1
|
Tamura T, Narumiya H, Homma K, Suzuki M. The authors reply. Crit Care Med 2025; 53:e221-e222. [PMID: 39774221 DOI: 10.1097/ccm.0000000000006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Tomoyoshi Tamura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Hiromichi Narumiya
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Masaru Suzuki
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- Department of Emergency Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| |
Collapse
|
2
|
Slezák J, Ravingerová T, Kura B. New possibilities of the prevention and treatment of cardiovascular pathologies. the potential of molecular hydrogen in the reduction of oxidative stress and its consequences. Physiol Res 2024; 73:S671-S684. [PMID: 39808170 DOI: 10.33549/physiolres.935491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants. However, their use in human medicine did not bring the expected effect. Molecular hydrogen (H2), due to its unique physical and chemical properties, provides a number of benefits for alleviating oxidative stress. H2 is superior to conventional antioxidants as it can selectively reduce (.)OH radicals while preserving important ROS that are otherwise used for normal cell signaling. Key words Oxidative stress, Cardiovascular diseases, Molecular hydrogen, ROS, Inflammation.
Collapse
Affiliation(s)
- J Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
3
|
Fan H, Shi Y, Liu H, Zuo X, Yang Y, Yin H, Li Y, Wang X, Liu L, Wang F, Han H, Wu Q, Yang N, Tang Y, Lu G. Inhalation of H 2/O 2 (66.7 %/33.3 %) mitigates depression-like behaviors in diabetes mellitus complicated with depression mice via suppressing inflammation and preventing hippocampal damage. Biomed Pharmacother 2024; 180:117559. [PMID: 39405908 DOI: 10.1016/j.biopha.2024.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Diabetes mellitus complicated with depression (DD) is a prevalent psychosomatic disorder. It is characterized by severe cognitive impairment, and associated with high rates of disability and mortality. Although conventional treatment options are available, the efficacy of these regimens in managing DD remains limited. Molecular hydrogen (H2), a selective hydroxyl radical scavenger, has shown therapeutic potential in the treatment of various systemic diseases. This study aims to investigate the therapeutic effects of H2 on DD. A DD mouse model was established through intraperitoneal injection of streptozotocin (STZ, 150 mg/kg) and lipopolysaccharide (LPS, 0.5 mg/kg). Following the induction of DD, the mice were treated with H2/O2 (66.7 %/33.3 %)inhalation for 7 days. Behavioral assessments were conducted by standard behavioral tests, and the levels of inflammatory cytokines in peripheral blood serum and hippocampal tissue were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, magnetic resonance imaging (MRI) scans and immunofluorescence staining of the hippocampus were performed to evaluate hippocampal structural integrity. The results demonstrated that inhalation of H2/O2 (66.7 %/33.3 %) significantly ameliorated depressive behaviors and symptoms in DD mice, reversed hippocampal volume reduction, decreased inflammatory cytokine levels in peripheral blood serum and hippocampal tissue, and inhibited the activation of A1 astrocytes in the hippocampus. Our study suggests that H2/O2 (66.7 %/33.3 %) inhalation therapy may offer a promising treatment strategy for DD and its associated symptoms.
Collapse
Affiliation(s)
- Huaju Fan
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China; Sichuan Second Veterans Hospital, Chengdu, Sichuan 611230, China
| | - Yanhua Shi
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Haiqiang Liu
- Weifang People's Hospital Weifang, Shandong 261000, China
| | - Xiaofei Zuo
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanmei Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hao Yin
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanyan Li
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Xianghui Wang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li Liu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Fengjiao Wang
- Medical Laboratory Animal Center, School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Huifang Han
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Qianying Wu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Nana Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People's Hospital, Shanghai JiaoTong University, 1954 Hua Shan Rd., Shanghai 200030, China.
| | - Guohua Lu
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
4
|
Martínez-Martel I, Pol O. A Novel Therapy for Cisplatin-Induced Allodynia and Dysfunctional and Emotional Impairments in Male and Female Mice. Antioxidants (Basel) 2023; 12:2063. [PMID: 38136183 PMCID: PMC10741113 DOI: 10.3390/antiox12122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Tao X, Zhu X, Liu Y, Wang L, Wang D, Sun L, Li C, Lian B, Wang Y, Chen F. Gas therapy strategies for depression and schizophrenia: A review. Medicine (Baltimore) 2023; 102:e36156. [PMID: 37986297 PMCID: PMC10659654 DOI: 10.1097/md.0000000000036156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Depression and schizophrenia are 2 serious mental disorders. Their effective treatment is an urgent medical and social problem at present. Drug treatment is the basic measure to improve mental disorders, especially serious mental disorders. However, the side effects of traditional antipsychotic drugs cannot be avoided. Surprisingly, in recent years, it has been found that nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen (H2) can regulate corresponding signal pathways to treat mental diseases in animal models. More importantly, as gas signal molecules, they will not bring toxicity and side effects after metabolism. Therefore, in this review, we analyzed the effects of gas on depression and schizophrenia through endogenous gas generation and external gas delivery strategies in some animal models. Endogenous gas generation strategy: summarized the therapeutic mechanism of gas signaling molecules on depression and schizophrenia, and listed the main ways to inhibit or stimulate gas generation. External gas delivery strategy: The common external stimuli-responsive gasotransmitter prodrugs and some study of these prodrugs in the treatment of depression and schizophrenia are summarized. We also analyzed the prospects of nano-gas carrier in the treatment of depression and schizophrenia. Through this review, we hope to provide guidance for treating depression and schizophrenia by regulating relevant gas signal pathways, and provide reference for developing safe and effective drugs for treating mental disorders by summarizing exogenous gas drugs.
Collapse
Affiliation(s)
- Xun Tao
- School of Clinical Medicine, Weifang Medical University, Weifang, P. R. China
| | - Xiaoxuan Zhu
- School of Clinical Medicine, Weifang Medical University, Weifang, P. R. China
| | - Yang Liu
- School of Psychology, Weifang Medical University, Weifang Shandong, P. R. China
| | - Ling Wang
- Clinical Competency Training Center, Medical Experiment and Training Center, Weifang Medical University, Weifang Shandong, P. R. China
| | - Dan Wang
- Department of Physical Education, School of Foundation Medical, Weifang Medical University, Weifang, P. R. China
| | - Lin Sun
- School of Psychology, Weifang Medical University, Weifang Shandong, P. R. China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, Weifang Shandong, P. R. China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Yingshuai Wang
- Department of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, P. R. China
| | - Feng Chen
- School of Practical Teaching Management Department, Weifang Medical University, Weifang Shandong, P. R. China
| |
Collapse
|
6
|
Wang Y, Zhong S, Niu Z, Dai Y, Li J. Synthesis and up-to-date applications of 2D microporous g-C 3N 4 nanomaterials for sustainable development. Chem Commun (Camb) 2023; 59:10883-10911. [PMID: 37622731 DOI: 10.1039/d3cc03550f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In recent years, with the development of industrial technology and the increase of people's environmental awareness, the research on sustainable materials and their applications has become a hot topic. Among two-dimensional (2D) materials that have been selected for sustainable research, graphitic phase carbon nitride (g-C3N4) has become a hot research topic because of its many outstanding advantages such as simple preparation, good electrochemical properties, excellent photochemical properties, and better thermal stability. Nevertheless, the inherent limitations of g-C3N4 due to its relatively poor specific surface area, rapid charge recombination, limited light absorption range, and inferior dispersion in aqueous and organic media have limited its practical application. In the review, we summarize and analyze the unique structure of the 2D microporous nanomaterial g-C3N4, its synthesis method, chemical modification method, and the latest application examples in various fields in recent years, highlighting its advantages and shortcomings, with a view to providing ideas for overcoming the difficulties in its application. Furthermore, the pressing challenges faced by g-C3N4 are briefly discussed, as well as an outlook on the application prospects of g-C3N4 materials. It is expected that the review in this paper will provide more theoretical strategies for the future practical application of g-C3N4-based materials, as well as contributing to nanomaterials in sustainable applications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Suyue Zhong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhenhua Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
7
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Ge K, Li Z, Wang A, Bai Z, Zhang X, Zheng X, Liu Z, Gao F. An NIR-Driven Upconversion/C 3N 4/CoP Photocatalyst for Efficient Hydrogen Production by Inhibiting Electron-Hole Pair Recombination for Alzheimer's Disease Therapy. ACS NANO 2023; 17:2222-2234. [PMID: 36688477 DOI: 10.1021/acsnano.2c08499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox imbalance and abnormal amyloid protein (Aβ) buildup are key factors in the etiology of Alzheimer's disease (AD). As an antioxidant, the hydrogen molecule (H2) has the potential to cure AD by specifically scavenging highly harmful reactive oxygen species (ROS) such as •OH. However, due to the low solubility of H2 (1.6 ppm), the traditional H2 administration pathway cannot easily achieve long-term and effective accumulation of H2 in the foci. Therefore, how to achieve the continuous release of H2 in situ is the key to improve the therapeutic effect on AD. As a corollary, we designed a rare earth ion doped g-C3N4 upconversion photocatalyst, which can respond to NIR and realize the continuous production of H2 by photocatalytic decomposition of H2O in biological tissue, which avoids the problem of the poor penetration of visible light. The introduction of CoP cocatalyst accelerates the separation and transfer of photogenerated electrons in g-C3N4, thus improving the photocatalytic activity of hydrogen evolution reaction. The morphology of the composite photocatalyst was shown by transmission electron microscopy, and the crystal structure was studied by X-ray diffractometry and Raman analysis. In addition, the ability of g-C3N4 to chelate metal ions and the photothermal properties of CoP can inhibit Aβ and reduce the deposition of Aβ in the brain. Efficient in situ hydrogen production therapy combined with multitarget synergism solves the problem of a poor therapeutic effect of a single target. In vivo studies have shown that UCNP@CoP@g-C3N4 can reduce Aβ deposition, improve memory impairment, and reduce neuroinflammation in AD mice.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ali Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xing Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xin Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
9
|
Coral-Pérez S, Martínez-Martel I, Martínez-Serrat M, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Treatment with Hydrogen-Rich Water Improves the Nociceptive and Anxio-Depressive-like Behaviors Associated with Chronic Inflammatory Pain in Mice. Antioxidants (Basel) 2022; 11:2153. [PMID: 36358525 PMCID: PMC9686765 DOI: 10.3390/antiox11112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 09/25/2023] Open
Abstract
Chronic inflammatory pain is manifested in many diseases. The potential use of molecular hydrogen (H2) as a new therapy for neurological disorders has been demonstrated. Recent studies prove its analgesic properties in animals with neuropathic pain, but the possible antinociceptive, antidepressant, and/or anxiolytic actions of H2 during persistent inflammatory pain have not been investigated. Therefore, using male mice with chronic inflammatory pain incited by the subplantar injection of complete Freud's adjuvant (CFA), we assessed the actions of hydrogen-rich water (HRW) systemically administered on: (1) the nociceptive responses and affective disorders associated and (2) the oxidative (4-hydroxy-2-nonenal; 4-HNE), inflammatory (phosphorylated-NF-kB inhibitor alpha; p-IKBα), and apoptotic (Bcl-2-like protein 4; BAX) changes provoked by CFA in the paws and amygdala. The role of the antioxidant system in the analgesia induced by HRW systemically and locally administered was also determined. Our results revealed that the intraperitoneal administration of HRW, besides reducing inflammatory pain, also inhibited the depressive- and anxiolytic-like behaviors associated and the over expression of 4-HNE, p-IKBα, and BAX in paws and amygdala. The contribution of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1 pathway in the analgesic activities of HRW, systemically or locally administered, was also shown. These data revealed the analgesic, antidepressant, and anxiolytic actions of HRW. The protective, anti-inflammatory, and antioxidant qualities of this treatment during inflammatory pain were also demonstrated. Therefore, this study proposes the usage of HRW as a potential therapy for chronic inflammatory pain and linked comorbidities.
Collapse
Affiliation(s)
- Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R. A. Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Drinking hydrogen water improves photoreceptor structure and function in retinal degeneration 6 mice. Sci Rep 2022; 12:13610. [PMID: 35948585 PMCID: PMC9365798 DOI: 10.1038/s41598-022-17903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.
Collapse
|
11
|
Yan H, Fan M, Liu H, Xiao T, Han D, Che R, Zhang W, Zhou X, Wang J, Zhang C, Yang X, Zhang J, Li Z. Microbial hydrogen "manufactory" for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. J Nanobiotechnology 2022; 20:280. [PMID: 35705974 PMCID: PMC9199139 DOI: 10.1186/s12951-022-01440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an antioxidant, hydrogen (H2) can selectively react with the highly toxic hydroxyl radical (·OH) in tumor cells to break the balance of reactive oxygen species (ROS) and cause oxidative stress. However, due to the high diffusibility and storage difficulty of hydrogen, it is impossible to achieve long-term release at the tumor site, which highly limited their therapeutic effect. RESULTS Photosynthetic bacteria (PSB) release a large amount of hydrogen to break the balance of oxidative stress. In addition, as a nontoxic bacterium, PSB could stimulate the immune response and increase the infiltration of CD4+ and CD8+ T cells. More interestingly, we found that hydrogen therapy induced by our live PSB did not lead to the up-regulation of PD-L1 after stimulating the immune response, which could avoid the tumor immune escape. CONCLUSION Hydrogen-immunotherapy significantly kills tumor cells. We believe that our live microbial hydrogen production system provides a new strategy for cancer hydrogen treatment combining with enhanced immunotherapy without up-regulating PD-L1.
Collapse
Affiliation(s)
- Hongyu Yan
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Miao Fan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Dandan Han
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruijun Che
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaohan Zhou
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - June Wang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.
| | - Zhenhua Li
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
12
|
Fernández-Serrano AB, Moya-Faz FJ, Giner Alegría CA, Fernández Rodríguez JC, Soriano Guilabert JF, del Toro Mellado M. Effects of hydrogen water and psychological treatment in a sample of women with panic disorder: a randomized and controlled clinical trial. Health Psychol Res 2022; 10:35468. [DOI: 10.52965/001c.35468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Research suggests that inflammation is an important mediator in the pathophysiology of anxiety disorders. In addition, women are more likely to develop an anxiety and depression disorder, in comorbidity with a wide spectrum of diseases related to the immune system. In recent years, hydrogen-rich water has emerged as a promising therapeutic strategy to prevent and intervene in stress-related disorders, due to its antioxidant and anti-inflammatory properties. The present study aims to analyze the effects of psychological treatment and a hydrogen-rich drink on the severity of anxiety and depression, pro-inflammatory cytokine levels, the cortisol awakening response, and general health state in a sample of women with panic disorder. This is a completely randomized, placebo-controlled study. The treatment group simultaneously received psychological treatment and 1.5 L of hydrogenated water for three months, compared to the control group that received psychological treatment and placebo. The results show that the treatment group was not significantly better than the control group. But there was a further reduction in measured pro-inflammatory cytokine scores, improving body pain and physical health. When between-group treatment effects were removed, psychological treatment significantly decreased measured variables, including cytokines and cortisol. The results support the presence of a maladaptive inflammatory process in women with panic disorder.
Collapse
|
13
|
Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and Indirect Methods for Studying Human Gut Microbiota. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:19-34. [DOI: 10.22416/1382-4376-2022-32-2-19-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim: To review the main methods of intestinal microbiota studying.Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers, i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e. methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new approaches to correction of individual microbiota components.Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well open up new opportunities for prevention and treatment.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - A. E. Karchevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University); N.N. Burdenko National Medical Research Center of Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology
| |
Collapse
|
14
|
Li W, Zhang Y, Su Y, Hao Y, Wang X, Yin X, Gong M, Gao Y, Meng L, Guo Q, Gao Q, Song L, Shi Y, Shi H. Intracerebroventricular injection of sclerostin reduced social hierarchy and impaired neuronal dendritic complexity in mice. Neurosci Lett 2022; 773:136514. [PMID: 35149200 DOI: 10.1016/j.neulet.2022.136514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
Abstract
An increasing number of studies have demonstrated extensive functional links between bone and the brain. As a novel endocrine organ, bone has received increasing attention for its upregulatory functions in the brain. Sclerostin, a novel bone-derived endocrine molecule, secreted by osteocytes, can inhibit the bone morphogenetic protein (BMP) and wingless/integrated (Wnt) signaling pathways to regulate bone formation, but its effects on the central nervous system and neurosocial behaviors are unknown. This study investigated the effects of intracerebroventricular sclerostin injection on social-emotional behaviors in adult mice. The results showed that acute elevation of sclerostin levels in the brain could induce anxiety-like behaviors and reduce the social hierarchy of mice while reducing the dendritic complexity of pyramidal neurons in the mouse hippocampus. These data suggested that sclerostin may regulate social-emotional behaviors, providing new evidence for the existence of a bone-brain axis, new insights into the regulation of social behaviors by bone-derived endocrine molecules, and a new direction for the study of individual emotional behavior regulation.
Collapse
Affiliation(s)
- Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Yan Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Xi Yin
- Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, China, 050011
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Qingjun Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China, 050017; Hebei Key laboratory of Neurophysiology, Hebei Medical University, China, 050017.
| |
Collapse
|
15
|
Nazarov EI, Khlusov IA, Noda M. Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen. Med Gas Res 2021; 11:174-186. [PMID: 34213500 PMCID: PMC8374457 DOI: 10.4103/2045-9912.318863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022] Open
Abstract
Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O3), xenon (Xe) and molecular hydrogen (H2), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O3. The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy.
Collapse
Affiliation(s)
- Eugene Iv. Nazarov
- Scientific Department of the International Association of Therapists Using Medical Gases, Odessa, Ukraine
| | - Igor Alb. Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Mao J, Zhao P, Wang Q, Chen A, Li X, Li X, Liu T, Tao Z, Wang X, Du Y, Gong M, Song L, Gao Y, Shi H. Repeated 3,3-Dimethyl-1-butanol exposure alters social dominance in adult mice. Neurosci Lett 2021; 758:136006. [PMID: 34098029 DOI: 10.1016/j.neulet.2021.136006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The influence of gut microbiota on brain function and brain disorders has been attracted more and more attention. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and other brain disorders. However, the relationship between TMAO and social behaviors are still poorly understood. Adult male mice were exposed to drinking water containing 3,3- Dimethyl-1-butanol (DMB), an indirect inhibitors of TMAO, for 21 continuous days followed by a series of behavioral tests to detect the effect of DMB exposure on social behaviors, mainly including social dominance test (SDT), bedding preference test (BP), sexual preference test (SP), social interaction test (SI), open field test (OFT), tail suspension test (TST), forced swim test (FST), novelty suppressed feeding test (NSF), and novel object recognition (NOR) task. In the SDT, compared with the control group, the mice treated with DMB (both 0.2% and 1.0%), both high-ranked and low-ranked mice, showed a reduction in the number of victories. There is no statistical difference on sexual preference, anxiety, depression-like behavior phenotype, and memory formation. In conclusion, the present findings provide direct evidence, for the first time, that repeated DMB exposure produces significant effects on social dominance of adult mice, without any effects on sexual preference, anxiety, depression-like behavior phenotype or memory formation, highlighting the regulatory effects of gut-brain interaction on social behaviors.
Collapse
Affiliation(s)
- Jiawen Mao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Qian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xianjie Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Tingxuan Liu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Zifei Tao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
17
|
Satoh Y. The Potential of Hydrogen for Improving Mental Disorders. Curr Pharm Des 2021; 27:695-702. [PMID: 33185151 DOI: 10.2174/1381612826666201113095938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
In 2007, Ohsawa and colleagues reported that molecular hydrogen (H2) gas significantly reduced the infarct volume size in a rat model of cerebral infarction, which was, at least, partially due to scavenging hydroxyl radicals. Since then, multiple studies have shown that H2 has not only anti-oxidative but also anti-inflammatory and anti-apoptotic properties, which has ignited interest in the clinical use of H2 in diverse diseases. A growing body of studies has indicated that H2 affects both mental and physical conditions. Mental disorders are characterized by disordered mood, thoughts, and behaviors that affect the ability to function in daily life. However, there is no sure way to prevent mental disorders. Although antidepressant and antianxiety drugs relieve symptoms of depression and anxiety, they have efficacy limitations and are accompanied by a wide range of side effects. While mental disorders are generally thought to be caused by a variety of genetic and/or environmental factors, recent progress has shown that these disorders are strongly associated with increased oxidative and inflammatory stress. Thus, H2 has received much attention as a novel therapy for the prevention and treatment of mental disorders. This review summarizes the recent progress in the use of H2 for the treatment of mental disorders and other related diseases. We also discuss the potential mechanisms of the biomedical effects of H2 and conclude that H2 could offer relief to people suffering from mental disorders.
Collapse
Affiliation(s)
- Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
18
|
Chen W, Zhang HT, Qin SC. Neuroprotective Effects of Molecular Hydrogen: A Critical Review. Neurosci Bull 2021; 37:389-404. [PMID: 33078374 PMCID: PMC7954968 DOI: 10.1007/s12264-020-00597-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular hydrogen (H2) is a physiologically inert gas. However, during the last 10 years, increasing evidence has revealed its biological functions under pathological conditions. More specifically, H2 has protective effects against a variety of diseases, particularly nervous system disorders, which include ischemia/reperfusion injury, traumatic injury, subarachnoid hemorrhage, neuropathic pain, neurodegenerative diseases, cognitive dysfunction induced by surgery and anesthesia, anxiety, and depression. In addition, H2 plays protective roles mainly through anti-oxidation, anti-inflammation, anti-apoptosis, the regulation of autophagy, and preservation of mitochondrial function and the blood-brain barrier. Further, H2 is easy to use and has neuroprotective effects with no major side-effects, indicating that H2 administration is a potential therapeutic strategy in clinical settings. Here we summarize the H2 donors and their pharmacokinetics. Meanwhile, we review the effectiveness and safety of H2 in the treatment of various nervous system diseases based on preclinical and clinical studies, leading to the conclusion that H2 can be a simple and effective clinical therapy for CNS diseases such as ischemia-reperfusion brain injury, Parkinson's disease, and diseases characterized by cognitive dysfunction. The potential mechanisms involved in the neuroprotective effect of H2 are also analyzed.
Collapse
Affiliation(s)
- Wei Chen
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Shu-Cun Qin
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
| |
Collapse
|
19
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
20
|
Shi X, Gao Y, Song L, Zhao P, Zhang Y, Ding Y, Sun R, Du Y, Gong M, Gao Q, Shi Y, Guo Q, Shi H. Sulfur dioxide derivatives produce antidepressant- and anxiolytic-like effects in mice. Neuropharmacology 2020; 176:108252. [PMID: 32712276 DOI: 10.1016/j.neuropharm.2020.108252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Sulfur dioxide (SO2) can be endogenously generated from sulfur-containing amino acids in animals and humans. Increasing evidence shows that endogenous SO2 may act as a gaseous molecule to participate in many physiological and pathological processes. However, the role of SO2 and its derivatives in the central nervous system remains poorly understood. The present study explored the protective effects of exogenous SO2 derivatives (Na2SO3:NaHSO3, 3:1 M/M) on cellular injury in vitro by using the cell proliferation assay (MTS), cell counting kit 8 assay (CCK-8), and cyto-flow assay in the corticosterone (CORT)-induced PC12 cell injury model. We also examined the antidepressant and anxiolytic effects of SO2 derivatives on the chronic mild stress (CMS)-induced depression mouse model by using the open field test, novelty suppressed feeding test, forced swimming test, tail suspension test, and sucrose preference test. In the MTS and CCK-8 assays, we found that preexposure of SO2 derivatives significantly blocked CORT-induced decrease of cellular survival without causing any negative effects. Results from the cyto-flow assay indicated that treatment with SO2 derivatives could reverse CORT-induced early and late apoptosis of PC12 cells. Systemic treatment with SO2 derivatives produced markedly antidepressant- and anxiolytic-like activities in mice under normal condition and rapidly reversed CMS-induced depressive- and anxiety-like behaviors. In conclusion, these findings indicate that exogenous SO2 derivatives show protective properties against the detrimental effects of stress and exert antidepressant- and anxiolytic-like actions. The present study suggests that exogenous SO2 derivatives are potential therapeutic agents for the treatment of depression, anxiety, and other stress-related diseases.
Collapse
Affiliation(s)
- Xiaorui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yipu Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuanjian Ding
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ruoxuan Sun
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Shi
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Qingjun Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
21
|
Jesus AA, Passaglia P, Santos BM, Rodrigues-Santos I, Flores RA, Batalhão ME, Stabile AM, Cárnio EC. Chronic molecular hydrogen inhalation mitigates short and long-term memory loss in polymicrobial sepsis. Brain Res 2020; 1739:146857. [PMID: 32348775 DOI: 10.1016/j.brainres.2020.146857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023]
Abstract
The central nervous system (CNS) is one of the first physiological systems to be affected in sepsis. During the exacerbated systemic inflammatory response at the early stage of sepsis, circulatory inflammatory mediators are able to reach the CNS leading to neuroinflammation and, consequently, long-term impairment in learning and memory formation is observed. The acute treatment with molecular hydrogen (H2) exerts important antioxidative, antiapoptotic, and anti-inflammatory effects in sepsis, but little is known about the mechanism itself and the efficacy of chronic H2 inhalation in sepsis treatment. Thus, we tested two hypotheses. We first hypothesized that chronic H2 inhalation is also an effective therapy to treat memory impairment induced by sepsis. The second hypothesis is that H2 treatment decreases sepsis-induced neuroinflammation in the hippocampus and prefrontal cortex, important areas related to short and long-term memory processing. Our results indicate that (1) chronic exposure of hydrogen gas is a simple, safe and promising therapeutic strategy to prevent memory loss in patients with sepsis and (2) acute H2 inhalation decreases neuroinflammation in memory-related areas and increases total nuclear factor E2-related factor 2 (Nrf2), a transcription factorthat regulates a vast group of antioxidant and inflammatory agents expression in these areas of septic animals.
Collapse
Affiliation(s)
- Aline A Jesus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Patrícia Passaglia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Bruna M Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Isabelle Rodrigues-Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Rafael A Flores
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Marcelo E Batalhão
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Evelin C Cárnio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil.
| |
Collapse
|
22
|
Zhang ZY, Fang YJ, Luo YJ, Lenahan C, Zhang JM, Chen S. The role of medical gas in stroke: an updated review. Med Gas Res 2020; 9:221-228. [PMID: 31898607 PMCID: PMC7802415 DOI: 10.4103/2045-9912.273960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Medical gas is a large class of bioactive gases used in clinical medicine and basic scientific research. At present, the role of medical gas in neuroprotection has received growing attention. Stroke is a leading cause of death and disability in adults worldwide, but current treatment is still very limited. The common pathological changes of these two types of stroke may include excitotoxicity, free radical release, inflammation, cell death, mitochondrial disorder, and blood-brain barrier disruption. In this review, we will discuss the pathological mechanisms of stroke and the role of two medical gases (hydrogen and hydrogen sulfide) in stroke, which may potentially provide a new insight into the treatment of stroke.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu-Jie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM; Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Wigner P, Synowiec E, Czarny P, Bijak M, Jóźwiak P, Szemraj J, Gruca P, Papp M, Śliwiński T. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J Cell Mol Med 2020; 24:5675-5694. [PMID: 32281745 PMCID: PMC7214168 DOI: 10.1111/jcmm.15231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin‐norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation‐sensitive high‐resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Wen D, Hui R, Liu Y, Luo Y, Wang J, Shen X, Xie B, Yu F, Cong B, Ma C. Molecular hydrogen attenuates methamphetamine-induced behavioral sensitization and activation of ERK-ΔFosB signaling in the mouse nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109781. [PMID: 31629777 DOI: 10.1016/j.pnpbp.2019.109781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) is one of the most prevalently used illegal psychostimulants in many countries. Continuous exposure to METH leads to behavioral sensitization in animals, which can be used as a behavioral model with many mechanisms in common with relapse in humans. Molecular hydrogen has recently gained attention for its potential as a novel healthcare product with preventive and therapeutic applicability to a wide range of pathological conditions. However, it remains unclear whether and, if so, how hydrogen regulates METH-induced behavioral abnormalities. In the present study, we investigated the roles of molecular hydrogen on the acquisition and transfer of METH-induced behavioral sensitization and the accompanying changes in ERK phosphorylation and ΔFosB activation in the nucleus accumbens (NAc) of mice. To this end, male C57BL/6 mice received METH (0.1, 0.5 and 1.0 mg/kg, i.p.) injections for 7 days followed by a METH challenge (0.1, 0.5 and 1.0 mg/kg, i.p.) after a 7-day transfer period. Molecular hydrogen, delivered through a hydrogen-rich saline (HRS) injection (10 mL/kg, i.p., 3-h interval), was administered during the acquisition and transfer periods. We found that HRS administration was able to inhibit the acquisition and transfer of 0.1 and 0.5 mg/kg METH-induced behavioral sensitization to a certain extent, thereby attenuating the expression of behavioral sensitization. The HRS injections alone did not induce any obvious changes in locomotor activity in mice. Intriguingly, the increases in pERK and ΔFosB in the NAc, which accompanied the METH-induced behavioral sensitization, were also attenuated by the HRS treatments. Due to the anti-oxidative function of molecular hydrogen, the HRS injections reduced METH-induced reactive oxygen species and malondialdehyde generation in the NAc. These results suggest that molecular hydrogen serves as an anti-oxidative agent with potentially therapeutic applicability to the treatment of METH addicts.
Collapse
Affiliation(s)
- Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081,China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Xi Shen
- College of Public Health, Hebei Medical University, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Feng Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
25
|
Fan M, Wen Y, Ye D, Jin Z, Zhao P, Chen D, Lu X, He Q. Acid-Responsive H 2 -Releasing 2D MgB 2 Nanosheet for Therapeutic Synergy and Side Effect Attenuation of Gastric Cancer Chemotherapy. Adv Healthc Mater 2019; 8:e1900157. [PMID: 30968583 DOI: 10.1002/adhm.201900157] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Indexed: 11/12/2022]
Abstract
The hydrogen molecule is recognized as a high potential to attenuate toxic side effects of chemotherapy and also enhance chemotherapeutic efficacy, and the development of a novel hydrogen-generating prodrug for facile, safe, and efficient hydrogen delivery is vitally important for combined hydrogenochemotherapy but is still challenging. Here, targeting gastric cancer, a 2D magnesium boride nanosheet (MBN) is synthesized as a new type of acid-responsive hydrogen-releasing prodrug by an ultrasound-assisted chemical etching route, which is used to realize hydrogenochemotherapy by combination of facile oral administration of polyvinylpyrrolidone (PVP)-encapsulating MBN (MBN@PVP) pills with routine intravenous injection of doxorubicin (DOX). The MBN@PVP pill has high stability in normal tissues/blood environments as well as high gastric acid-responsiveness with sustained release behavior, which matches well with its metabolism rate in the stomach in great favor of continuous and long-term hydrogen administration. Hydrogenochemotherapy with DOX+MBN@PVP has remarkably prolonged the survival time of gastric tumor-bearing mice by reducing the toxic side effects of chemotherapy. The mechanism for therapeutic synergy and side effect attenuation of hydrogenochemotherapy is discovered to be derived from the selectivity of hydrogen molecules in inhibiting aerobic respiration of gastric cells but activating aerobic respiration of normal cells including marrow mesenchymal stem cells and cardiac, hepatic, and splenic cells.
Collapse
Affiliation(s)
- Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Yanyuan Wen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Dien Ye
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| |
Collapse
|
26
|
LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules 2019; 24:E2076. [PMID: 31159153 PMCID: PMC6600250 DOI: 10.3390/molecules24112076] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
- Molecular Hydrogen Institute, Enoch City, UT, 847 21, USA.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Narcis Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| |
Collapse
|
27
|
LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1. Can J Physiol Pharmacol 2019; 97:797-807. [PMID: 30970215 DOI: 10.1139/cjpp-2019-0067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
28
|
Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials 2019; 197:393-404. [DOI: 10.1016/j.biomaterials.2019.01.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
29
|
LeBaron TW, Larson AJ, Ohta S, Mikami T, Barlow J, Bulloch J, DeBeliso M. Acute Supplementation with Molecular Hydrogen Benefits Submaximal Exercise Indices. Randomized, Double-Blinded, Placebo-Controlled Crossover Pilot Study. J Lifestyle Med 2019; 9:36-43. [PMID: 30918832 PMCID: PMC6425901 DOI: 10.15280/jlm.2019.9.1.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Clinical studies have reported hydrogen-rich water (HRW) to have therapeutic and ergogenic effects. The aim of this study was to determine the effect of acute supplementation with HRW on exercise performance as measured by VO2, respiratory exchange ratio (RER), heart rate (HR), and respiratory rate (RR). Methods Baseline levels of all exercise indices were determined in nineteen (4 female, 23.4 ± 9.1 yr; 15 male, 30.5 ± 6.8 yr) healthy subjects using a graded treadmill exercise test to exhaustion. Each subject was examined two additional times in a randomized double-blinded, placebo-controlled crossover fashion. Subjects received either HRW or placebo, which was consumed the day before and the day of the testing. HRW was delivered using the hydrogen-producing tablets, DrinkHRW (5 mg of H2). All data was analyzed with SPSS using pairwise comparisons with Bonferroni adjustment. Results HRW supplementation did not influence maximal or minimal indices of exercise performance (VO2, RER, HR and RR) (p < 0.05). However, HRW significantly decreased average exercising RR and HR (p < 0.05). HRW decreased exercising HR during minutes 1–9 of the graded exercise test (121 ± 26 bpm) compared to placebo (126 ± 26 bpm) and baseline (124 ± 27 bpm) (p < 0.001) without substantially influencing VO2. Conclusion Acute supplementation of DrinkHRW tablets may benefit submaximal aerobic exercise performance by lowering exercising HR. Further studies are needed to determine the influence and practical significance of HRW on varying exercise intensities as well as optimal dosing protocols and the effects of chronic use.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, UT, USA.,Molecular Hydrogen Institute, UT, USA.,Slovak Academy of Sciences, Centre of Experimental Medicine, Institute for Heart Research, Bratislava, Slovakia
| | - Abigail J Larson
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, UT, USA
| | - Shigeo Ohta
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Mikami
- Department of Sport Science, Nippon Medical School, Tokyo, Japan
| | - Jordon Barlow
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, UT, USA
| | - Josh Bulloch
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, UT, USA
| | - Mark DeBeliso
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, UT, USA
| |
Collapse
|
30
|
Yin S, Shao J, Wang X, Yin X, Li W, Gao Y, Velez de-la-Paz OI, Shi H, Li S. Methylene blue exerts rapid neuroprotective effects on lipopolysaccharide-induced behavioral deficits in mice. Behav Brain Res 2019; 356:288-294. [DOI: 10.1016/j.bbr.2018.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
|
31
|
Jiang X, Niu X, Guo Q, Dong Y, Xu J, Yin N, Qi Q, Jia Y, Gao L, He Q, Lv P. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia. Behav Brain Res 2019; 356:98-106. [DOI: 10.1016/j.bbr.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/21/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
|
32
|
Abstract
Photocatalytic H2 generation via water splitting is increasingly gaining attention as a viable alternative for improving the performance of H2 production for solar energy conversion. Many methods were developed to enhance photocatalyst efficiency, primarily by modifying its morphology, crystallization, and electrical properties. Here, we summarize recent achievements in the synthesis and application of various photocatalysts. The rational design of novel photocatalysts was achieved using various strategies, and the applications of novel materials for H2 production are displayed herein. Meanwhile, the challenges and prospects for the future development of H2-producing photocatalysts are also summarized.
Collapse
|
33
|
Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, Lu X, Gu Z, He Q. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018; 9:4241. [PMID: 30315173 PMCID: PMC6185976 DOI: 10.1038/s41467-018-06630-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment.
Collapse
Affiliation(s)
- Penghe Zhao
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Qian Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA
| | - Tian Yang
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jin Meng
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xifeng Lu
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, 27695, NC, USA.
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedicalim Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
34
|
Guo Q, Yin X, Qiao M, Jia Y, Chen D, Shao J, Lebaron TW, Gao Y, Shi H, Jia B. Hydrogen-Rich Water Ameliorates Autistic-Like Behavioral Abnormalities in Valproic Acid-Treated Adolescent Mice Offspring. Front Behav Neurosci 2018; 12:170. [PMID: 30127728 PMCID: PMC6087877 DOI: 10.3389/fnbeh.2018.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Due to its anti-inflammatory and anti-oxidative effects, recent research has demonstrated that molecular hydrogen can serve as a new medical approach for depression, anxiety and traumatic brain injury. However, its potential effects on neurodevelopmental diseases, such as autism are still elusive. The present study aims to investigate the potential effects of hydrogen-rich water (HRW) administration on valproic acid (VPA)-induced autistic-like behavioral deficits, and the associated underlying mechanism in adolescent mice offspring. Pregnant ICR mice were randomly divided into five groups (n = 6). One group was injected with saline (NAV group) and provided hydrogen-free water. The other four groups were injected with VPA (600 mg/kg, intraperitoneally, i.p.) on pregnant day (PND) 12.5. One group was provided with hydrogen-free water (VEH group) and the other three groups were provided HRW at different segments, postnatal day 1 (PND 1) to PND 21 (PHV group), PND 13 to PND 21 (PVS group) or from PND 13 to postnatal day 42 (PVL group). Behavioral tests, including open field, novelty suppressed feeding (NSF), hot plate, social interaction (SI) and contextual fear memory tests were conducted between postnatal day 35–42. We found that HRW administration significantly reversed the autistic-like behaviors induced by maternal VPA exposure in the adolescent offspring of both male and female adolescent offspring. Furthermore, HRW administration significantly reversed the alternation of serum levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), but without any effects on the BDNF levels in maternal VPA-exposed mice offspring. These data suggest the need for additional research on HRW as a potential preventive strategy for autism and related disorders. Lay Summary: Maternal VPA injection induces autistic-like behavioral deficits in adolescent mice offspring. HRW administration ameliorates autistic-like behavioral deficits. HRW administration reverses the alternation of serum levels of IL-6 and TNF-α induced by VPA.
Collapse
Affiliation(s)
- Qingjun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Xi Yin
- Department of Functional Region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Meng Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yujiao Jia
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dandan Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Juan Shao
- Department of Senile Disease, The Third Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | | | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Shijiazhuang, China.,Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medicial University, Shijiazhuang, China
| | - Bin Jia
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Lingshui General Hospital, Lingshui, China
| |
Collapse
|
35
|
Liang M, Du Y, Li W, Yin X, Yang N, Qie A, Lebaron TW, Zhang J, Chen H, Shi H. SuHeXiang Essential Oil Inhalation Produces Antidepressant- and Anxiolytic-Like Effects in Adult Mice. Biol Pharm Bull 2018; 41:1040-1048. [DOI: 10.1248/bpb.b18-00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min Liang
- College of Nursing, Hebei Medical University
| | - Yuru Du
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University
| | - Wenjing Li
- College of Nursing, Hebei Medical University
| | - Xi Yin
- Department of Functional Region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University
| | - Ni Yang
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | - Anran Qie
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | | | - Jiayu Zhang
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | | | - Haishui Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University
- the Center of Neuroscience, Institute of Health and Science, Hebei Medical University
| |
Collapse
|