, an organophosphate (OP) insecticide, is prevalent in aquatic systems globally and is often implicated in aquatic toxicity during storm events. Chlorpyrifos induces toxicity by inhibition of acetylcholinesterase (AChE) activity, which has been related to alterations to fish swimming performance. Resistance to organophosphate insecticides, including chlorpyrifos, is prevalent in populations of the epibenthic amphipod Hyalella azteca in areas with known OP exposure. Previous studies have demonstrated an elevated bioaccumulation potential of insecticide-resistant prey items, however the potential for trophic transfer of chlorpyrifos from OP-resistant prey items and associated neurotoxic effects in fish predators has not been studied. Consequently, the present study aimed to determine the potential for trophic transfer of chlorpyrifos from OP-resistant H. azteca to a known predator, the inland silverside, Menidia beryllina at two temperatures (18 and 23 °C) to simulate temperature changes associated with global climate change (GCC). Fish were fed either 14C-chlorpyrifos-dosed H. azteca or control animals for 7 d, after which total bioaccumulation, percent parent chlorpyrifos, brain AChE activity and swimming performance (ramp-Ucrit) were determined. Fish fed chlorpyrifos-dosed H. azteca bioaccumulated chlorpyrifos ranging from 29.9 to 1250 ng/g lipid, demonstrating the potential for trophic transfer. Lower bioaccumulation and greater biotransformation were observed in M. beryllina at 23 °C as compared to 18 °C, though this was not statistically significant. A significant 36.5% reduction in brain AChE activity was observed in fish fed chlorpyrifos-dosed H. azteca at 23 °C only, which may be attributed to increased biotransformation of parent chlorpyrifos to more potent AChE-inhibiting metabolites. Dietary chlorpyrifos exposure had no significant effect on swimming performance in M. beryllina, though ramp-Ucrit was significantly increased by 25% at 23 as compared to 18 °C. These findings confirm the potential for trophic transfer of chlorpyrifos from OP-resistant prey to fish predators and the potential for elevated temperatures to exacerbate the neurotoxic effects of chlorpyrifos.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Nadhirah Johanif
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, 92591, USA
| | - Eleni K Robinson
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology University of California, Davis, CA, 95616, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
15
|
Mikó Z, Nemesházi E, Ujhegyi N, Verebélyi V, Ujszegi J, Kásler A, Bertalan R, Vili N, Gál Z, Hoffmann OI, Hettyey A, Bókony V. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117464. [PMID: 34380212 DOI: 10.1016/j.envpol.2021.117464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the female-to-male sex-reversing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Fish Parasitology Research Team, Veterinary Medical Research Institute, Eötvös Loránd Research Network, Hungária körút 21, H-1143, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| |
Collapse
|
16
|
Strüssmann CA, Yamamoto Y, Hattori RS, Fernandino JI, Somoza GM. Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes. Sex Dev 2021; 15:80-92. [PMID: 33951664 DOI: 10.1159/000515191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
Collapse
Affiliation(s)
- Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ricardo S Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
17
|
Derby AP, Fuller NW, Huff Hartz KE, Segarra A, Connon RE, Brander SM, Lydy MJ. Trophic transfer, bioaccumulation and transcriptomic effects of permethrin in inland silversides, Menidia beryllina, under future climate scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116545. [PMID: 33578317 DOI: 10.1016/j.envpol.2021.116545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed 14C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g-1 lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.
Collapse
Affiliation(s)
- Andrew P Derby
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Amelie Segarra
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, 97365, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
18
|
Rodríguez-Romero A, Viguri JR, Calosi P. Acquiring an evolutionary perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142816. [PMID: 33092841 DOI: 10.1016/j.scitotenv.2020.142816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain.
| | - Javier R Viguri
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
19
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
20
|
Greggio N, Capolupo M, Donnini F, Birke M, Fabbri E, Dinelli E. Integration of physical, geochemical and biological analyses as a strategy for coastal lagoon biomonitoring. MARINE POLLUTION BULLETIN 2021; 164:112005. [PMID: 33517082 DOI: 10.1016/j.marpolbul.2021.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Coastal lagoons are complex environments threatened by natural and anthropogenic stressors. Here, we tested the effectiveness of combining physical, geochemical and chemical measurements with biomarker data obtained in field-exposed marine mussels (Mytilus galloprovincialis) as a biomonitoring strategy for a highly pressured lagoon (Pialassa Baiona, Ravenna, Italy). Data showed a spatial trend of sediment contamination by Hg, Pt, Au, Ag, Mo, Re, Cd, Pd and Zn. Local conditions of high water temperature/low conductivity were detected among selected sites. After a 30-day in situ exposure, Ag and Hg were the most bioaccumulated elements (10 and 5 folds, respectively) in mussels followed by Sb, Al, Ti and Fe. Decreased survival, lysosomal dysfunctions, increased metallothionein content and peroxisome proliferation were observed in mussels in relation to metal spatial distribution and physico-chemical fluctuations. Overall, this study provides a further confirmation of the role of biomonitoring to reliably assess the environmental quality of highly pressured lagoons.
Collapse
Affiliation(s)
- Nicolas Greggio
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy.
| | - Marco Capolupo
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Filippo Donnini
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany
| | - Elena Fabbri
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Enrico Dinelli
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| |
Collapse
|
21
|
Segarra A, Mauduit F, Amer NR, Biefel F, Hladik ML, Connon RE, Brander SM. Salinity Changes the Dynamics of Pyrethroid Toxicity in Terms of Behavioral Effects on Newly Hatched Delta Smelt Larvae. TOXICS 2021; 9:40. [PMID: 33672739 PMCID: PMC7924609 DOI: 10.3390/toxics9020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Salinity can interact with organic compounds and modulate their toxicity. Studies have shown that the fraction of pyrethroid insecticides in the aqueous phase increases with increasing salinity, potentially increasing the risk of exposure for aquatic organisms at higher salinities. In the San Francisco Bay Delta (SFBD) estuary, pyrethroid concentrations increase during the rainy season, coinciding with the spawning season of Delta Smelt (Hypomesus transpacificus), an endangered, endemic fish. Furthermore, salinity intrusion in the SFBD is exacerbated by global climate change, which may change the dynamics of pyrethroid toxicity on aquatic animals. Therefore, examining the effect of salinity on the sublethal toxicity of pyrethroids is essential for risk assessments, especially during the early life stages of estuarine fishes. To address this, we investigated behavioral effects of permethrin and bifenthrin at three environmentally relevant concentrations across a salinity gradient (0.5, 2 and 6 PSU) on Delta Smelt yolk-sac larvae. Our results suggest that environmentally relevant concentrations of pyrethroids can perturb Delta Smelt larvae behavior even at the lowest concentrations (<1 ng/L) and that salinity can change the dynamic of pyrethroid toxicity in terms of behavioral effects, especially for bifenthrin, where salinity was positively correlated with anti-thigmotaxis at each concentration.
Collapse
Affiliation(s)
- Amelie Segarra
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Florian Mauduit
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Nermeen R. Amer
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Department of Entomology, Faculty of Science, Cairo University, Giza 11311, Egypt
| | - Felix Biefel
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Michelle L. Hladik
- US Geological Survey, California Water Science Center Sacramento, Sacramento, CA 95819, USA;
| | - Richard E. Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Susanne M. Brander
- Department Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
22
|
DeCourten BM, Forbes JP, Roark HK, Burns NP, Major KM, White JW, Li J, Mehinto AC, Connon RE, Brander SM. Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13849-13860. [PMID: 32989987 DOI: 10.1021/acs.est.0c02892] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Joshua P Forbes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hunter K Roark
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Nathan P Burns
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kaley M Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| |
Collapse
|
23
|
Major KM, Brander SM. The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Giroux M, Vliet SMF, Volz DC, Gan J, Schlenk D. Mechanisms behind interactive effects of temperature and bifenthrin on the predator avoidance behaviors in parr of chinook salmon (Oncorhynchus tshawytscha). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105312. [PMID: 31563086 DOI: 10.1016/j.aquatox.2019.105312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Many coastal systems have been experiencing the effects of non-chemical and chemical anthropological stressors through respective increases in surface water temperatures and rainstorm-derived runoff events of pyrethroid pesticide movement into waterways such as the San Francisco Bay-Delta. Salmonid populations in the Bay-Delta have been dramatically declining in recent decades. Therefore, the aim of this study was to investigate the interactive effects of bifenthrin, a pyrethroid insecticide, and increasing water temperatures on targeted neuroendocrine and behavioral responses in Chinook salmon (Oncorhynchus tshawytscha) parr (10- month post-hatch). Parr were reared at 11 °C, 16.4 °C, or 19 °C for 14 days and, in the final 96 h of rearing, exposed to nominal concentrations of 0, 0.15, or 1.5 μg/L bifenthrin. A predatory avoidance Y-Maze behavioral assay was conducted immediately following exposures. Parr were presented a choice of clean or odorant zones, and locomotive behavior was recorded. Thyroid hormones (T3 and T4), estradiol, and testosterone were quantified within plasma using ELISAs, and the expression of brain hormone and dopamine receptor genes were also evaluated by qPCR. Brain dopamine levels were analyzed by LC/MS. No significant changes were observed in brain transcripts or plasma hormone concentrations with bifenthrin or increasing temperature. However, temperature did significantly lower brain dopamine levels in fish reared at 19 °C compared to 11 °C controls, but was unaltered by bifenthrin treatment. In contrast, parr reared at 11 °C and exposed to 1.5 μg/L bifenthrin spent significantly less time avoiding a predatory odorant compared to vehicle controls reared at 11 °C. The 16.4 °C and 1.5 μg/L-treated fish spent significantly more time in the neutral arm compared to the odorant and clean arms, as well as spending significantly less time in the clean arm compared to the 11 °C control fish. These results suggest that the interaction of temperature and bifenthrin may be adversely impacting predator-avoidance behavior, which may not be related to dopaminergic responses.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA; Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
| | - Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA; Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
25
|
Giroux M, Gan J, Schlenk D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:852-861. [PMID: 30681194 DOI: 10.1002/etc.4372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The San Francisco Bay delta (USA) is experiencing seasonally warmer waters attributable to climate change and receives rainstorm runoff containing pyrethroid pesticides. Chinook salmon (Oncorhynchus tshawytscha) inhabit the affected waterways from hatch through smoltification, and thus juvenile fish may experience both pyrethroid and warmer water exposures. The effects of higher temperatures and pesticide exposure on presmolt Chinook are unknown. To improve understanding of the potential interaction between temperature and pesticide exposure on salmonid development, juvenile alevin and fry were reared in 11, 16.4, and 19 °C freshwater for 11 d and 2 wk, respectively, and exposed to nominal concentrations of 0, 0.15, and 1.5 µg/L bifenthrin for the final 96 h of rearing. Estradiol-17β (E2), testosterone, triiodothyronine, and thyroxine levels were measured in whole-body homogenates using hormone-specific enzyme-linked immunosorbent assays. Brain gonadotropin-releasing hormone receptor (GnRH2), dopamine receptor 2A, and growth hormone 1 (GH1) mRNA levels were measured using quantitative PCR. Results showed significantly decreased survival and condition factors observed with increasing temperature in alevin. Alevin thyroid hormones increased significantly with temperature, but fry thyroid hormones trended toward a decrease at lower temperatures with increasing bifenthrin exposure. There were significant reductions in fry testosterone and E2 at 11 °C with increasing bifenthrin treatments and significant changes in GnRH2 and GH1 gene expression in both alevin and fry, indicating potential disruption of hormonal and signaling pathways. Environ Toxicol Chem 2019;38:852-861. © 2019 SETAC.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
26
|
Lagesson A, Saaristo M, Brodin T, Fick J, Klaminder J, Martin JM, Wong BBM. Fish on steroids: Temperature-dependent effects of 17β-trenbolone on predator escape, boldness, and exploratory behaviors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:243-252. [PMID: 30423539 DOI: 10.1016/j.envpol.2018.10.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/09/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Hormonal growth promoters (HGPs), widely used in beef cattle production globally, make their way into the environment as agricultural effluent-with potential impacts on aquatic ecosystems. One HPG of particular concern is 17β-trenbolone, which is persistent in freshwater habitats and can affect the development, morphology and reproductive behaviors of aquatic organisms. Despite this, few studies have investigated impacts of 17β-trenbolone on non-reproductive behaviors linked to growth and survival, like boldness and predator avoidance. None consider the interaction between 17β-trenbolone and other environmental stressors, such as temperature, although environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Accordingly, this study aimed to test the interactive effects of trenbolone and temperature on organismal behavior. To do this, eastern mosquitofish (Gambusia holbrooki) were subjected to an environmentally-relevant concentration of 17β-trenbolone (average measured concentration 3.0 ± 0.2 ng/L) or freshwater (i.e. control) for 21 days under one of two temperatures (20 and 30 °C), after which the predator escape, boldness and exploration behavior of fish were tested. Predator escape behavior was assayed by subjecting fish to a simulated predator strike, while boldness and exploration were assessed in a separate maze experiment. We found that trenbolone exposure increased boldness behavior. Interestingly, some behavioral effects of trenbolone depended on temperature, sex, or both. Specifically, significant effects of trenbolone on male predator escape behavior were only noted at 30 °C, with males becoming less reactive to the simulated threat. Further, in the maze experiment, trenbolone-exposed fish explored the maze faster than control fish, but only at 20 °C. We conclude that field detected concentrations of 17β-trenbolone can impact ecologically important behaviors of fish, and such effects can be temperature dependent. Such findings underscore the importance of considering the potentially interactive effects of other environmental stressors when investigating behavioral effects of environmental contaminants.
Collapse
Affiliation(s)
- A Lagesson
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden.
| | - M Saaristo
- School of Biological Sciences, Monash University, Victoria 3800, Australia; Department of Biosciences, Åbo Academy University, 20500 Turku, Finland
| | - T Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - J Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - J M Martin
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - B B M Wong
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
27
|
DeCourten BM, Connon RE, Brander SM. Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish. PeerJ 2019; 7:e6156. [PMID: 30643694 PMCID: PMC6329337 DOI: 10.7717/peerj.6156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
Aquatic organisms inhabiting polluted waterways face numerous adverse effects, including physiological disruption by endocrine disrupting compounds (EDCs). Little is known about how the temperatures associated with global climate change may influence the response of organisms exposed to EDCs, and the effects that these combined stressors may have on molecular endpoints such as gene expression. We exposed Menidia beryllina (inland silversides) to environmentally relevant concentrations (1 ng/L) of two estrogenic EDCs (bifenthrin and 17α-ethinylestradiol; EE2) at 22 °C and 28 °C. We conducted this experiment over multiple generations to better understand the potential effects to chronically exposed populations in the wild. We exposed adult parental fish (F0) for 14 days prior to spawning of the next generation. F1 larvae were then exposed from fertilization until 21 days post hatch (dph) before being transferred to clean water tanks. F1 larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring (F2 generation). Gene expression was quantified by performing qPCR on F0 and F1 gonads, as well as F1 and F2 larvae. We did not detect any significant differences in the expression of genes measured in the parental or F1 adult gonads. We found that the 28 °C EE2 treatment significantly decreased the expression of nearly all genes measured in the F1 larvae. This pattern was transferred to the F2 generation for expression of the follicle-stimulating hormone receptor (FSHR) gene. Expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) and G protein-coupled receptor 30 (GPR30) revealed changes not measured in the previous generation. Effects of the bifenthrin treatments were not observed until the F2 generation, which were exposed to the chemicals indirectly as germ cells. Our results indicate that effects of EDCs and their interactions with abiotic factors, may not be adequately represented by singular generation testing. These findings will contribute to the determination of the risk of EDC contamination to organisms inhabiting contaminated waterways under changing temperature regimes.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA, United States of America
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
28
|
|
29
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Capolupo M, Díaz-Garduño B, Martín-Díaz ML. The impact of propranolol, 17α-ethinylestradiol, and gemfibrozil on early life stages of marine organisms: effects and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32196-32209. [PMID: 30220067 DOI: 10.1007/s11356-018-3185-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are ubiquitously detected in the marine environment at the ng-μg/L range. Given their biological activity, these compounds are known to induce detrimental effects on biota at relatively low exposure levels; however, whether they affect early life stages of marine species is still unclear. In this study, a set of bioassays was performed to assess the effects of propranolol (PROP), 17-α ethinylestradiol (EE2), and gemfibrozil (GEM) on gamete fertilization and embryonic development of mussels (Mytilus galloprovincialis) and sea urchins (Paracentrotus lividus), and on the survival of seabream (Sparus aurata) larvae. Treatments of PROP (500, 5000, 50,000 ng/L), EE2 (5, 50, 500 ng/L), and GEM (50, 500, 5000 ng/L) were selected to encompass levels comparable or superior to environmental concentrations. Obtained data were tested for dose-response curve fitting and the lowest EC10/LC10 used to calculate risk quotients (RQs) based on the MEC/PNEC. No alteration was induced by PROP on the mussel gamete fertilization, while inhibitory effects were observed at environmental levels of EE2 (500 ng/L) and GEM (5000 ng/L). Fertilization was significantly reduced in sea urchin at all PROP and EE2 dosages. The 48-h exposure to all pharmaceuticals induced the onset of morphological abnormalities in either mussel or sea urchin embryos. Alterations were generally observed at environmentally relevant dosages, except for PROP in mussels, in which alterations occurred only at 50,000 ng/L. A decreased survival of seabream larvae was recorded after 96-h exposure to PROP (all treatments), EE2 (50-500 ng/L), and GEM (500 ng/L). A median RQ > 1 was obtained for all pharmaceuticals, assigning a high risk to their occurrence in marine environments. Overall, results showed that current levels of contamination by pharmaceuticals can impact early stages of marine species, which represent critical junctures in the resilience of coastal ecosystems.
Collapse
Affiliation(s)
- Marco Capolupo
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, P.zza di P.ta S. Donato 1, 40100, Bologna, Italy.
- Inter-Departmental Research Centre for Environmental Science (CIRSA), University of Bologna, Via S. Alberto 163, 48123, Ravenna, Italy.
| | - Beatriz Díaz-Garduño
- Physical Chemical Department, Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - Maria Laura Martín-Díaz
- Physical Chemical Department, Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
31
|
Brander SM, Biales AD, Connon RE. The Role of Epigenomics in Aquatic Toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2565-2573. [PMID: 28945943 PMCID: PMC6145079 DOI: 10.1002/etc.3930] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 05/24/2023]
Abstract
Over the past decade, the field of molecular biology has rapidly incorporated epigenetic studies to evaluate organism-environment interactions that can result in chronic effects. Such responses arise from early life stage stress, the utilization of genetic information over an individual's life time, and transgenerational inheritance. Knowledge of epigenetic mechanisms provides the potential for a comprehensive evaluation of multigenerational and heritable effects from environmental stressors, such as contaminants. Focused studies have provided a greater understanding of how many responses to environmental stressors are driven by epigenetic modifiers. We discuss the promise of epigenetics and suggest future research directions within the field of aquatic toxicology, with a particular focus on the potential for identifying key heritable marks with consequential impacts at the organism and population levels. Environ Toxicol Chem 2017;36:2565-2573. © 2017 SETAC.
Collapse
Affiliation(s)
- Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Adam D Biales
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|