1
|
Wang H, Zhu S, Elshobary M, Qi W, Wang W, Feng P, Wang Z, Qin L. Enhancing detoxification of inhibitors in lignocellulosic pretreatment wastewater by bacterial Action: A pathway to improved biomass utilization. BIORESOURCE TECHNOLOGY 2024; 410:131270. [PMID: 39147108 DOI: 10.1016/j.biortech.2024.131270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The process of preprocessing techniques such as acid and alkali pretreatment in lignocellulosic industry generates substantial solid residues and lignocellulosic pretreatment wastewater (LPW) containing glucose, xylose and toxic byproducts. In this study, furfural and vanillin were selected as model toxic byproducts. Kurthia huakuii as potential strain could tolerate to high concentrations of inhibitors. The results indicated that vanillin exhibited a higher inhibitory effect on K. huakuii (3.95 % inhibition rate at 1 g/L than furfural (0.45 %). However, 0.5 g/L vanillin promoted the bacterial growth (-2.35 % inhibition rate). Interestingly, the combination of furfural and vanillin exhibited antagonistic effects on bacterial growth (Q<0.85). Furfural and vanillin could be bio-transformed into less toxic molecules (furfuryl alcohol, furoic acid, vanillyl alcohol, and vanillic acid) by K. huakuii, and inhibitor degradation rate could be promoted by expression of antioxidant enzymes. This study provides important insights into how bacteria detoxify inhibitors in LPW, potentially enhancing resource utilization.
Collapse
Affiliation(s)
- Huiying Wang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mostafa Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Wei Qi
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Wen Wang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Lei Qin
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Mooralitharan S, Mohd Hanafiah Z, Abd Manan TSB, Muhammad-Sukki F, Wan-Mohtar WAAQI, Wan Mohtar WHM. Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. SUSTAINABILITY 2023; 15:3819. [DOI: 10.3390/su15043819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Mycoremediation, a fungal-based technology, has seen tremendous growth as an effective alternative to treat industrial wastewater due to its ability to oxidise pollutant loadings. Considering the non-toxic properties and high potential degradation performance of Ganoderma lucidum, this research aims to study the performance of a Malaysian G. lucidum strain, the effect of agitation speed, and different carbon-to-nitrogen (C/N) ratio concentrations of synthetic wastewater in degrading chemical oxygen demand (COD) and ammonia. Different agitation speeds (25 rpm, 50 rpm and 100 rpm) and C/N ratios (C10N1, C13.3N1 and C16.7N1) were chosen as parameters to be analysed in this study. The best degradation of COD and ammonia with a percentage removal in the range of 95% to 100% within 30 h of treatment. ANOVA analysis was done using the response surface methodology to verify the obtained results, and it was found that mycoremediation using 100 rpm agitation provided the best results, removing more than 95% of COD and ammonia from synthetic wastewater. The microscopic analysis also showed that the structure of G. lucidum changed after wastewater treatment. This result proved that the Malaysian G. lucidum strain has a good potential in treating synthetic domestic wastewater, especially with high organic content, as a naturally sustainable bioremediation system.
Collapse
Affiliation(s)
- Silambarasi Mooralitharan
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Firdaus Muhammad-Sukki
- School of Computing, Engineering & the Built Environment, Merchiston Campus, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
- Solar Research Institute (SRI), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Solar Research Institute (SRI), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Werkneh AA. Biogas impurities: environmental and health implications, removal technologies and future perspectives. Heliyon 2022; 8:e10929. [PMID: 36299513 PMCID: PMC9589174 DOI: 10.1016/j.heliyon.2022.e10929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Biogas is a promising bioenergy alternative to be recovered from waste/wastewater in the context of environmental sustainability and circular economy. However, raw biogas contains various secondary impurities such as carbon dioxide, hydrogen sulphide, siloxanes, nitrogen oxides (NOx), ammonia, and halogens. Depending on the emission rate of these biogas impurities, the importance of biogas is being hampered for its environmental, health and the detrimental effects possess by the impurities towards the downstream of the biogas users. Biogas impurities can cause different public health concerns (like pulmonary paralysis, asthma, respiratory diseases and deaths) and environmental impacts (such as global warming, climate change and their indirect impacts like drought, flooding, malnutrition and other disasters). The absence/inconsistent emission standards among countries, agencies, and other stakeholders is the other challenge that they possess during monitoring and controlling of these impurities. Different commercially available and emerging technologies are available for separating carbon dioxide (via biogas upgrading) and removing other biogas impurities. Technologies such as pressure swing adsorption, membrane separation, absorption-based techniques (water, chemical and physical organic solvents), cryogenic separation, and other emerging biotechnological platforms (like photobioreactor and biocatalysis) have been adopted in removing the impurities. This paper reviewed the main commercially available and new technologies and their performance in removing carbon dioxide (the main constituent of biogas) and other biogas impurities. Besides, the environmental and public health implications of biogas and future research perspectives are also highlighted.
Collapse
|
4
|
Leong YK, Chang JS. Integrated role of algae in the closed-loop circular economy of anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 360:127618. [PMID: 35840031 DOI: 10.1016/j.biortech.2022.127618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Following the surging demand for sustainable biofuels, biogas production via anaerobic digestion (AD) presented itself as a solution for energy security, waste management, and greenhouse gas mitigation. Algal-based biorefinery platform serves an important role in the AD-based closed-loop circular economy. Other than using whole biomass of micro- and macroalgae as feedstock for biogas production, the integration of AD with other bio- or thermochemical conversion techniques can achieve complete valorization of biomass residue after processing or valuable compounds extraction. On the other hand, anaerobic digestate, the byproduct of AD processes can be used for microalgal cultivation for lipid and pigments accumulation, closing the loop of resource flow. Furthermore, algae and its consortium with bacteria or fungi can be employed for combined biogas upgrading and wastewater treatment. Innovative strategies have been developed to enhance biogas upgrading and pollutant removal performance as well as minimize O2 and N2 content in the upgraded biomethane.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
5
|
Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, Jamaludin AA, Abdul Patah MF, Ahmad Usuldin SR, Rowan N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: a review. Bioengineered 2022; 13:14903-14935. [PMID: 37105672 DOI: 10.1080/21655979.2023.2184785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| | - Afnan Ahmadi Zahuri
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Agro-Biotechnology Institute, Malaysia, National Institutes of Biotechnology Malaysia, Serdang, Selangor, Malaysia
| | - Neil Rowan
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| |
Collapse
|
6
|
Kant Bhatia S, Ahuja V, Chandel N, Mehariya S, Kumar P, Vinayak V, Saratale GD, Raj T, Kim SH, Yang YH. An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 351:127028. [PMID: 35318147 DOI: 10.1016/j.biortech.2022.127028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram-122103, Haryana, India
| | | | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Fernández-Rodríguez MJ, de la Lama-Calvente D, García-González M, Moreno-Fernández J, Jiménez-Rodríguez A, Borja R, Rincón-Llorente B. Integral Valorization of Two-Phase Olive Mill Solid Waste (OMSW) and Related Washing Waters by Anaerobic Co-digestion of OMSW and the Microalga Raphidocelis subcapitata Cultivated in These Effluents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3219-3227. [PMID: 35254817 PMCID: PMC8931757 DOI: 10.1021/acs.jafc.1c08100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study evaluates the comprehensive valorization of the byproducts derived from the two-phase olive oil elaboration process [i.e., olive washing water (OWW), olive oil washing water (OOWW), and olive mill solid waste (OMSW)] in a closed-loop process. Initially, the microalga Raphidocelis subcapitata was grown using a mixture of OWW and OOWW as the culture medium, allowing phosphate, nitrate, sugars, and soluble chemical oxygen demand removal. In a second step, the microalgal biomass grown in the mixture of washing waters was used as a co-substrate together with OMSW for an anaerobic co-digestion process. The anaerobic co-digestion of the combination of 75% OMSW-25% R. subcapitata enhanced the methane yield by 7.0 and 64.5% compared to the anaerobic digestion of the OMSW and R. subcapitata individually. This schedule of operation allowed for integration of all of the byproducts generated from the two-phase olive oil elaboration process in a full valorization system and the establishment of a circular economy concept for the olive oil industry.
Collapse
Affiliation(s)
- María José Fernández-Rodríguez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
- Departamento de Sistemas Físico, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - David de la Lama-Calvente
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Mercedes García-González
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - José Moreno-Fernández
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonia Jiménez-Rodríguez
- Departamento de Sistemas Físico, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Rafael Borja
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Bárbara Rincón-Llorente
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Renuka N, Ratha SK, Kader F, Rawat I, Bux F. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113257. [PMID: 34303940 DOI: 10.1016/j.jenvman.2021.113257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.
Collapse
Affiliation(s)
- Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, 226001, India
| | - Farzana Kader
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
9
|
Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions. ENERGIES 2021. [DOI: 10.3390/en14154664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural waste, particularly lignocellulose, has been used in the second generation of biogas. Coffee pulp and chicken feathers can be developed as biogas raw materials because of their suitability as a biogas substrate. This study investigates the effect of the percentage of total solids (TS), carbon to nitrogen ratio (C/N, g/g), and delignification pretreatment on biogas production from coffee pulp and chicken feathers, and aims to compose kinetics using the modified Gompertz model. The results show that adjusting the percentage of TS at low-level speeds up the degradation process, which increases chemical oxygen demand (COD) reduction and biogas production. COD reduction and biogas production increase optimally at the 25 (g/g) C/N ratio. Pretreatment delignification aids microorganisms in substrate decomposition, resulting in faster COD reduction and biogas conversion. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the best biogas production, with biogas production of 10,438.04 mL. The Gompertz method shows that the difference in TS percentage can influence biogas production. Moreover, the method shows that biogas production is higher with the delignification process than without it.
Collapse
|
10
|
Fuentes-Grünewald C, Ignacio Gayo-Peláez J, Ndovela V, Wood E, Vijay Kapoore R, Anne Llewellyn C. Towards a circular economy: A novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed. BIORESOURCE TECHNOLOGY 2021; 320:124349. [PMID: 33181476 DOI: 10.1016/j.biortech.2020.124349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Implementing a circular economy aimed at reusing resources is becoming increasingly important for industry. Microalgae fit within a circular economy by being able to bioremediate nutrient waste and as a source of biomass for several commercial applications. Here, we report a novel validation of a circular economy concept using microalgae at a relevant industrial scale with a new two-phase process. During the first phase biomass was grown autotrophically, biomass was then concentrated using membrane technology for the second phase where mixotrophic conditions were applied to boost growth further. Microalgae cultures were able to grow (13.8 g/L), uptake and bioremediate nutrients (Nitrogen > 134 mg/L/day) from an anaerobic digestion side-stream (digestate), obtaining high quality microalgae biomass (>45% protein content) suitable for use as animal feed, closing the circular economy loop for industrial applications.
Collapse
Affiliation(s)
- Claudio Fuentes-Grünewald
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom.
| | - José Ignacio Gayo-Peláez
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom
| | - Vanessa Ndovela
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom
| | - Eleanor Wood
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom
| | - Rahul Vijay Kapoore
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom
| | - Carole Anne Llewellyn
- College of Science, Bioscience Department, Swansea University, Singleton Park, SA2 8PP Swansea, United Kingdom
| |
Collapse
|
11
|
Effects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature. MEMBRANES 2020; 10:membranes10090196. [PMID: 32825741 PMCID: PMC7559899 DOI: 10.3390/membranes10090196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
The effects of solid retention times (SRTs) (100 days, 50 days, 25 days) on the performance, microbial community, and membrane fouling of a lab-scale anaerobic yttria-based ceramic membrane bioreactor (AnCMBR) treating synthetic domestic wastewater at ambient temperature (31.2 ± 2.7 °C) were examined. The soluble chemical oxygen demand (SCOD) removal was higher (89.6%) at 25 days SRT compared with 50 days (39.61%) and 100 days (34.3%) SRT. At 100 days SRT, more Bacteroidetes, Firmicutes, and Proteobacteria were present in the microbial community. At 25 days SRT, more Chloroflexi, Synergistetes, and Pastescibacteria emerged, contributing to the stable performance. The SRT of 25 days has resulted in a more stable microbial community compared with 50 days and 100 days SRT. Both bacterial and archaeal community diversities were higher at 25 days SRT, and the specific production of soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were higher at 25 days SRT as well. Consequently, the membrane flux was lower at 25 days SRT with the increased particle size and the enhanced SMPs and EPSs production. Fourier transform infrared spectroscopy analysis (FTIR) and three-dimensional excitation and emission matrix (3D-EEM) analysis showed that protein and SMPs were the major membrane foulants at all SRT stages. In this study, SRT at 25 days was favorable for the stable operation of an AnCMBR treating domestic wastewater at ambient temperature.
Collapse
|
12
|
Luo J, Li J, Zhang L, Li N, Wachemo AC, Liu C, Yuan H, Li X. Effects of different potassium and nitrogen pretreatment strategies on anaerobic digestion performance of rice straw. RSC Adv 2020; 10:25547-25556. [PMID: 35518629 PMCID: PMC9055357 DOI: 10.1039/d0ra02136a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
The effects of different potassium and nitrogen pretreatment strategies on the anaerobic digestion (AD) performance of rice straw (RS) were investigated. KOH, NH3·H2O and KOH + NH3·H2O combined pretreatments were applied. The results showed that KOH + NH3·H2O combined pretreatment achieved the highest biomethane production and TS (TS: total solid) removal rate of 274 mL g VS−1 and 43.9%, which were 6.2–75.8% and 4.3–29.5% higher than that of single alkali pretreatments and untreated RS, respectively. The NH3·H2O groups improved the process stability, which maintained the NH3–N concentration in the range of 265–580 mg L−1. It was also found that Bacteroidetes and Firmicutes were the dominant bacterial at phyla level, and the populations of acetate methanogen (Methanosarcina and Methanosaeta) were enriched in the AD system by KOH + NH3·H2O pretreatment. Furthermore, the cost of pretreatment agents can be recovered by the increased digestate nutritional value due to the K and N remaining in the digestate after AD. The results indicated that the KOH + NH3·H2O combined pretreatment might be a promising method for efficient AD of straw in future industrial applications. The effects of different potassium and nitrogen pretreatment strategies on the anaerobic digestion (AD) performance of rice straw (RS) were investigated.![]()
Collapse
Affiliation(s)
- Juan Luo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China
| | - Juan Li
- Beijing Municipal Environmental Monitoring Center 14 Chegongzhuang West Road, Haidian District Beijing 100048 PR China
| | - Liang Zhang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China
| | - Nankun Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China .,Appraisal Center for Environment & Engineering Ministry of Environmental Protection 8 Dayangfang, Anwai Beiyuan, Chaoyang District Beijing 100012 PR China
| | - Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China .,Department of Water Supply and Environmental Engineering, Arba Minch University P.O. Box 21 Arba Minch Ethiopia
| | - Chunmei Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 PR China
| |
Collapse
|
13
|
Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135303. [PMID: 31818584 DOI: 10.1016/j.scitotenv.2019.135303] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Computer Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
14
|
Performance of wild-Serbian Ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor. Sci Rep 2019; 9:16109. [PMID: 31695087 PMCID: PMC6834664 DOI: 10.1038/s41598-019-52493-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022] Open
Abstract
The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
Collapse
|
15
|
Krzemińska I, Oleszek M, Wiącek D. Liquid Anaerobic Digestate as a Source of Nutrients for Lipid and Fatty Acid Accumulation by Auxenochlorella Protothecoides. Molecules 2019; 24:molecules24193582. [PMID: 31590306 PMCID: PMC6803916 DOI: 10.3390/molecules24193582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been growing interest in the biomass of unicellular algae as a source of valuable metabolites. The main limitations in the commercial application of microbial biomass are associated with the costs of production thereof. Maize silage is one of the main substrates used in biogas plants in Europe. The effects of sterilized agricultural liquid digestate (LD) from methane fermentation of maize silage on the growth rates, macro and micronutrient removal efficiency, lipid content, and fatty acid profile in Auxenochlorella protothecoides were investigated. The results indicate that A. prothecoides can proliferate and accumulate lipids with simultaneous reduction of nutrients in the 1:20 diluted liquid digestate. The rate of nitrogen and phosphorus removal from the liquid digestate was 79.45% and 78.4%, respectively. Cells growing in diluted liquid digestate exhibited the maximum lipid content, i.e., 44.65%. The fatty acid profile of A. prothecoides shows a decrease in the content of linolenic acid by 20.87% and an increase in oleic acid by 32.16% in the LD, compared with the control. The liquid digestate changed the content of monounsaturated fatty acids and polyunsaturated fatty acids. The cells of A. protothecoides growing in the liquid digestate were characterized by lower PUFA content and higher MUFA levels.
Collapse
Affiliation(s)
- Izabela Krzemińska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Marta Oleszek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
16
|
Nagarajan D, Lee DJ, Chang JS. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. BIORESOURCE TECHNOLOGY 2019; 290:121804. [PMID: 31327690 DOI: 10.1016/j.biortech.2019.121804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Biogas is the gaseous byproduct obtained during anaerobic digestion which is rich in methane, along with a significant amount of other gases like CO2. The removal of CO2 is essential to upgrade the biogas to biomethane (>95% methane content). High CO2 tolerant microalgae can be employed as a biological CO2 scrubbing agent for biogas upgrading. Many microalgal strains tolerant to the levels of CO2 and CH4 seen in biogas have been reported. A CO2 removal efficiency of 50-99% can be attained based on the microalgae used and the cultivation conditions applied. Nutrient-rich liquid digestate obtained from anaerobic digestion can also be used as the cultivation medium for microalgae, performing biogas upgrading and digestate bioremediation simultaneously. Mixotrophic cultivation enables microalgae to utilize the organic carbon present in the liquid digestate along with nitrogen and phosphorus. Microalgae appears to be a potential biological CO2 scrubbing agent for efficient biogas upgrading.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, College of Engineering, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
17
|
Sun S, Hu C, Gao S, Zhao Y, Xu J. Influence of three microalgal-based cultivation technologies on different domestic wastewater and biogas purification in photobioreactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:679-688. [PMID: 30844098 DOI: 10.1002/wer.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
To investigate the effects of different microalgae and culture methods on the purification of domestic wastewater and biogas, Chlorella vulgaris and Scenedesmus obliquus were selected. Three different culture methods (monoculture, microalgal-fungi cocultivation, and microalgal-activated sludge cocultivation) were used to remove nutrients from four different domestic wastewaters and remove CO2 from raw biogas in a photobioreactor. The results show that the effluent from the centrate of pretreated urban wastewater (WW4) achieved the highest nutrient and CO2 removal efficiency. Cocultivation of C. vulgaris and activated sludge achieved the highest COD, TP, and CO2 removal efficiencies of 79.27%, 81.25%, and 60.39% with WW4, respectively. Cocultivation of C. vulgaris and fungi achieved the highest TN removal efficiency of 78.46% with WW4. The contents of C, N, and P in the microalgal-activated sludge symbiont after treatment exceeded 50%, 8%, and 0.8%, respectively. Highly economically efficient energy consumption was achieved with WW4 for both C. vulgaris and S. obliquus. Microalgal-activated sludge cocultivation was identified as the optimal option for the simultaneous purification of wastewater and biogas based on its high pollution and CO2 removal efficiency. This provides a reference for the microalgal-based purification of actual domestic wastewater and raw biogas. PRACTITIONER POINTS: Nutrient and CO2 were efficiently removed by C. vulgaris with activated sludge. CO2 was removed up to 60.4% and was economically viable. Cocultivation of C. vulgaris and fungi could achieve the highest TN removal with WW4.
Collapse
Affiliation(s)
- Shiqing Sun
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Changwei Hu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Shumei Gao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjun Zhao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jie Xu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
18
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|