1
|
Córdova JA, Palermo JC, Bari SE, Capece L. Coordination of inorganic disulfide species to ferric N-acetyl microperoxidase 11. Biochem Biophys Res Commun 2025; 748:151319. [PMID: 39823896 DOI: 10.1016/j.bbrc.2025.151319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11FeIII) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS-) to NAcMP11FeIII. Kinetic estimations of the binding constant retrieved a pH-independent kon= (1.5 ± 0.7) x105 M-1s-1, for 6.4 ≤ pH ≤ 7.2, and a similar value for the intrinsic constant for HSS-, the predominant species. To obtain a molecular description of the binding process, we resorted to two complementary theoretical approaches. Firstly, using multiple steered molecular dynamics, we calculated the free energy profiles for the migration of the neutral species HSSH and the monoanionic HSS-, and also for the siblings hydrogen sulfide, H2S, and hydrosulfide, HS-. Our results reveal that both neutral and anionic species can achieve the distal cavity, as expected considering the highly solvent exposed heme group in NAcMP11FeIII. Secondly, we explored the ligand-exchange reaction using a combination of nudged elastic band (NEB) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, which suggest that the monoanionic species can displace the water molecule coordinated to the heme iron more efficiently than the neutral ones. Altogether, our results provide a molecular description of the ligand binding process of these sulfur species to ferric heme proteins.
Collapse
Affiliation(s)
- Jonathan Alexis Córdova
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| | - Luciana Capece
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Zhou X, Su W, Bao Q, Cui Y, Li X, Yang Y, Yang C, Wang C, Jiao L, Chen D, Huang J. Nitric Oxide Ameliorates the Effects of Hypoxia in Mice by Regulating Oxygen Transport by Hemoglobin. High Alt Med Biol 2024; 25:174-185. [PMID: 38743636 DOI: 10.1089/ham.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Xiaoying Zhou, Wenting Su, Quanwei Bao, Yu Cui, Xiaoxu Li, Yidong Yang, Chengzhong Yang, Chengyuan Wang, Li Jiao, Dewei Chen, and Jian Huang. Nitric oxide ameliorates the effects of hypoxia in mice by regulating oxygen transport by hemoglobin. High Alt Med Biol. 25:174-185, 2024.-Hypoxia is a common pathological and physiological phenomenon in ischemia, cancer, and strenuous exercise. Nitric oxide (NO) acts as an endothelium-derived relaxing factor in hypoxic vasodilation and serves as an allosteric regulator of hemoglobin (Hb). However, the ultimate effects of NO on the hematological system in vivo remain unknown, especially in extreme environmental hypoxia. Whether NO regulation of the structure of Hb improves oxygen transport remains unclear. Hence, we examined whether NO altered the oxygen affinity of Hb (Hb-O2 affinity) to protect extremely hypoxic mice. Mice were exposed to severe hypoxia with various concentrations of NO, and the survival time, exercise capacity, and other physical indexes were recorded. The survival time was prolonged in the 5 ppm NO (6.09 ± 1.29 minutes) and 10 ppm NO (6.39 ± 1.58 minutes) groups compared with the 0 ppm group (4.98 ± 1.23 minutes). Hypoxia of the brain was relieved, and the exercise exhaustion time was prolonged when mice inhaled 20 ppm NO (24.70 ± 6.87 minutes vs. 20.23 ± 6.51 minutes). In addition, the differences in arterial oxygen saturation (SO2%) (49.64 ± 7.29% vs. 42.90 ± 4.30%) and arteriovenous SO2% difference (25.14 ± 8.95% vs. 18.10 ± 6.90%) obviously increased. In ex vivo experiments, the oxygen equilibrium curve (OEC) left shifted as P50 decreased from 43.77 ± 2.49 mmHg (0 ppm NO) to 40.97 ± 1.40 mmHg (100 ppm NO) and 38.36 ± 2.78 mmHg (200 ppm NO). Furthermore, the Bohr effect of Hb was enhanced by the introduction of 200 ppm NO (-0.72 ± 0.062 vs.-0.65 ± 0.051), possibly allowing Hb to more easily offload oxygen in tissue at lower pH. The crystal structure reveals a greater distance between Asp94β-His146β in nitrosyl -Hb(NO-Hb), NO-HbβCSO93, and S-NitrosoHb(SNO-Hb) compared to tense Hb(T-Hb, 3.7 Å, 4.3 Å, and 5.8 Å respectively, versus 3.5 Å for T-Hb). Moreover, hydrogen bonds were less likely to form, representing a key limitation of relaxed Hb (R-Hb). Upon NO interaction with Hb, hydrogen bonds and salt bridges were less favored, facilitating relaxation. We speculated that NO ameliorated the effects of hypoxia in mice by promoting erythrocyte oxygen loading in the lung and offloading in tissues.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Wenting Su
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengyuan Wang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
3
|
Fujiwara SI, Nishimura K, Imamura K, Amisaki T. Identification of histidine residues that affect the T/R-state conformations of human hemoglobin using constant pH molecular dynamics simulations. Int J Biol Macromol 2024; 267:131457. [PMID: 38588836 DOI: 10.1016/j.ijbiomac.2024.131457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Human hemoglobin (Hb) is a tetrameric protein consisting of two α and two β subunits that can adopt a low-affinity T- and high-affinity R-state conformations. Under physiological pH conditions, histidine (His) residues are the main sites for proton binding or release, and their protonation states can affect the T/R-state conformation of Hb. However, it remains unclear which His residues can effectively affect the Hb conformation. Herein, the impact of the 38 His residues of Hb on its T/R-state conformations was evaluated using constant-pH molecular dynamics (CpHMD) simulations at physiological pH while focusing on the His protonation states. Overall, the protonation states of some His residues were found to be correlated with the Hb conformation state. These residues were mainly located in the proximity of the heme (α87 and β92), and at the α1β2 and α2β1 interfaces (α89 and β97). This correlation may be partly explained by how easily hydrogen bonds can be formed, which depends on the protonation states of the His residues. Taken together, these CpHMD-based findings provide new insights into the identification of titratable His residues α87, α89, β92, and β97 that can affect Hb conformational switching under physiological pH conditions.
Collapse
Affiliation(s)
- Shin-Ichi Fujiwara
- Department of Biological Regulation, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | - Kotaro Nishimura
- Department of Biological Regulation, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kazuto Imamura
- Department of Biological Regulation, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Takashi Amisaki
- Department of Biological Regulation, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
4
|
Elhamrawy A, Veneziano G, Tobias JD. Regional anesthesia and sickle cell crisis in pediatric patients: An educational-focused review. Paediatr Anaesth 2024; 34:195-203. [PMID: 37983941 DOI: 10.1111/pan.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Sickle cell disease (SCD) is the most common inherited hemoglobinopathy, affecting approximately 100 000 patients in United States and millions worldwide. Although the mainstay of pain management for VOC remains systemic opioids, given the potential for adverse effects including respiratory depression and hypoxemia, there remains interest in the use of regional anesthetic techniques (neuraxial or peripheral nerve blockade). METHODS A systematic search of pubMed, Scopus, and Google Scholar was conducted using the terms sickle cell disease, sickle cell crisis, pain crisis, vaso-occlusive crisis, regional anesthesia, peripheral nerve blockade, and neuraxial anesthesia. RESULTS We identified 7 publications, all of which were retrospective case series or single case reports, outlining the use of neuraxial anesthesia in a total of 26 patients with SCD. Additionally, we identified 4 publications, including one retrospective case series and 3 single case reports, entailing the use of peripheral blockade in patients with VOC and SCD. DISCUSSION The available literature, albeit all retrospective or anecdotal, suggests the potential utility of regional anesthesia to treat pain in patients with SCD. Additional benefits have included avoidance of the potential deleterious physiologic effects of systemic opioids and in one case series, an improvement in respiratory function as judged by pulse oximetry. The anecdotal and retrospective nature of the available reports with an absence of prospective trials limits the evidence based medicine available from which to develop to guidlines for the optimal local anesthetic agent to use, its concentration, the rate of infusion, and the choice of adjunctive agents.
Collapse
Affiliation(s)
- Amr Elhamrawy
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Giorgio Veneziano
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
5
|
Kuczynski CE, Porada CD, Atala A, Cho SS, Almeida-Porada G. Evaluating sheep hemoglobins with MD simulations as an animal model for sickle cell disease. Sci Rep 2024; 14:276. [PMID: 38168584 PMCID: PMC10761887 DOI: 10.1038/s41598-023-50707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Sickle cell disease (SCD) affects millions worldwide, yet there are few therapeutic options. To develop effective treatments, preclinical models that recapitulate human physiology and SCD pathophysiology are needed. SCD arises from a single Glu-to-Val substitution at position 6 in the β subunit of hemoglobin (Hb), promoting Hb polymerization and subsequent disease. Sheep share important physiological and developmental characteristics with humans, including the same developmental pattern of fetal to adult Hb switching. Herein, we investigated whether introducing the SCD mutation into the sheep β-globin locus would recapitulate SCD's complex pathophysiology by generating high quality SWISS-MODEL sheep Hb structures and performing MD simulations of normal/sickle human (huHbA/huHbS) and sheep (shHbB/shHbS) Hb, establishing how accurately shHbS mimics huHbS behavior. shHbS, like huHbS, remained stable with low RMSD, while huHbA and shHbB had higher and fluctuating RMSD. shHbB and shHbS also behaved identically to huHbA and huHbS with respect to β2-Glu6 and β1-Asp73 (β1-Asn72 in sheep) solvent interactions. These data demonstrate that introducing the single SCD-causing Glu-to-Val substitution into sheep β-globin causes alterations consistent with the Hb polymerization that drives RBC sickling, supporting the development of a SCD sheep model to pave the way for alternative cures for this debilitating, globally impactful disease.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA.
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, 27109, USA.
| | | |
Collapse
|
6
|
|
7
|
Córdova JA, Palermo JC, Estrin DA, Bari SE, Capece L. Binding mechanism of disulfide species to ferric hemeproteins: The case of metmyoglobin. J Inorg Biochem 2023; 247:112313. [PMID: 37467661 DOI: 10.1016/j.jinorgbio.2023.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
The interactions of the heme iron of hemeproteins with sulfide and disulfide compounds are of potential interest as physiological signaling processes. While the interaction with hydrogen sulfide has been described computationally and experimentally, the reaction with disulfide, and specifically the molecular mechanism for ligand binding has not been studied in detail. In this work, we study the association process for disulfane and its conjugate base disulfanide at different pH conditions. Additionally, by means of advanced sampling techniques based on multiple steered molecular dynamics, we provide free energy profiles for ligand migration for both acid/base species, showing a similar behavior to the previously reported for the related H2S/HS¯ pair. Finally, we studied the ligand interchange reaction (H2O/H2S, HS¯ and H2O/HSSH, HSS¯) by means of hybrid quantum mechanics-molecular mechanics calculations. We show that the anionic species are able to displace more efficiently the H2O bound to the iron, and that the H-bond network in the distal cavity can help the neutral species to perform the reaction. Altogether, we provide a molecular explanation for the experimental information and show that the global association process depends on a fine balance between the migration towards the active site and the ligand interchange reaction.
Collapse
Affiliation(s)
- Jonathan Alexis Córdova
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| | - Luciana Capece
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| |
Collapse
|
8
|
Clemente CM, Capece L, Martí MA. Best Practices on QM/MM Simulations of Biological Systems. J Chem Inf Model 2023; 63:2609-2627. [PMID: 37100031 DOI: 10.1021/acs.jcim.2c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Eaton WA. A retrospective on statistical mechanical models for hemoglobin allostery. J Chem Phys 2022; 157:184104. [PMID: 36379793 PMCID: PMC9830738 DOI: 10.1063/5.0127585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Understanding allosteric interactions in proteins has become one of the major research areas in protein science. The original aim of the famous theoretical model of Monod, Wyman, and Changeux (MWC) was to explain the regulation of enzymatic activity in biochemical pathways. However, its first successful quantitative application was to explain cooperative oxygen binding by hemoglobin, often called the "hydrogen molecule of biology." The combination of its original application and the enormous amount of research on hemoglobin has made it the paradigm for studies of allostery, especially for multi-subunit proteins, and for the development of statistical mechanical models to describe how structure determines function. This article is a historical account of the development of statistical mechanical models for hemoglobin to explain both the cooperative binding of oxygen (called homotropic effects by MWC) and how oxygen binding is affected by ligands that bind distant from the heme oxygen binding site (called heterotropic allosteric effects by MWC). This account makes clear the many remaining challenges for describing the relationship of structure to function for hemoglobin in terms of a satisfactory statistical mechanical model.
Collapse
|
10
|
Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing. Biosens Bioelectron 2022; 216:114662. [DOI: 10.1016/j.bios.2022.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
11
|
Blake LI, Cann MJ. Carbon Dioxide and the Carbamate Post-Translational Modification. Front Mol Biosci 2022; 9:825706. [PMID: 35300111 PMCID: PMC8920986 DOI: 10.3389/fmolb.2022.825706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Carbon dioxide is essential for life. It is at the beginning of every life process as a substrate of photosynthesis. It is at the end of every life process as the product of post-mortem decay. Therefore, it is not surprising that this gas regulates such diverse processes as cellular chemical reactions, transport, maintenance of the cellular environment, and behaviour. Carbon dioxide is a strategically important research target relevant to crop responses to environmental change, insect vector-borne disease and public health. However, we know little of carbon dioxide’s direct interactions with the cell. The carbamate post-translational modification, mediated by the nucleophilic attack by carbon dioxide on N-terminal α-amino groups or the lysine ɛ-amino groups, is one mechanism by which carbon dioxide might alter protein function to form part of a sensing and signalling mechanism. We detail known protein carbamates, including the history of their discovery. Further, we describe recent studies on new techniques to isolate this problematic post-translational modification.
Collapse
|
12
|
Glasgow KW, Dillard M, Hertenstein E, Justin A, George R, Brady AB. Going Nuclear with Amino Acids and Proteins - Basic Biochemistry and Molecular Biology Primer for the Technologist. J Nucl Med Technol 2022; 50:186-194. [PMID: 35197272 DOI: 10.2967/jnmt.122.263847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been an influx of new tracers into the field of nuclear medicine and molecular imaging. Most of these tracers that have been FDA approved for clinical imaging exploit various mechanisms of protein biochemistry and molecular biology to bring about their actions, such as amino acid metabolism, protein folding, receptor-ligand interactions, and surface transport mechanisms. In this review, we attempt to paint a clear picture of the basic biochemistry and molecular biology of protein structure, translation, transcription, post-translational modifications, and protein targeting, in the context of the various radiopharmaceuticals currently used clinically, all in an easy-to-understand language for entry level technologists in the field. Tracer characteristics, including indications, dosage, injection-to-imaging time, and the logic behind the normal and pathophysiologic biodistribution of these newer molecular tracers, are also discussed.
Collapse
Affiliation(s)
| | - Mike Dillard
- Nuclear Medicine, PET/CT, Therapeutics, Inland Imaging, LLC, United States
| | - Eric Hertenstein
- Nuclear Medicine Institute and Master of Science in Radiologic Sciences Graduate Program, University of Findlay, United States
| | - Allen Justin
- Western Sierra Collegiate Academy, United States
| | - Remo George
- Nuclear Medicine and Molecular Imaging Sciences Program, University of Alabama at Birmingham, United States
| | - Amy Byrd Brady
- Nuclear Medicine and Molecular Imaging Sciences Program, University of Alabama at Birmingham, United States
| |
Collapse
|
13
|
Analysis of Fluctuation in the Heme-Binding Pocket and Heme Distortion in Hemoglobin and Myoglobin. Life (Basel) 2022; 12:life12020210. [PMID: 35207496 PMCID: PMC8880375 DOI: 10.3390/life12020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Heme is located in the active site of proteins and has diverse and important biological functions, such as electron transfer and oxygen transport and/or storage. The distortion of heme porphyrin is considered an important factor for the diverse functions of heme because it correlates with the physical properties of heme, such as oxygen affinity and redox potential. Therefore, clarification of the relationship between heme distortion and the protein environment is crucial in protein science. Here, we analyzed the fluctuation in heme distortion in the protein environment for hemoglobin and myoglobin using molecular dynamics (MD) simulations and quantum mechanical (QM) calculations as well as statistical analysis of the protein structures of hemoglobin and myoglobin stored in Protein Data Bank. Our computation and statistical analysis showed that the protein environment for hemoglobin and myoglobin prominently affects the doming distortion of heme porphyrin, which correlates with its oxygen affinity, and that the magnitude of distortion is different between hemoglobin and myoglobin. These results suggest that heme distortion is affected by its protein environment and fluctuates around its fitted conformation, leading to physical properties that are appropriate for protein functions.
Collapse
|
14
|
Dynamics of camel and human hemoglobin revealed by molecular simulations. Sci Rep 2022; 12:122. [PMID: 34997093 PMCID: PMC8741986 DOI: 10.1038/s41598-021-04112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
Hemoglobin is one of the most widely studied proteins genetically, biochemically, and structurally. It is an oxygen carrying tetrameric protein that imparts the characteristic red color to blood. Each chain of hemoglobin harbors a heme group embedded in a hydrophobic pocket. Several studies have investigated structural variations present in mammalian hemoglobin and their functional implications. However, camel hemoglobin has not been thoroughly explored, especially from a structural perspective. Importantly, very little is known about how the heme group interacts with hemoglobin under varying conditions of osmolarity and temperature. Several experimental studies have indicated that the tense (T) state is more stable than the relaxed (R) state of hemoglobin under normal physiological conditions. Despite the fact that R state is less stable than the T state, no extensive structural dynamics studies have been performed to investigate global quaternary transitions of R state hemoglobin under normal physiological conditions. To evaluate this, several 500 ns all-atom molecular dynamics simulations were performed to get a deeper understanding of how camel hemoglobin behaves under stress, which it is normally exposed to, when compared to human hemoglobin. Notably, camel hemoglobin was more stable under physiological stress when compared to human hemoglobin. Additionally, when compared to camel hemoglobin, cofactor-binding regions of hemoglobin also exhibited more fluctuations in human hemoglobin under the conditions studied. Several differences were observed between the residues of camel and human hemoglobin that interacted with heme. Importantly, distal residues His58 of α hemoglobin and His63 of β hemoglobin formed more sustained interactions, especially at higher temperatures, in camel hemoglobin. These residues are important for oxygen binding to hemoglobin. Thus, this work provides insights into how camel and human hemoglobin differ in their interactions under stress.
Collapse
|
15
|
Chang C, Obeid W, Thiessen-Philbrook H, Parikh CR. Sample Processing and Stability for Urine Biomarker Studies. J Appl Lab Med 2021; 6:1628-1634. [PMID: 34414423 DOI: 10.1093/jalm/jfab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Current methods of processing and storing urine samples have not been compared systematically to determine optimal conditions for advancing research on urinary biomarkers. Often, preanalytical handling is nonideal, especially considering the COVID-19 pandemic; consequently, we compared the effects of different short-term storage and processing methods on urinary biomarker measurements. METHODS Spot urine samples were collected via a Foley catheter from 20 hospitalized patients from the Yale New Haven Hospital within 48 hours postcardiac surgery. The effects of 3 urine storage and processing methods on biomarkers were tested: (a) 48-hour temporary storage at 4 °C prior to freezing at -80 °C, (b) 48-hour temporary storage at 25 °C prior to freezing at -80 °C, and (c) no centrifugation and immediate storage at -80 °C. Established Meso-Scale Device assay methods were used to measure the urine concentrations of 18 biomarkers: interferon gamma (IFN-ɣ), interleukin (IL)-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-18, tumor necrosis factor alpha (TNF-α), epidermal growth factor (EGF), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin (OPN), uromodulin (UMOD), kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), and chitinase-3-like protein 1 (YKL-40). RESULTS Measurements of most biomarkers investigated remained stable after temporary storage at 4 °C. IL-6, IL-8, KIM-1, MCP-1, YKL-40, EGF, and NGAL were stable across all 3 processing conditions. IL-12p70 and IL-4 demonstrated significant differences in all tested conditions compared to the reference standard. CONCLUSIONS We identified several notable biomarkers that are robust to variations in preanalytical techniques and can be reliably investigated with nonideal handling conditions.
Collapse
Affiliation(s)
- Crystal Chang
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Thiessen-Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Maity D, Pal D. Molecular Dynamics of Hemoglobin Reveals Structural Alterations and Explains the Interactions Driving Sickle Cell Fibrillation. J Phys Chem B 2021; 125:9921-9933. [PMID: 34459602 DOI: 10.1021/acs.jpcb.1c01684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In sickle cell anemia, deoxyhemoglobin deforms RBCs by forming fibrils inside that disintegrate on oxygenation. We studied 100 ns long all-atom molecular dynamics (MD) for sickle and normal hemoglobin fibril models to understand this process, complemented by multiple 1 μs MD for a single tetramer of sickle and normal hemoglobin in deoxy and oxy states. We find that the presence of hydrophobic residues without a bulky side chain at β-6 in hemoglobin is the reason for the stability of the fibrils. Moreover, the free energy landscapes from MD of hemoglobin starting in the tensed (T) state capture the putative transition from T to relaxed (R) state, associated with oxygen binding. The three conformational wells in the landscapes are characterized by the quaternary changes where one αβ dimer rotates with respect to the other. The conformational changes from the oxygenation of sickle hemoglobin hinder the intermolecular contacts necessary for fibril formation.
Collapse
Affiliation(s)
- Dibyajyoti Maity
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
17
|
Eaton WA. Impact of hemoglobin biophysical studies on molecular pathogenesis and drug therapy for sickle cell disease. Mol Aspects Med 2021; 84:100971. [PMID: 34274158 DOI: 10.1016/j.mam.2021.100971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 01/20/2023]
Abstract
Basic research on hemoglobin has been essential for understanding the origin and treatment of many hematological disorders due to abnormal hemoglobins. The most important of the hemoglobinopathies is sickle cell disease - Linus Pauling's "molecular disease" that gave birth to molecular medicine. In this review, I will describe the contributions of basic biophysical research on normal and sickle cell hemoglobin (HbS) to understanding the molecular pathogenesis of the disease and providing the conceptual basis for the various approaches to drug therapy that target HbS polymerization. Most prominent among these are the experimental results on the solubility of HbS as a function of oxygen saturation explained by the allosteric model of Monod, Wyman, and Changeux and the Gill-Wyman thermodynamic linkage relation between solubility and oxygen binding, the solubility of mixtures of HbS with normal or fetal hemoglobin explained by Minton's thermodynamic model, and the highly unusual kinetics of HbS polymerization explained by a novel double nucleation mechanism that also accounts for the aggregation kinetics of the Alzheimer's peptide. The HbS polymerization kinetics are of great importance to understanding the pathophysiology and clinical course, as well as guiding drug development for treating this common and severe disease. The article focuses primarily on experimental and theoretical results from my lab, so it is not a comprehensive review of the subject.
Collapse
Affiliation(s)
- William A Eaton
- Laboratory of Chemical Physics, 5/104, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Endo M, Ozawa T. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Int J Mol Sci 2020; 21:E6538. [PMID: 32906768 PMCID: PMC7555964 DOI: 10.3390/ijms21186538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochemical processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-infrared light as the emission maximum, is necessary for in vivo animal experiments. Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chemical modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chemical modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramolecular BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| |
Collapse
|
19
|
Fago A, Natarajan C, Pettinati M, Hoffmann FG, Wang T, Weber RE, Drusin SI, Issoglio F, Martí MA, Estrin D, Storz JF. Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO 2. Am J Physiol Regul Integr Comp Physiol 2020; 318:R657-R667. [PMID: 32022587 DOI: 10.1152/ajpregu.00342.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Martín Pettinati
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, Mississippi
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Salvador I Drusin
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Issoglio
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
20
|
Scheps KG, Hasenahuer MA, Parisi G, Targovnik HM, Fornasari MS. Curating the gnomAD database: Report of novel variants in the globin-coding genes and bioinformatics analysis. Hum Mutat 2019; 41:81-102. [PMID: 31553106 DOI: 10.1002/humu.23925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Massive parallel sequencing technologies are facilitating the faster identification of sequence variants with the consequent capability of untangling the molecular bases of many human genetic syndromes. However, it is not always easy to understand the impact of novel variants, especially for missense changes, which can lead to a spectrum of phenotypes. This study presents a custom-designed multistep methodology to evaluate the impact of novel variants aggregated in the genome aggregation database for the HBB, HBA2, and HBA1 genes, by testing and improving its performance with a dataset of previously described alterations affecting those same genes. This approach scored high sensitivity and specificity values and showed an overall better performance than sequence-derived predictors, highlighting the importance of protein conformation and interaction specific analyses in curating variant databases. This study also describes the strengths and limitations of these structural studies and allows identifying residues in the globin chains more prone to tolerate substitutions.
Collapse
Affiliation(s)
- Karen G Scheps
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Marcia A Hasenahuer
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Héctor M Targovnik
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - María S Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
21
|
Tarabini RF, Timmers LFSM, Sequeiros-Borja CE, Norberto de Souza O. The importance of the quaternary structure to represent conformational ensembles of the major Mycobacterium tuberculosis drug target. Sci Rep 2019; 9:13683. [PMID: 31548581 PMCID: PMC6757107 DOI: 10.1038/s41598-019-50213-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Flexibility is a feature intimately related to protein function, since conformational changes can be used to describe environmental changes, chemical modifications, protein-protein and protein-ligand interactions. In this study, we have investigated the influence of the quaternary structure of 2-trans-enoyl-ACP (CoA) reductase or InhA, from Mycobacterium tuberculosis, to its flexibility. We carried out classical molecular dynamics simulations using monomeric and tetrameric forms to elucidate the enzyme's flexibility. Overall, we observed statistically significant differences between conformational ensembles of tertiary and quaternary structures. In addition, the enzyme's binding site is the most affected region, reinforcing the importance of the quaternary structure to evaluate the binding affinity of small molecules, as well as the effect of single point mutations to InhA protein dynamics.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade do Vale do Taquari -Univates, Rua Avelino Talini, 171 - Bairro Universitário, Lajeado, RS, Brazil.
| | - Carlos Eduardo Sequeiros-Borja
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil.,Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Gene Expression, Laboratory of Biomolecular Interactions and Transport, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Osmar Norberto de Souza
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Investigation of quaternary structure of aggregating 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans: In the pursuit of consensus of various biophysical techniques. Biochim Biophys Acta Gen Subj 2019; 1863:1027-1039. [PMID: 30876874 DOI: 10.1016/j.bbagen.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
Abstract
In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme's specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme's isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 μg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.
Collapse
|
23
|
Boubeta FM, Contestín García RM, Lorenzo EN, Boechi L, Estrin D, Sued M, Arrar M. Lessons learned about steered molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2019; 93:1129-1138. [PMID: 30793836 DOI: 10.1111/cbdd.13485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
The calculation of free energy profiles is central in understanding differential enzymatic activity, for instance, involving chemical reactions that require QM-MM tools, ligand migration, and conformational rearrangements that can be modeled using classical potentials. The use of steered molecular dynamics (sMD) together with the Jarzynski equality is a popular approach in calculating free energy profiles. Here, we first briefly review the application of the Jarzynski equality to sMD simulations, then revisit the so-called stiff-spring approximation and the consequent expectation of Gaussian work distributions and, finally, reiterate the practical utility of the second-order cumulant expansion, as it coincides with the parametric maximum-likelihood estimator in this scenario. We illustrate this procedure using simulations of CO, both in aqueous solution and in a carbon nanotube as a model system for biologically relevant nanoheterogeneous environments. We conclude the use of the second-order cumulant expansion permits the use of faster pulling velocities in sMD simulations, without introducing bias due to large dispersion in the non-equilibrium work distribution.
Collapse
Affiliation(s)
- Fernando Martín Boubeta
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío María Contestín García
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Norberto Lorenzo
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Estrin
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Sued
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mehrnoosh Arrar
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|