1
|
Liu Y, Ren H, Zhang Y, Deng W, Ma X, Zhao L, Li X, Sham P, Wang Q, Li T. Temporal changes in brain morphology related to inflammation and schizophrenia: an omnigenic Mendelian randomization study. Psychol Med 2024; 54:2054-2062. [PMID: 38445386 DOI: 10.1017/s003329172400014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND Over the past several decades, more research focuses have been made on the inflammation/immune hypothesis of schizophrenia. Building upon synaptic plasticity hypothesis, inflammation may contribute the underlying pathophysiology of schizophrenia. Yet, pinpointing the specific inflammatory agents responsible for schizophrenia remains a complex challenge, mainly due to medication and metabolic status. Multiple lines of evidence point to a wide-spread genetic association across genome underlying the phenotypic variations of schizophrenia. METHOD We collected the latest genome-wide association analysis (GWAS) summary data of schizophrenia, cytokines, and longitudinal change of brain. We utilized the omnigenic model which takes into account all genomic SNPs included in the GWAS of trait, instead of traditional Mendelian randomization (MR) methods. We conducted two round MR to investigate the inflammatory triggers of schizophrenia and the resulting longitudinal changes in the brain. RESULTS We identified seven inflammation markers linked to schizophrenia onset, which all passed the Bonferroni correction for multiple comparisons (bNGF, GROA(CXCL1), IL-8, M-CSF, MCP-3 (CCL7), TNF-β, CRP). Moreover, CRP were found to significantly influence the linear rate of brain morphology changes, predominantly in the white matter of the cerebrum and cerebellum. CONCLUSION With an omnigenic approach, our study sheds light on the immune pathology of schizophrenia. Although these findings need confirmation from future studies employing different methodologies, our work provides substantial evidence that pervasive, low-level neuroinflammation may play a pivotal role in schizophrenia, potentially leading to notable longitudinal changes in brain morphology.
Collapse
Affiliation(s)
- Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Hongyan Ren
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Pak Sham
- State Key Laboratory of Brain and Cognitive Sciences, Centre for Genomic Sciences, and Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Liu R, Berry R, Wang L, Chaudhari K, Winters A, Sun Y, Caballero C, Ampofo H, Shi Y, Thata B, Colon-Perez L, Sumien N, Yang SH. Experimental Ischemic Stroke Induces Secondary Bihemispheric White Matter Degeneration and Long-Term Cognitive Impairment. Transl Stroke Res 2024:10.1007/s12975-024-01241-0. [PMID: 38488999 DOI: 10.1007/s12975-024-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Clinical studies have identified widespread white matter degeneration in ischemic stroke patients. However, contemporary research in stroke has predominately focused on the infarct and periinfarct penumbra regions. The involvement of white matter degeneration after ischemic stroke and its contribution to post-stroke cognitive impairment and dementia (PSCID) has remained less explored in experimental models. In this study, we examined the progression of locomotor and cognitive function up to 4 months after inducing ischemic stroke by middle cerebral artery occlusion in young adult rats. Despite evident ongoing locomotor recovery, long-term cognitive and affective impairments persisted after ischemic stroke, as indicated by Morris water maze, elevated plus maze, and open field performance. At 4 months after stroke, multimodal MRI was conducted to assess white matter degeneration. T2-weighted MRI (T2WI) unveiled bilateral cerebroventricular enlargement after ischemic stroke. Fluid Attenuated Inversion Recovery MRI (FLAIR) revealed white matter hyperintensities in the corpus callosum and fornix across bilateral hemispheres. A positive association between the volume of white matter hyperintensities and total cerebroventricular volume was noted in stroke rats. Further evidence of bilateral white matter degeneration was indicated by the reduction of fractional anisotropy and quantitative anisotropy at bilateral corpus callosum in diffusion-weighted MRI (DWI) analysis. Additionally, microglia and astrocyte activation were identified in the bilateral corpus callosum after stroke. Our study suggests that experimental ischemic stroke induced by MCAO in young rat replicate long-term cognitive impairment and bihemispheric white matter degeneration observed in ischemic stroke patients. This model provides an invaluable tool for unraveling the mechanisms underlying post-stroke secondary white matter degeneration and its contribution to PSCID.
Collapse
Affiliation(s)
- Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Raymond Berry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Claire Caballero
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Hannah Ampofo
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yiwei Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Bibek Thata
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
3
|
Clapp Sullivan ML, Schwaba T, Harden KP, Grotzinger AD, Nivard MG, Tucker-Drob EM. Beyond the factor indeterminacy problem using genome-wide association data. Nat Hum Behav 2024; 8:205-218. [PMID: 38225407 PMCID: PMC10922726 DOI: 10.1038/s41562-023-01789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Latent factors, such as general intelligence, depression and risk tolerance, are invoked in nearly all social science research where a construct is measured via aggregation of symptoms, question responses or other measurements. Because latent factors cannot be directly observed, they are inferred by fitting a specific model to empirical patterns of correlations among measured variables. A long-standing critique of latent factor theories is that the correlations used to infer latent factors can be produced by alternative data-generating mechanisms that do not include latent factors. This is referred to as the factor indeterminacy problem. Researchers have recently begun to overcome this problem by using information on the associations between individual genetic variants and measured variables. We review historical work on the factor indeterminacy problem and describe recent efforts in genomics to rigorously test the validity of latent factors, advancing the understanding of behavioural science constructs.
Collapse
Affiliation(s)
| | - Ted Schwaba
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Grotzinger
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Michel G Nivard
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Cooper AC, Tchernykh M, Shmuel A, Mendola JD. Diffusion tensor imaging of optic neuropathies: a narrative review. Quant Imaging Med Surg 2024; 14:1086-1107. [PMID: 38223128 PMCID: PMC10784057 DOI: 10.21037/qims-23-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Background and Objective Diffusion tensor imaging (DTI) has been implemented in a breadth of scientific investigations of optic neuropathies, though it has yet to be fully adopted for diagnosis or prognosis. This is potentially due to a lack of standardization and weak replication of results. The aim of this investigation was to review DTI results from studies specific to three distinct optic neuropathies in order to probe its current clinical utility. Methods We reviewed the DTI literature specific to primary open-angle glaucoma (POAG), optic neuritis (ON), and traumatic optic neuropathy (TON) by systematically searching the PubMed database on March 1st, 2023. Four distinct DTI metrics are considered: fractional anisotropy (FA), along with mean diffusivity (MD, axial diffusivity (AD), and radial diffusivity (RD). Results from within-group, between-group, and correlational studies were thoroughly assessed. Key Content and Findings POAG studies most consistently report a decrease in FA, especially in the optic radiations, followed in prevalence by an increase in RD and then MD, whilst AD yields conflicting results between studies. It is notable that there is not an equal distribution of investigated DTI metrics, with FA utilized the most, followed by MD, RD, and AD. Studies of ON are similar in that the most consistent findings are specific to FA, RD, and MD. These results are specific to the optic nerve and radiation since only one study measured the intermediary regions. More studies are needed to assess the effect that ON has on the tracts of the visual system. Finally, only three studies assessing DTI of TON have been performed to date, displaying low to moderate replicability of results. To improve the level of agreement between studies assessing each optic neuropathy, an increased level of standardization is recommended. Conclusions Both POAG and ON studies have yielded some prevalent DTI findings, both for contrast and correlation-based assessments. Although the clinical need is high for TON, considering the limitations of the current diagnostic tools, too few studies exist to make confident conclusions. Future use of standardized and longitudinal DTI, along with the foreseen methodological and technical improvements, is warranted to effectively study optic neuropathies.
Collapse
Affiliation(s)
- Austin C. Cooper
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Maxim Tchernykh
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Amir Shmuel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Janine D. Mendola
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Schneider N, Hartweg M, O’Regan J, Beauchemin J, Redman L, Hsia DS, Steiner P, Carmichael O, D’Sa V, Deoni S. Impact of a Nutrient Formulation on Longitudinal Myelination, Cognition, and Behavior from Birth to 2 Years: A Randomized Clinical Trial. Nutrients 2023; 15:4439. [PMID: 37892514 PMCID: PMC10610069 DOI: 10.3390/nu15204439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Observation studies suggest differences in myelination in relation to differences in early life nutrition. This two-center randomized controlled trial investigates the effect of a 12-month nutritional intervention on longitudinal changes in myelination, cognition, and behavior. Eighty-one full-term, neurotypical infants were randomized into an investigational (N = 42) or a control group (N = 39), receiving higher versus lower levels of a blend of nutrients. Non-randomized breastfed infants (N = 108) served as a reference group. Main outcomes were myelination (MRI), neurodevelopment (Bayley-III), social-emotional development (ASQ:SE-2), infant and toddler behavior (IBQ-R and TBAQ), and infant sleep (BISQ) during the first 2 years of life. The full analysis set comprised N = 67 infants from the randomized groups, with 81 myelin-sensitive MRI sequences. Significantly higher myelination was observed in the investigational compared to the control group at 6, 12, 18, and 24 months of life, as well as significantly higher gray matter volume at 24 months, a reduced number of night awakenings at 6 months, increased day sleep at 12 months, and reduced social fearfulness at 24 months. The results suggest that brain development may be modifiable with brain- and age-relevant nutritional approaches in healthy infants and young children, which may be foundational for later learning outcomes.
Collapse
Affiliation(s)
- Nora Schneider
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Mickaël Hartweg
- Biostatistics and Data Management, Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Jonathan O’Regan
- Nestlé Development Centre Nutrition, Askeaton, Co., RH6 0PA Limerick, Ireland
| | - Jennifer Beauchemin
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
| | - Leanne Redman
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Daniel S. Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Pascal Steiner
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Viren D’Sa
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
| | - Sean Deoni
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Mukilteo, WA 98275, USA
| |
Collapse
|
6
|
Stephan Y, Sutin AR, Luchetti M, Aschwanden D, Terracciano A. The Mediating Role of Biomarkers in the Association Between Subjective Aging and Episodic Memory. J Gerontol B Psychol Sci Soc Sci 2023; 78:242-252. [PMID: 36179098 PMCID: PMC9938926 DOI: 10.1093/geronb/gbac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Subjective aging, indexed by subjective age and self-perceptions of aging (SPA), is consistently related to cognition in adulthood. The present study examined whether blood biomarkers mediate the longitudinal associations between subjective aging indices and memory. METHODS Data of 5,369 individuals aged 50-94 years (mean = 66.89 years, SD = 9.22; 60% women) were drawn from the Health and Retirement Study (HRS). Subjective age, SPA, and demographic factors were assessed in 2012/2014. Interleukin-6, C-reactive protein, albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), fasting glucose, Vitamin D, hemoglobin, red cells distribution width, and epigenetic aging were assessed as part of the HRS Venuous Blood Study in 2016. Memory was measured in 2018. The mediators (except for epigenetic aging, which was assessed in a subsample) were tested simultaneously in models that accounted for demographic covariates. RESULTS An older subjective age was related to worse memory partially through higher fasting glucose, higher cystatin C, higher NT-proBNP, and accelerated epigenetic aging. Negative SPA was related to worse memory through lower Vitamin D3, higher fasting glucose, higher cystatin C, higher NT-proBNP, and accelerated epigenetic aging. The biomarkers explained between 2% and 10% of subjective age and between 1% and 8% of SPA associations with memory. Additional analysis revealed that biomarkers continued to be significant mediators when physical inactivity and depressive symptoms were included as additional mediators. CONCLUSION The present study adds to existing research on the association between subjective aging and memory by providing new evidence on the biological mediators of this association.
Collapse
Affiliation(s)
| | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Damaris Aschwanden
- Department of Geriatrics, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Antonio Terracciano
- Department of Geriatrics, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
7
|
Genomic patterns linked to gray matter alterations underlying working memory deficits in adults and adolescents with attention-deficit/hyperactivity disorder. Transl Psychiatry 2023; 13:50. [PMID: 36774336 PMCID: PMC9922257 DOI: 10.1038/s41398-023-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, with onset in childhood and a considerable likelihood to persist into adulthood. Our previous work has identified that across adults and adolescents with ADHD, gray matter volume (GMV) alteration in the frontal cortex was consistently associated with working memory underperformance, and GMV alteration in the cerebellum was associated with inattention. Recent knowledge regarding ADHD genetic risk loci makes it feasible to investigate genomic factors underlying these persistent GMV alterations, potentially illuminating the pathology of ADHD persistence. Based on this, we applied a sparsity-constrained multivariate data fusion approach, sparse parallel independent component analysis, to GMV variations in the frontal and cerebellum regions and candidate risk single nucleotide polymorphisms (SNPs) data from 341 unrelated adult participants, including 167 individuals with ADHD, 47 unaffected siblings, and 127 healthy controls. We identified one SNP component significantly associated with one GMV component in superior/middle frontal regions and replicated this association in 317 adolescents from ADHD families. The association was stronger in individuals with ADHD than in controls, and stronger in adults and older adolescents than in younger ones. The SNP component highlights 93 SNPs in long non-coding RNAs mainly in chromosome 5 and 21 protein-coding genes that are significantly enriched in human neuron cells. Eighteen identified SNPs have regulation effects on gene expression, transcript expression, isoform percentage, or methylation level in frontal regions. Identified genes highlight MEF2C, CADM2, and CADPS2, which are relevant for modulating neuronal substrates underlying high-level cognition in ADHD, and their causality effects on ADHD persistence await further investigations. Overall, through a multivariate analysis, we have revealed a genomic pattern underpinning the frontal gray matter variation related to working memory deficit in ADHD.
Collapse
|
8
|
Kim JU, Bessette KL, Westlund-Schreiner M, Pocius S, Dillahunt AK, Frandsen S, Thomas L, Easter R, Skerrett K, Stange JP, Welsh RC, Langenecker SA, Koppelmans V. Relations of gray matter volume to dimensional measures of cognition and affect in mood disorders. Cortex 2022; 156:57-70. [PMID: 36191367 PMCID: PMC10150444 DOI: 10.1016/j.cortex.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Understanding the relationship between brain measurements and behavioral performance is an important step in developing approaches for early identification of any psychiatric difficulties and interventions to modify these challenges. Conventional methods to identify associations between regional brain volume and behavioral measures are not optimized, either in scale, scope, or specificity. To find meaningful associations between brain and behavior with greater sensitivity and precision, we applied data-driven factor analytic models to identify and extract individual differences in latent cognitive functions embedded across several computerized cognitive tasks. Furthermore, we simultaneously utilized a keyword-based neuroimaging meta-analytic tool (i.e., NeuroSynth), restricted atlas-parcel matching, and factor-analytic models to narrow down the scope of search and to further aggregate gray matter volume (GMV) data into empirical clusters. We recruited an early adult community cross-sectional sample (Total n = 177, age 18-30) that consisted of individuals with no history of any mood disorder (healthy controls, n = 44), those with remitted major depressive disorder (rMDD, n = 104), and those with a diagnosis of bipolar disorder currently in euthymic state (eBP, n = 29). Study participants underwent structural magnetic resonance imaging (MRI) scans and separately completed behavioral testing using computerized measures. Factor-analyzing five computerized tasks used to assess aspects of cognitive and affective processing resulted in seven latent dimensions: (a) Emotional Memory, (b) Interference Resolution, (c) Reward Sensitivity, (d) Complex Inhibitory Control, (e) Facial Emotion Sensitivity, (f) Sustained attention, and (g)Simple Impulsivity/Response Style. These seven dimensions were then labeled with specific keywords which were used to create neuroanatomical maps using NeuroSynth. These masks were further subdivided into GMV clusters. Using regression, we identified GMV clusters that were predictive of individual differences across each of the aforementioned seven cognitive dimensions. We demonstrate that a dimensional approach consistent with core principles of RDoC can be utilized to identify structural variability predictive of critical dimensions of human behavior.
Collapse
Affiliation(s)
- Joseph U Kim
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; VA Salt Lake City Health Care System, USA
| | - Katie L Bessette
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; Departments of Psychiatry & Psychology, University of Illinois at Chicago, USA
| | | | - Stephanie Pocius
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Alina K Dillahunt
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Summer Frandsen
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Leah Thomas
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; Department of Psychology, University of Utah, USA
| | - Rebecca Easter
- Departments of Psychiatry & Psychology, University of Illinois at Chicago, USA
| | - Kristy Skerrett
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | | | - Robert C Welsh
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Scott A Langenecker
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Vincent Koppelmans
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA.
| |
Collapse
|
9
|
Huang W, Li X, Xie H, Qiao T, Zheng Y, Su L, Tang ZM, Dou Z. Different Cortex Activation and Functional Connectivity in Executive Function Between Young and Elder People During Stroop Test: An fNIRS Study. Front Aging Neurosci 2022; 14:864662. [PMID: 35992592 PMCID: PMC9382234 DOI: 10.3389/fnagi.2022.864662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of this study was to examine the activation and functional connectivity of the prefrontal and temporal lobe in young and elder people during the Stroop test using functional near-infrared spectroscopy (fNIRS). Methods A total of 33 healthy volunteers (20 young people, mean age: 23.7 ± 3.9 years; 13 elder people, mean age: 63.9 ± 4.0 years) participated in the study. All subjects were asked to finish the Stroop Color Word Test. The oxygenated hemoglobin concentration (Delta [HbO2]) signals and the deoxygenated hemoglobin (Delta [HbR]) signals were recorded from temporopolar area (TA), pars triangularis Broca's area (Broca), dorsolateral prefrontal cortex (DLPFC), and frontopolar area (FA) by fNIRS. The coherence between the left and right frontotemporal lobe delta [HbO2] oscillations in four frequency intervals (I, 0.6–2 Hz; II, 0.145–0.6 Hz; III, 0.052–0.145 Hz; and IV, 0.021–0.052 Hz) was analyzed using wavelet coherence analysis and wavelet phase coherent. Results In the Stroop test, the young group was significantly better than the elder group at the responses time, whether at congruent tasks or at incongruent tasks (congruent: F = 250.295, p < 0.001; incongruent: p < 0.001). The accuracy of the two groups differed significantly when performing incongruent tasks but not when performing congruent tasks (incongruent: F = 9.498, p = 0.001; congruent: p = 0.254). Besides, only elders show significant activation in DLPFC, Broca, FA, and TA (p < 0.05) during the Stroop test, but young people did not show significant differences. In the functional connectivity of task states, younger people had stronger connections between different brain regions in both the left and right brain compared with the elderly (p < 0.05). In particular, the left and right DLPFC showed stronger connection strength in most of the brain areas. The result suggested that younger people had stronger functional connectivity of brain areas than older people when completing the task. Conclusion According to these results, although the cortical activation in the elder people was higher than the young people, the young showed stronger connectivity in most of the brain areas than the elders. Both sides of DLPFC and right Broca area were the most significant cortical activation in Stroop test. It was suggested that the decrease in functional connectivity in the elder people resulted in the atrophy of white matter, to which we should pay more attention.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
| | - Hui Xie
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tong Qiao
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yadan Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
| | - Liujie Su
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
- *Correspondence: Zhi-Ming Tang
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat- sen University, Guangzhou, China
- Zulin Dou
| |
Collapse
|
10
|
Xie K, Jin Z, Jin DG, Zhang J, Li L. Shared and distinct structure-function substrates of heterogenous distractor suppression ability between high and low working memory capacity individuals. Neuroimage 2022; 260:119483. [PMID: 35842098 DOI: 10.1016/j.neuroimage.2022.119483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Salient stimuli can capture attention in a bottom-up manner; however, this attentional capture can be suppressed in a top-down manner. It has been shown that individuals with high working memory capacity (WMC) can suppress salient‑but-irrelevant distractors better than those with low WMC; however, neural substrates underlying this difference remain unclear. To examine this, participants with high or low WMC (high-/low-WMC, n = 44/44) performed a visual search task wherein a color singleton item served as a salient distractor, and underwent structural and resting-state functional magnetic resonance imaging scans. Behaviorally, the color singleton distractor generally reduced the reaction time (RT). This RT benefit (ΔRT) was higher in the high-WMC group relative to the low-WMC group, indicating the superior distractor suppression ability of the high-WMC group. Moreover, leveraging voxel-based morphometry analysis, gray matter morphology (volume and deformation) in the ventral attention network (VAN) was found to show the same, positive associations with ΔRT in both WMC groups. However, correlations of the opposite sign were found between ΔRT and gray matter morphology in the frontoparietal (FPN)/default mode network (DMN) in the two WMC groups. Furthermore, resting-state functional connectivity analysis centering on regions with a structural-behavioral relationship found that connections between the left orbital and right superior frontal gyrus (hubs of DMN and VAN, respectively) was correlated with ΔRT in the high-WMC group (but not in the low-WMC group). Collectively, our work present shared and distinct neuroanatomical substrates of distractor suppression in high- and low-WMC individuals. Furthermore, intrinsic connectivity of the brain network hubs in high-WMC individuals may account for their superior ability in suppressing salient distractors.
Collapse
Affiliation(s)
- Ke Xie
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Dong-Gang Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
11
|
Takeuchi H, Shiota Y, Yaoi K, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Mercury levels in hair are associated with reduced neurobehavioral performance and altered brain structures in young adults. Commun Biol 2022; 5:529. [PMID: 35655003 PMCID: PMC9163068 DOI: 10.1038/s42003-022-03464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe detrimental effects of high-level mercury exposure on the central nervous system as well as effects of low-level exposure during early development have been established. However, no previous studies have investigated the effects of mercury level on brain morphometry using advance imaging techniques in young adults. Here, utilizing hair analysis which has been advocated as a method for biological monitoring, data of regional gray matter volume (rGMV), regional white matter volume (rWMV), fractional anisotropy (FA) and mean diffusivity (MD), cognitive functions, and depression among 920 healthy young adults in Japan, we showed that greater hair mercury levels were weakly but significantly associated with diminished cognitive performance, particularly on tasks requiring rapid processing (speed measures), lower depressive tendency, lower rGMV in areas of the thalamus and hippocampus, lower rWMV in widespread areas, greater FA in bilaterally distributed white matter areas overlapping with areas of significant rWMV reductions and lower MD of the widely distributed gray and white matter areas particularly in the bilateral frontal lobe and the right basal ganglia. These results suggest that even normal mercury exposure levels in Japan are weakly associated with differences of brain structures and lower neurobehavioral performance and altered mood among young adults.
Collapse
|
12
|
Saito DN, Fujisawa TX, Yanaka HT, Fujii T, Kochiyama T, Makita K, Tomoda A, Okazawa H. Development of attentional networks during childhood and adolescence: A functional MRI study. Neuropsychopharmacol Rep 2022; 42:191-198. [PMID: 35266330 PMCID: PMC9216368 DOI: 10.1002/npr2.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/07/2022] Open
Abstract
Attention ability is one of the most important cognitive functions. It develops mainly during school age. However, the neural basis for the typical development of attentional functions has not been fully investigated. To clarify the development of the aforementioned function and its neural basis, this study examined brain function in children and adolescents during the performance of an attention network test (ANT) using functional magnetic resonance imaging. One hundred and sixty‐three volunteers (8‐23 years, 80 female) participated in this study. Using a modified version of ANT, we assessed the efficiency of two attentional functions—orienting and executive attention—by measuring how reaction time is affected by spatial cue location and flanker congruency and examined the functional brain areas—attentional networks—associated with two attentional functions. Consistent with the findings of previous studies, the superior parietal lobule, visual association cortex, left precentral gyrus, and supplementary motor area were activated during the orienting attention, while the anterior cingulate cortex, visual association cortex, lateral prefrontal cortex, thalamus, and caudate were activated during the executive attention. Moreover, negative correlations with age were found for activations in the inferior frontal gyrus, dorsomedial prefrontal cortex, and caudate nucleus in the orienting attention, while no correlations with age related to executive attention were found. In conclusion, this study revealed common and distinct features in the neural basis of the attentional functions in children and adolescents compared with that of adults and their developmental changes with age. Consistent with the findings of previous studies, the superior parietal lobule, visual association cortex, left precentral gyrus, and supplementary motor area were activated during the orienting process of attention, while the anterior cingulate cortex, visual association cortex, lateral prefrontal cortex, thalamus, and caudate were activated during the executive process. In addition, negative correlations with age were found for activations in the inferior frontal gyrus, dorsomedial prefrontal cortex, and caudate nucleus in the orienting process, while no correlations with age were found during the executive process.![]()
Collapse
Affiliation(s)
- Daisuke N. Saito
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
- Biomedical Imaging Research CenterUniversity of FukuiFukuiJapan
- Department of PsychologyYasuda Women's UniversityHiroshimaJapan
| | - Takashi X. Fujisawa
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
- United Graduate School of Child DevelopmentUniversity of FukuiFukuiJapan
| | - Hisakazu T. Yanaka
- Biomedical Imaging Research CenterUniversity of FukuiFukuiJapan
- Faculty of Regional SciencesTottori UniversityTottoriJapan
| | - Takeshi Fujii
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
- Biomedical Imaging Research CenterUniversity of FukuiFukuiJapan
- Department of PsychiatryNational Center of Neurology and Psychiatry HospitalTokyoJapan
| | | | - Kai Makita
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
| | - Akemi Tomoda
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
- United Graduate School of Child DevelopmentUniversity of FukuiFukuiJapan
| | - Hidehiko Okazawa
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
- Biomedical Imaging Research CenterUniversity of FukuiFukuiJapan
| |
Collapse
|
13
|
Saboo KV, Hu C, Varatharajah Y, Przybelski SA, Reid RI, Schwarz CG, Graff-Radford J, Knopman DS, Machulda MM, Mielke MM, Petersen RC, Arnold PM, Worrell GA, Jones DT, Jack Jr CR, Iyer RK, Vemuri P. Deep learning identifies brain structures that predict cognition and explain heterogeneity in cognitive aging. Neuroimage 2022; 251:119020. [PMID: 35196565 PMCID: PMC9045384 DOI: 10.1016/j.neuroimage.2022.119020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Specific brain structures (gray matter regions and white matter tracts) play a dominant role in determining cognitive decline and explain the heterogeneity in cognitive aging. Identification of these structures is crucial for screening of older adults at risk of cognitive decline. Using deep learning models augmented with a model-interpretation technique on data from 1432 Mayo Clinic Study of Aging participants, we identified a subset of brain structures that were most predictive of individualized cognitive trajectories and indicative of cognitively resilient vs. vulnerable individuals. Specifically, these structures explained why some participants were resilient to the deleterious effects of elevated brain amyloid and poor vascular health. Of these, medial temporal lobe and fornix, reflective of age and pathology-related degeneration, and corpus callosum, reflective of inter-hemispheric disconnection, accounted for 60% of the heterogeneity explained by the most predictive structures. Our results are valuable for identifying cognitively vulnerable individuals and for developing interventions for cognitive decline.
Collapse
|
14
|
Platho-Elwischger K, Schmoeger M, Willinger U, Abdel-Aziz C, Algner J, Pretscherer S, Auff E, Kranz G, Turnbull O, Sycha T. Cognitive Performance After Facial Botulinum Toxin Treatment in a Cohort of Neurologic Patients: An Exploratory Study. Arch Phys Med Rehabil 2021; 103:402-408. [PMID: 34496270 DOI: 10.1016/j.apmr.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To investigate higher cognitive functions after mimicry changes after facial botulinum toxin (BTX) injections, we tested verbal and nonverbal reasoning in patients with blepharospasm or hemifacial spasm before and after their long-term botulinum toxin treatment. DESIGN Explorative, nonrandomized, clinical trial. SETTING Patients receiving ambulatory care and control participants from the general community. PARTICIPANTS Volunteer sample (N=84) of patients (n=21) with blepharospasm or hemifacial spasm who received facial BTX injections. Control participants included patients (n=30) with cervical dystonia who received cervical BTX injections and individuals without neurological disorders (n=33). INTERVENTIONS The 2 groups receiving injections were tested before and 3 weeks after their treatment. The group without neurological disorders received no injections. MAIN OUTCOME MEASURES Verbal and nonverbal reasoning scores. RESULTS The key unexpected finding was that patients who received facial BTX injections perform significantly worse in nonverbal reasoning tasks, when compared with those who did not receive injections (P=.022). There was no significant difference in the baseline reasoning scores and at follow-up for verbal reasoning between the 3 groups. There was no correlation between toxin dose and reasoning scores (verbal: P=.132; nonverbal: P=.294). CONCLUSIONS Because of potential confounders, the results do not yet allow any conclusion on causality. Further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Kirsten Platho-Elwischger
- Department of Neurology Medical University of Vienna, Vienna, Austria; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | | | - Ulrike Willinger
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Carmen Abdel-Aziz
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Jennifer Algner
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | | | - Eduard Auff
- Department of Neurology Medical University of Vienna, Vienna, Austria
| | - Gottfried Kranz
- Department of Neurology Medical University of Vienna, Vienna, Austria; Rehabilitation Center Rosenhuegel, Vienna, Austria
| | - Oliver Turnbull
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Thomas Sycha
- Department of Neurology Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Fehring DJ, Samandra R, Haque ZZ, Jaberzadeh S, Rosa M, Mansouri FA. Investigating the sex-dependent effects of prefrontal cortex stimulation on response execution and inhibition. Biol Sex Differ 2021; 12:47. [PMID: 34404467 PMCID: PMC8369781 DOI: 10.1186/s13293-021-00390-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Context-dependent execution or inhibition of a response is an important aspect of executive control, which is impaired in neuropsychological and addiction disorders. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been considered a remedial approach to address deficits in response control; however, considerable variability has been observed in tDCS effects. These variabilities might be related to contextual differences such as background visual-auditory stimuli or subjects' sex. In this study, we examined the interaction of two contextual factors, participants' sex and background acoustic stimuli, in modulating the effects of tDCS on response inhibition and execution. In a sham-controlled and cross-over (repeated-measure) design, 73 participants (37 females) performed a Stop-Signal Task in different background acoustic conditions before and after tDCS (anodal or sham) was applied over the DLPFC. Participants had to execute a speeded response in Go trials but inhibit their response in Stop trials. Participants' sex was fully counterbalanced across all experimental conditions (acoustic and tDCS). We found significant practice-related learning that appeared as changes in indices of response inhibition (stop-signal reaction time and percentage of successful inhibition) and action execution (response time and percentage correct). The tDCS and acoustic stimuli interactively influenced practice-related changes in response inhibition and these effects were uniformly seen in both males and females. However, the effects of tDCS on response execution (percentage of correct responses) were sex-dependent in that practice-related changes diminished in females but heightened in males. Our findings indicate that participants' sex influenced the effects of tDCS on the execution, but not inhibition, of responses.
Collapse
Affiliation(s)
- Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-Invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Melbourne, VIC, 3199, Australia
| | - Marcello Rosa
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
16
|
Myznikov A, Zheltyakova M, Korotkov A, Kireev M, Masharipov R, Jagmurov OD, Habel U, Votinov M. Neuroanatomical Correlates of Social Intelligence Measured by the Guilford Test. Brain Topogr 2021; 34:337-347. [PMID: 33866460 PMCID: PMC8099826 DOI: 10.1007/s10548-021-00837-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Social interactions are a crucial aspect of human behaviour. Numerous neurophysiological studies have focused on socio-cognitive processes associated with the so-called theory of mind-the ability to attribute mental states to oneself and others. Theory of mind is closely related to social intelligence defined as a set of abilities that facilitate effective social interactions. Social intelligence encompasses multiple theory of mind components and can be measured by the Four Factor Test of Social Intelligence (the Guilford-Sullivan test). However, it is unclear whether the differences in social intelligence are reflected in structural brain differences. During the experiment, 48 healthy right-handed individuals completed the Guilford-Sullivan test. T1-weighted structural MRI images were obtained for all participants. Voxel-based morphometry analysis was performed to reveal grey matter volume differences between the two groups (24 subjects in each)-with high social intelligence scores and with low social intelligence scores, respectively. Participants with high social intelligence scores had larger grey matter volumes of the bilateral caudate. The obtained results suggest the caudate nucleus involvement in the neural system of socio-cognitive processes, reflected by its structural characteristics.
Collapse
Affiliation(s)
- A Myznikov
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
| | - M Zheltyakova
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
| | - A Korotkov
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
| | - M Kireev
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - R Masharipov
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
| | - O Dz Jagmurov
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia
| | - U Habel
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - M Votinov
- N.P. Bechtereva Institute of Human Brain Russian Academy of Science, Saint-Petersburg, Russia.
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
17
|
Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Transl Psychiatry 2021; 11:184. [PMID: 33767139 PMCID: PMC7994833 DOI: 10.1038/s41398-021-01301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disorder and may persist into adulthood. Working memory and attention deficits have been reported to persist from childhood to adulthood. How neuronal underpinnings of deficits differ across adolescence and adulthood is not clear. In this study, we investigated gray matter of two cohorts, 486 adults and 508 adolescents, each including participants from ADHD and healthy controls families. Two cohorts both presented significant attention and working memory deficits in individuals with ADHD. Independent component analysis was applied to the gray matter of each cohort, separately, to extract cohort-inherent networks. Then, we identified gray matter networks associated with inattention or working memory in each cohort, and projected them onto the other cohort for comparison. Two components in the inferior, middle/superior frontal regions identified in adults and one component in the insula and inferior frontal region identified in adolescents were significantly associated with working memory in both cohorts. One component in bilateral cerebellar tonsil and culmen identified in adults and one component in left cerebellar region identified in adolescents were significantly associated with inattention in both cohorts. All these components presented a significant or nominal level of gray matter reduction for ADHD participants in adolescents, but only one showed nominal reduction in adults. Our findings suggest although the gray matter reduction of these regions may not be indicative of persistency of ADHD, their persistent associations with inattention or working memory indicate an important role of these regions in the mechanism of persistence or remission of the disorder.
Collapse
|
18
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Sassa Y, Nozawa T, Ikeda S, Yokota S, Magistro D, Kawashima R. General Intelligence Is Associated with Working Memory-Related Functional Connectivity Change: Evidence from a Large-Sample Study. Brain Connect 2021; 11:89-102. [PMID: 33317391 DOI: 10.1089/brain.2020.0769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Purpose: Psychometric intelligence is closely related to working memory (WM) and the associated brain activity. We aimed to clarify the associations between psychometric intelligence and WM-induced functional connectivity changes. Materials and Methods: Here we determined the associations between psychometric intelligence measured by nonverbal reasoning (using the Raven's Advanced Progressive Matrices) and WM-induced changes in functional connectivity during the N-back paradigm, in a large cohort of 1221 young adults. Results: We observed that the measures of general intelligence showed a significant positive correlation with WM-induced changes in the functional connectivity with the key nodes of the frontoparietal network, such as the bilateral premotor cortices and the presupplementary motor area. Those significant correlations were observed for (1) areas showing a WM-induced increase of the functional connectivity with the abovementioned key nodes, such as the lateral parietal cortex; (2) areas showing a WM-induced decrease of the functional connectivity with the abovementioned key nodes (2-a) such as left perisylvian areas and cuneus, the fusiform gyrus, and the lingual gyrus, which play key roles in language processing, (2-b) hippocampus and parahippocampal gyrus, which play key roles in memory processing, and (2-c) the key node of the default mode network such as the medial prefrontal cortex; as well as (3) the border areas between (1) and (2). Conclusion: Psychometric intelligence is associated with WM-induced changes in functional connectivity, influencing the way in which WM key nodes dynamically modulate the interaction with other brain nodes in response to WM.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Lu K, Nicholas JM, Weston PSJ, Stout JC, O’Regan AM, James SN, Buchanan SM, Lane CA, Parker TD, Keuss SE, Keshavan A, Murray-Smith H, Cash DM, Sudre CH, Malone IB, Coath W, Wong A, Richards M, Henley SMD, Fox NC, Schott JM, Crutch SJ. Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease. Brain Commun 2021; 3:fcab003. [PMID: 33615219 PMCID: PMC7882207 DOI: 10.1093/braincomms/fcab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
We investigated whether subtle visuomotor deficits were detectable in familial and sporadic preclinical Alzheimer's disease. A circle-tracing task-with direct and indirect visual feedback, and dual-task subtraction-was completed by 31 individuals at 50% risk of familial Alzheimer's disease (19 presymptomatic mutation carriers; 12 non-carriers) and 390 cognitively normal older adults (members of the British 1946 Birth Cohort, all born during the same week; age range at assessment = 69-71 years), who also underwent β-amyloid-PET/MRI to derive amyloid status (positive/negative), whole-brain volume and white matter hyperintensity volume. We compared preclinical Alzheimer's groups against controls cross-sectionally (mutation carriers versus non-carriers; amyloid-positive versus amyloid-negative) on speed and accuracy of circle-tracing and subtraction. Mutation carriers (mean 7 years before expected onset) and amyloid-positive older adults traced disproportionately less accurately than controls when visual feedback was indirect, and were slower at dual-task subtraction. In the older adults, the same pattern of associations was found when considering amyloid burden as a continuous variable (Standardized Uptake Value Ratio). The effect of amyloid was independent of white matter hyperintensity and brain volumes, which themselves were associated with different aspects of performance: greater white matter hyperintensity volume was also associated with disproportionately poorer tracing accuracy when visual feedback was indirect, whereas larger brain volume was associated with faster tracing and faster subtraction. Mutation carriers also showed evidence of poorer tracing accuracy when visual feedback was direct. This study provides the first evidence of visuomotor integration deficits common to familial and sporadic preclinical Alzheimer's disease, which may precede the onset of clinical symptoms by several years.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Alison M O’Regan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Sarah M Buchanan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sarah E Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EU, UK
- Department of Medical Physics, University College London, London, WC1E 7JE, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, London, WC1E 7HB, UK
| | - Susie M D Henley
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
20
|
Gaillard A, Fehring DJ, Rossell SL. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur J Neurosci 2021; 53:2592-2611. [PMID: 33423339 DOI: 10.1111/ejn.15107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 01/21/2023]
Abstract
The number of studies investigating sex differences in executive functions, particularly those using human functional neuroimaging techniques, has risen dramatically in the past decade. However, the influences of sex on executive function are still underexplored and poorly characterized. To address this, we conducted a systematic literature review of functional neuroimaging studies investigating sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Following the application of exclusion criteria, 21 studies were included, with a total of 677 females and 686 males. Ten of these studies were fMRI and PET, eight were EEG, and three were NIRS. At present, there is evidence for sex differences in the neural networks underlying all tasks of executive control included in this review suggesting males and females engage different strategies depending on task demands. There was one task exception, the 2-Back task, which showed no sex differences. Due to methodological variability and the involvement of multiple neural networks, a simple overarching statement with regard to gender differences during executive control cannot be provided. As such, we discuss limitations within the current literature and methodological considerations that should be employed in future research. Importantly, sex differences in neural mechanisms are present in the majority of tasks assessed, and thus should not be ignored in future research. PROSPERO registration information: CRD42019124772.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC., Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC., Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC., Australia
| |
Collapse
|
21
|
Brain structure prior to non-central nervous system cancer diagnosis: A population-based cohort study. NEUROIMAGE-CLINICAL 2021; 28:102466. [PMID: 33395962 PMCID: PMC7578754 DOI: 10.1016/j.nicl.2020.102466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 11/21/2022]
Abstract
In a population-based setting we studied brain structure before cancer diagnosis. Brain structure was not altered before non-CNS cancer diagnosis. The effect of cancer on the brain before clinical manifestation is not supported.
Purpose Many studies have shown that patients with non-central nervous system (CNS) cancer can have brain abnormalities, such as reduced gray matter volume and cerebral microbleeds. These abnormalities can sometimes be present even before start of treatment, suggesting a potential detrimental effect of non-CNS cancer itself on the brain. In these previous studies, psychological factors associated with a cancer diagnosis and selection bias may have influenced results. To overcome these limitations, we investigated brain structure with magnetic resonance imaging (MRI) prior to cancer diagnosis. Patients and methods Between 2005 and 2014, 4,622 participants from the prospective population-based Rotterdam Study who were free of cancer, dementia, and stroke, underwent brain MRI and were subsequently followed for incident cancer until January 1st, 2015. We investigated the association between brain MRI measurements, including cerebral small vessel disease, volumes of global brain tissue, lobes, and subcortical structures, and global white matter microstructure, and the risk of non-CNS cancer using Cox proportional hazards models. Age was used as time scale. Models were corrected for e.g. sex, intracranial volume, educational level, body mass index, hypertension, diabetes mellitus, smoking status, alcohol use, and depression sum-score. Results During a median (interquartile range) follow-up of 7.0 years (4.9–8.1), 353 participants were diagnosed with non-CNS cancer. Results indicated that persons who develop cancer do not have more brain abnormalities before clinical manifestation of the disease than persons who remain free of cancer. The largest effect estimates were found for the relation between presence of lacunar infarcts and the risk of cancer (hazard ratio [HR] 95% confidence interval [CI] = 1.39 [0.97–1.98]) and for total brain volume (HR [95%CI] per standard deviation increase in total brain volume = 0.76 [0.55–1.04]). Conclusion We did not observe associations between small vessel disease, brain tissue volumes, and global white matter microstructure, and subsequent cancer risk in an unselected population. These findings deviate from previous studies indicating brain abnormalities among patients shortly after cancer diagnosis.
Collapse
|
22
|
Gaillard A, Fehring DJ, Rossell SL. A systematic review and meta-analysis of behavioural sex differences in executive control. Eur J Neurosci 2020; 53:519-542. [PMID: 32844505 DOI: 10.1111/ejn.14946] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Literature investigating whether an individuals' sex affects their executive control abilities and performance on cognitive tasks in a normative population has been contradictory and inconclusive. Using meta-analytic procedures (abiding by PRISMA guidelines), this study attempts to identify the magnitude of behavioural sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Across 46 included studies, a total of 1988 females and 1884 males were included in the analysis. Overall, males and females did not differ on performance in any of the three domains of performance monitoring, response inhibition, or cognitive set-shifting. Task-specific sex differences were observed in the domains of performance monitoring, in the CANTAB Spatial Working Memory task-males scored statistically higher than females (Hedges' g = -0.60), and response inhibition, in the Delay Discounting task-females scored statistically higher than males (Hedges' g = 0.64). While the meta-analysis did not detect overall behavioural sex differences in executive control, significant heterogeneity and task-specific sex differences were found. To further understand sex differences within these specific tasks and domains, future research must better control for age and sex hormone levels.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Iizuka K, Sakaki K, Araki T, Nozawa T, Ikeda S, Yokota S, Hanawa S, Magistro D, Kotozaki Y, Sasaki Y, Dos S Kawata KH, Kawashima R. The associations of BMI with mean diffusivity of basal ganglia among young adults with mild obesity and without obesity. Sci Rep 2020; 10:12566. [PMID: 32724120 PMCID: PMC7387490 DOI: 10.1038/s41598-020-69438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity causes a wide range of systemic diseases and is associated with mood and anxiety disorders. It is also associated with dopaminergic reward system function. However, the relationships between microstructural properties of the dopaminergic system and body mass index (BMI) have not been investigated. In this study, we investigated the associations of BMI with mean diffusivity (MD), diffusion tensor imaging measure in areas of the dopaminergic system (MDDS) in 435 healthy young adults with mild obesity and without obesity (BMI < 40). We detected the association between greater BMI and lower MD of the right globus pallidus and the right putamen. These results suggest that the property of the dopaminergic system is associated with BMI among young adults with mild obesity and without obesity.
Collapse
Affiliation(s)
- Hikarua Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kunio Iizuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Takayuki Nozawa
- Collaborative Research Center for Happiness Co-Creation Society Through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- National Centre for Sport and Exercise Medicine (NCSEM), The NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, England
| | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukako Sasaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Frontoparietal structural properties mediate adult life span differences in executive function. Sci Rep 2020; 10:9066. [PMID: 32494018 PMCID: PMC7271169 DOI: 10.1038/s41598-020-66083-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/15/2020] [Indexed: 02/02/2023] Open
Abstract
Executive function (EF) refers to a set of cognitive functions that support goal-directed behaviors. Recent findings have suggested that the frontoparietal network (FPN) subserves neural processes that are related to EF. However, the FPN structural and functional network properties that mediate age-related differences in EF components remain unclear. To this end, we used three experimental tasks to test the component processes of EF based on Miyake and Friedman’s model: one common EF component process (incorporating inhibition, shifting, and updating) and two specific EF component processes (shifting and updating). We recruited 126 healthy participants (65 females; 20 to 78 years old) who underwent both structural and functional MRI scanning. We tested a mediation path model of three structural and functional properties of the FPN (i.e., gray matter volume, white matter fractional anisotropy, and intra/internetwork functional connectivity) as mediators of age-related differences in the three EF components. The results indicated that age-related common EF component differences are mediated by regional gray matter volume changes in both hemispheres of the frontal lobe, which suggests that structural changes in the frontal lobe may have an indirect influence on age-related general elements of EF. These findings suggest that the FPN mediates age-related differences in specific components of EF.
Collapse
|
25
|
Haller S, Montandon ML, Rodriguez C, Garibotto V, Lilja J, Herrmann FR, Giannakopoulos P. Amyloid Load, Hippocampal Volume Loss, and Diffusion Tensor Imaging Changes in Early Phases of Brain Aging. Front Neurosci 2019; 13:1228. [PMID: 31803008 PMCID: PMC6872975 DOI: 10.3389/fnins.2019.01228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/30/2019] [Indexed: 01/23/2023] Open
Abstract
Background and Purpose Amyloid imaging, gray matter (GM) morphometry and diffusion tensor imaging (DTI) have all been used as predictive biomarkers in dementia. Our objective was to define the imaging profile of healthy elderly controls as a function of their cognitive trajectories and explore whether amyloid burden and white matter (WM) microstructure changes are associated with subtle decrement of neuropsychological performances in old age. Materials and Methods We performed a 4.5-year longitudinal study in 133 elderly individuals who underwent cognitive testing at inclusion and follow-up, amyloid PET, MRI including DTI sequences at inclusion, and APOE epsilon 4 genotyping. All cases were assessed using a continuous cognitive score (CCS) taking into account the global evolution of neuropsychological performances. Data processing included region of interest analysis of amyloid PET analysis, GM densities and tract-based spatial statistics (TBSS)-DTI. Regression models were built to explore the association between the CCS and imaging parameters controlling for significant demographic and clinical covariates. Results Amyloid uptake was not related to the cognitive outcome. In contrast, GM densities in bilateral hippocampus were associated with worst CCS at follow-up. In addition, radial and axial diffusivities in left hippocampus were negatively associated with CCS. Amyloid load was associated with decreased VBM and increased radial and axial diffusivity in the same area. These associations persisted when adjusting for gender and APOE4 genotype. Importantly, they were absent in amygdala and neocortical areas studied. Conclusion The progressive decrement of neuropsychological performances in normal aging is associated with volume loss and WM microstructure changes in hippocampus long before the emergence of clinically overt symptoms. Higher amyloid load in hippocampus is compatible with cognitive preservation in cases with better preservation of GM densities and WM microstructure in this area.
Collapse
Affiliation(s)
- Sven Haller
- CIRD Centre d'Imagerie Rive Droite, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Johan Lilja
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Hermes Medical Solutions, Stockholm, Sweden
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
Herrmann FR, Rodriguez C, Haller S, Garibotto V, Montandon ML, Giannakopoulos P. Gray Matter Densities in Limbic Areas and APOE4 Independently Predict Cognitive Decline in Normal Brain Aging. Front Aging Neurosci 2019; 11:157. [PMID: 31316372 PMCID: PMC6609870 DOI: 10.3389/fnagi.2019.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
Cross-sectional magnetic resonance imaging (MRI) studies reported significant associations between gray matter (GM) density changes in various limbic and neocortical areas and worst cognitive performances in elderly controls. Longitudinal studies in this field remain scarce and led to conflicting data. We report a clinico-radiological investigation of 380 cognitively preserved individuals who undergo neuropsychological assessment at baseline and after 18 months. All cases were assessed using a continuous cognitive score taking into account the global evolution of neuropsychological performances. The vast majority of Mini Mental State Examination (MMSE) 29 and 30 cases showed equal or worst performance at follow-up due to a ceiling effect. GM densities, white matter hyperintensities and arterial spin labeling (ASL) values were assessed in the hippocampus, amygdala, mesial temporal and parietal cortex at inclusion using 3 Tesla MRI Scans. Florbetapir positron emission tomography (PET) amyloid was available in a representative subsample of 64 cases. Regional amyloid uptake ratios (SUVr), mean cortical SUVr values (mcSUVr) and corresponding z-scores were calculated. Linear regression models were built to explore the association between the continuous cognitive score and imaging variables. The presence of an APOE-ε4 allele was negatively related to the continuous cognitive score. Among the areas studied, significant associations were found between GM densities in the hippocampus and amygdala but not mesial temporal and parietal areas and continuous cognitive score. Neither ASL values, Fazekas score nor mean and regional PET amyloid load was related to the cognitive score. In multivariate models, the presence of APOE-ε4 allele and GM densities in the hippocampus and amygdala were independently associated with worst cognitive evolution at follow-up. Our data support the idea that early GM damage in the hippocampus and amygdala occur long before the emergence of the very first signs of cognitive failure in brain aging.
Collapse
Affiliation(s)
- François R Herrmann
- Department of Rehabilitation and Geriatrics, Division of Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- CIRD Centre d'Imagerie Rive Droite, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Division of Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
27
|
Abstract
Empathizing is defined as “the drive to identify another’s mental states and to respond to these with an appropriate emotion” and systemizing is defined as “the drive to the drive to analyze and construct rule-based systems”. While mean diffusivity (MD) has been robustly associated with several cognitive traits and disorders related with empathizing and systemizing, its direct correlation with empathizing and systemizing remains to be investigated. We undertook voxel-by-voxel investigations of regional MD to discover microstructural correlates of empathizing, systemizing, and the discrepancy between them (D score: systemizing − empathizing). Whole-brain analyses of covariance revealed that across both sexes, empathizing was positively correlated with MD of (a) an anatomical cluster that primarily spreads in the areas in and adjacent to the left dorsolateral prefrontal cortex, left anterior to the middle cingulate cortex, and left insula and (b) an anatomical cluster of the left postcentral gyrus and left rolandic operculum. The former overlaps with positive MD correlates of cooperativeness. The D score and systemizing did not show significant correlations. In conclusion, while increased MD has generally been associated with reduced neural tissues and possibly area function, higher empathizing and cooperativeness were commonly reflected by greater MD values in areas (a) that mainly overlap with areas that play a key role in emotional salience and empathy. In addition, higher empathizing was correlated with greater MD values in areas (b) that play a key role in the mirror neuron system.
Collapse
|
28
|
Ikeda S, Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Yokota S, Magistro D, Kawashima R. Neural substrates of self- and external-preoccupation: A voxel-based morphometry study. Brain Behav 2019; 9:e01267. [PMID: 31004413 PMCID: PMC6576210 DOI: 10.1002/brb3.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Self- and external-preoccupation have been linked to psychopathological states. The neural substrates underlying self- and external-preoccupation remain unclear. In the present study, we aim to provide insight into the information-processing mechanisms associated with self- and external-preoccupation at the structural level. METHODS To investigate the neural substrates of self- and external-preoccupation, we acquired high-resolution T1-weighted structural images and Preoccupation Scale scores from 1,122 young subjects. Associations between regional gray matter volume (rGMV) and Preoccupation Scale subscores for self- and external-preoccupation were estimated using voxel-based morphometry. RESULTS Significant positive associations between self-preoccupation and rGMV were observed in widespread brain areas such as the bilateral precuneus and posterior cingulate gyri, structures known to be associated with self-triggered self-reference during rest. Significant negative associations between external-preoccupation and rGMV were observed only in the bilateral cerebellum, regions known to be associated with behavioral addiction, sustained attention, and reward system. CONCLUSION Our results reveal distinct neural substrates for self- and external-preoccupation at the structural level.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Takeuchi H, Kawashima R. Implications of large-sample neuroimaging studies of creativity measured by divergent thinking. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Jung RE, Chohan MO. Three individual difference constructs, one converging concept: adaptive problem solving in the human brain. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Amidi A, Wu LM. Structural brain alterations following adult non-CNS cancers: a systematic review of the neuroimaging literature. Acta Oncol 2019; 58:522-536. [PMID: 30732518 DOI: 10.1080/0284186x.2018.1563716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Cancer and cancer treatments may impact the brain through several pathways leading to cognitive impairment. Neuroimaging evidence has begun to elucidate the neurobiological underpinnings of cancer-related cognitive impairment. The aim of this paper was to systematically review available literature on structural brain alterations following adult non-central nervous system (CNS) cancers and associated treatments. Methods: This review followed PRISMA guidelines and was registered in PROSPERO (ID#107387). Comprehensive searches were conducted in June 2018 using PubMed and Web of Science. Inclusion criteria were English peer-reviewed journal articles of formal, controlled studies that examined structural neuroimaging outcomes in adult non-CNS cancer patients and survivors. Selected articles were assessed for quality and risk of bias using the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: Thirty-six publications of prospective and cross-sectional studies met inclusion criteria and were included. Structural brain alterations following cancer and its treatment were reported in a majority of the publications as evidenced by reduced global and local gray matter volumes, impaired white matter microstructural integrity, and brain network alterations. Structural alterations were most often evident when cancer-treated groups were compared with healthy controls, and more subtle when compared with cancer controls. Regarding the existence of pretreatment impairments, the evidence was equivocal. There was significant between-study heterogeneity in imaging analytical approaches and use of statistical adjustments. Over half reported associations with cognitive outcomes, though regions and associated cognitive domains were heterogeneous. Conclusions: Structural brain alterations following cancer and cancer treatments were reported in a majority of the reviewed studies. However, the extent of observed alterations depended on the choice of comparison groups. Methodological issues exist that will need to be addressed systematically to ensure the validity of findings. Large-scale prospective studies with extended assessment points are warranted to replicate and build upon initial findings.
Collapse
Affiliation(s)
- Ali Amidi
- Department of Psychology & Behavioural Sciences, Unit for Psycho-Oncology & Health Psychology, Aarhus University, Aarhus, Denmark
| | - Lisa M. Wu
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Urgen BM, Topac Y, Ustun FS, Demirayak P, Oguz KK, Kansu T, Saygi S, Ozcelik T, Boyaci H, Doerschner K. Homozygous LAMC3 mutation links to structural and functional changes in visual attention networks. Neuroimage 2019; 190:242-253. [DOI: 10.1016/j.neuroimage.2018.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 01/26/2023] Open
|
33
|
Weise CM, Bachmann T, Schroeter ML, Saur D. When less is more: Structural correlates of core executive functions in young adults - A VBM and cortical thickness study. Neuroimage 2019; 189:896-903. [PMID: 30716455 DOI: 10.1016/j.neuroimage.2019.01.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The term executive functions (EF) describes a set of higher cognitive abilities/skills needed for goal-oriented and flexible behavior. In contrast to a multitude of functional neuroimaging studies of EF performance, only limited and partially inconclusive data is available for the structural-neuroanatomical underpinnings of EFs, particularly in healthy adults. METHODS Here, we applied voxel-based morphometry (VBM) and additional analyses of cortical thickness (CTH; via surface-based morphometry) to a large sample of healthy young adults from the Human Connectome Project (N = 1110; Age 28.8 ± 3.7 years) with structural MRI data and test data reflective of three core EFs [i.e. cognitive flexibility (CF), inhibitory control (IC) and working memory (WM)]. RESULTS For CF and IC, VBM analyses yielded a distinct and largely overlapping pattern of exclusively negative associations (CF>IC), most prominently within the medial prefrontal cortex, the insular cortex, central/precentral regions, subcortical and mesotemporal structures. A similar, yet less pronounced pattern of negative associations was found in analyses of CTH. In contrast, both VBM and CTH analyses yielded no significant associations with WM performance. CONCLUSIONS Brain regions we found negatively associated with measures of CF and IC have been repeatedly highlighted by functional imaging studies of EF performance. The here observed inverse relationship with brain structural parameters may be related to the young age of our study population and well established neurobiological mechanisms of cortical maturation (i.e. cortical thinning via synaptic pruning and cortical myelination).
Collapse
Affiliation(s)
| | | | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Day Clinic for Cognitive Neurology, University of Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University of Leipzig, Germany
| |
Collapse
|
34
|
Can Magnetic Resonance Imaging Reveal the Neural Signatures of Dietary Self-Control? J Neurosci 2019; 39:581-583. [PMID: 30674613 DOI: 10.1523/jneurosci.1972-18.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
|
35
|
Allergic tendencies are associated with larger gray matter volumes. Sci Rep 2018; 8:3694. [PMID: 29487315 PMCID: PMC5829247 DOI: 10.1038/s41598-018-21985-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/12/2018] [Indexed: 11/08/2022] Open
Abstract
Allergic tendencies are associated with important cognitive and physiological factors, such as intelligence and mathematical abilities. Allergies are widely prevalent, especially in modern life, and the reason for its association with important cognitive variables is an intriguing scientific question. However, despite the unique characteristics of cognitive correlates of allergy, the anatomical correlates of allergy remain unknown. The aim of this study was to identify the associations between regional gray matter volume (rGMV) and allergic tendencies in young adults. In a study cohort of 1,219 healthy, educated young adults, we identified a positive correlation between total allergic tendency and rGMV in large anatomical clusters that mainly encompassed the dorsal part of the cerebral neocortex, right anterior insula, and cerebellum. Furthermore,both mean rGMV of the entire part of these clusters and total allergenic tendency showed a significant positive correlation with spatial ability. These results suggest the link among allergic tendencies, larger rGMV, and the better spatial ability in healthy, educated young adults.
Collapse
|
36
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Shinada T, Sakaki K, Sassa Y, Nozawa T, Ikeda S, Yokota S, Daniele M, Kawashima R. Refractive error is associated with intracranial volume. Sci Rep 2018; 8:175. [PMID: 29317746 PMCID: PMC5760524 DOI: 10.1038/s41598-017-18669-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
Myopia is part of the spectrum of refractive error. Myopia is associated with psychometric intelligence and, the link between brain anatomy and myopia has been hypothesized. Here we aimed to identify the associations between brain structures and refractive error in developed young adults. In a study cohort of 1,319 normal educated young adults, the refractive error showed a significant negative correlation with total intracranial volume and total cerebrospinal fluid (CSF) volume but not with total gray matter volume (GMV) or total white matter volume (WMV). Time spent studying was associated with refractive error but could not explain the aforementioned associations with brain volume parameters. The R2 values of the simple regression between spherical equivalent and outcome variables for each sex in non-whole brain imaging analyses were less than 0.05 in all cases and thus were weak. Psychometric intelligence was not associated with refractive error or total CSF volume, but it weakly positively correlated with total GMV and total WMV in this study population. Thus, refractive error appears to be primarily (weakly) associated with the volume of the cranium, whereas psychometric intelligence was associated with the volume of the brain.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- National Centre for Sport and Exercise Medicine (NCSEM), The NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, England
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|