1
|
Abraha HB, Ramesha RM, Ferdiansyah MK, Son H, Kim G, Park B, Jeong DY, Kim KP. Genome Analysis of a Newly Sequenced B. subtilis SRCM117797 and Multiple Public B. subtilis Genomes Unveils Insights into Strain Diversification and Biased Core Gene Distribution. Curr Microbiol 2024; 81:305. [PMID: 39133322 DOI: 10.1007/s00284-024-03819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The bacterium Bacillus subtilis is a widely used study model and industrial workhorse organism that belongs to the group of gram-positive bacteria. In this study, we report the analysis of a newly sequenced complete genome of B. subtilis strain SRCM117797 along with a comparative genomics of a large collection of B. subtilis strain genomes. B. subtilis strain SRCM117797 has 4,255,638 bp long chromosome with 43.4% GC content and high coding sequence association with macromolecules, metabolism, and phage genes. Genomic diversity analysis of 232 B. subtilis strains resulted in the identification of eight clusters and three singletons. Of 147 B. subtilis strains included, 89.12% had strain-specific genes, of which 6.75% encoded strain-specific insertion sequence family transposases. Our analysis showed a potential role of strain-specific insertion sequence family transposases in intra-cellular accumulation of strain-specific genes. Furthermore, the chromosomal layout of the core genes was biased: overrepresented on the upper half (closer to the origin of replication) of the chromosome, which may explain the fast-growing characteristics of B. subtilis. Overall, the study provides a complete genome sequence of B. subtilis strain SRCM117797, show an extensive genomic diversity of B. subtilis strains and insights into strain diversification mechanism and non-random chromosomal layout of core genes.
Collapse
Affiliation(s)
- Haftom Baraki Abraha
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | | | | | - Hyeonro Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gayeong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Beomseok Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, 56048, South Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
2
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
3
|
Tian X, Teo WFA, Yang Y, Dong L, Wong A, Chen L, Ahmed H, Choo SW, Jakubovics NS, Tan GYA. Genome characterisation and comparative analysis of Schaalia dentiphila sp. nov. and its subspecies, S. dentiphila subsp. denticola subsp. nov., from the human oral cavity. BMC Microbiol 2024; 24:185. [PMID: 38802738 PMCID: PMC11131293 DOI: 10.1186/s12866-024-03346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Schaalia species are primarily found among the oral microbiota of humans and other animals. They have been associated with various infections through their involvement in biofilm formation, modulation of host responses, and interaction with other microorganisms. In this study, two strains previously indicated as Actinomyces spp. were found to be novel members of the genus Schaalia based on their whole genome sequences. RESULTS Whole-genome sequencing revealed both strains with a genome size of 2.3 Mbp and GC contents of 65.5%. Phylogenetics analysis for taxonomic placement revealed strains NCTC 9931 and C24 as distinct species within the genus Schaalia. Overall genome-relatedness indices including digital DNA-DNA hybridization (dDDH), and average nucleotide/amino acid identity (ANI/AAI) confirmed both strains as distinct species, with values below the species boundary thresholds (dDDH < 70%, and ANI and AAI < 95%) when compared to nearest type strain Schaalia odontolytica NCTC 9935 T. Pangenome and orthologous analyses highlighted their differences in gene properties and biological functions compared to existing type strains. Additionally, the identification of genomic islands (GIs) and virulence-associated factors indicated their genetic diversity and potential adaptive capabilities, as well as potential implications for human health. Notably, CRISPR-Cas systems in strain NCTC 9931 underscore its adaptive immune mechanisms compared to strain C24. CONCLUSIONS Based on these findings, strain NCTC 9931T (= ATCC 17982T = DSM 43331T = CIP 104728T = CCUG 18309T = NCTC 14978T = CGMCC 1.90328T) represents a novel species, for which the name Schaalia dentiphila subsp. dentiphila sp. nov. subsp. nov. is proposed, while strain C24T (= NCTC 14980T = CGMCC 1.90329T) represents a distinct novel subspecies, for which the name Schaalia dentiphila subsp. denticola. subsp. nov. is proposed. This study enriches our understanding of the genomic diversity of Schaalia species and paves the way for further investigations into their roles in oral health. SIGNIFICANCE This research reveals two Schaalia strains, NCTC 9931 T and C24T, as novel entities with distinct genomic features. Expanding the taxonomic framework of the genus Schaalia, this study offers a critical resource for probing the metabolic intricacies and resistance patterns of these bacteria. This work stands as a cornerstone for microbial taxonomy, paving the way for significant advances in clinical diagnostics.
Collapse
Affiliation(s)
- Xuechen Tian
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Wee Fei Aaron Teo
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yixin Yang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Linyinxue Dong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Li Chen
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Halah Ahmed
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| | - Siew Woh Choo
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Nicholas S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK.
| | - Geok Yuan Annie Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
4
|
Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, Ren H, Lv X, Pan R, Zhang J, Zhu Y, Xu J. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat Commun 2023; 14:7318. [PMID: 37951952 PMCID: PMC10640626 DOI: 10.1038/s41467-023-43000-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Caiyu Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ran Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Hao Ren
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Srivastava S, Bombaywala S, Jakhesara SJ, Patil NV, Joshi CG, Purohit HJ, Dafale NA. Potential of camel rumen derived Bacillus subtilis and Bacillus velezensis strains for application in plant biomass hydrolysis. Mol Genet Genomics 2023; 298:361-374. [PMID: 36575347 DOI: 10.1007/s00438-022-01987-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Rumen inhabiting Bacillus species possesses a high genetic potential for plant biomass hydrolysis and conversion to value-added products. In view of the same, five camel rumen-derived Bacillus strains, namely B. subtilis CRN 1, B. velezensis CRN 2, B. subtilis CRN 7, B. subtilis CRN 11, and B. velezensis CRN 23 were initially assayed for diverse hydrolytic activities, followed by genome mining to unravel the potential applications. CRN 1 and CRN 7 showed the highest endoglucanase activity with 0.4 U/ml, while CRN 23 showed high β-xylosidase activity of 0.36 U/ml. The comprehensive genomic insights of strains resolve taxonomic identity, clusters of an orthologous gene, pan-genome dynamics, and metabolic features. Annotation of Carbohydrate active enzymes (CAZymes) reveals the presence of diverse glycoside hydrolases (GH) GH1, GH5, GH43, and GH30, which are solely responsible for the effective breakdown of complex bonds in plant polysaccharides. Further, protein modeling and ligand docking of annotated endoglucanases showed an affinity for cellotrioside, cellobioside, and β-glucoside. The finding indicates the flexibility of Bacillus-derived endoglucanase activity on diverse cellulosic substrates. The presence of the butyrate synthesis gene in the CRN 1 strain depicts its key role in the production of important short-chain fatty acids essential for healthy rumen development. Similarly, antimicrobial peptides such as bacilysin and non-ribosomal peptides (NRPS) synthesized by the Bacillus strains were also annotated in the genome. The findings clearly define the role of Bacillus sp. inside the camel rumen and its potential application in various plant biomass utilizing industry and animal health research sectors.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakina Bombaywala
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Niteen V Patil
- National Research Centre on Camel, Indian Council for Agriculture Research, Bikaner, 334001, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Anderson BD, Bisanz JE. Challenges and opportunities of strain diversity in gut microbiome research. Front Microbiol 2023; 14:1117122. [PMID: 36876113 PMCID: PMC9981649 DOI: 10.3389/fmicb.2023.1117122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Just because two things are related does not mean they are the same. In analyzing microbiome data, we are often limited to species-level analyses, and even with the ability to resolve strains, we lack comprehensive databases and understanding of the importance of strain-level variation outside of a limited number of model organisms. The bacterial genome is highly plastic with gene gain and loss occurring at rates comparable or higher than de novo mutations. As such, the conserved portion of the genome is often a fraction of the pangenome which gives rise to significant phenotypic variation, particularly in traits which are important in host microbe interactions. In this review, we discuss the mechanisms that give rise to strain variation and methods that can be used to study it. We identify that while strain diversity can act as a major barrier in interpreting and generalizing microbiome data, it can also be a powerful tool for mechanistic research. We then highlight recent examples demonstrating the importance of strain variation in colonization, virulence, and xenobiotic metabolism. Moving past taxonomy and the species concept will be crucial for future mechanistic research to understand microbiome structure and function.
Collapse
Affiliation(s)
- Benjamin D. Anderson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Jordan E. Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Penn State Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA, United States
| |
Collapse
|
7
|
de Lima Ferreira JK, de Mello Varani A, Tótola MR, Fernandes Almeida M, de Sousa Melo D, Ferreira Silva E Batista C, Chalfun-Junior A, Pimenta de Oliveira KK, Wurdig Roesch LF, Satler Pylro V. Phylogenomic characterization and pangenomic insights into the surfactin-producing bacteria Bacillus subtilis strain RI4914. Braz J Microbiol 2022; 53:2051-2063. [PMID: 36083529 PMCID: PMC9679098 DOI: 10.1007/s42770-022-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.
Collapse
Affiliation(s)
| | - Alessandro de Mello Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Sao Paulo, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Michelle Fernandes Almeida
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | - Dirceu de Sousa Melo
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | - Antonio Chalfun-Junior
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | | | | | - Victor Satler Pylro
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
9
|
Lin H, Zhou B, Zhao J, Liao S, Han J, Fang J, Liu P, Ding W, Che Z, Xu M. Insight into the protein degradation during the broad bean fermentation process. Food Sci Nutr 2022; 10:2760-2772. [PMID: 35959259 PMCID: PMC9361444 DOI: 10.1002/fsn3.2879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Broad bean fermentation is of vital importance in PixianDouban (PXDB) production, as well as a key process for microorganisms to degrade protein, which lays the foundation for the formation of PXDB flavor. In this study, two fungi and bacteria were screened, and their morphology, molecular biology, growth, and enzyme production characteristics were analyzed, and then they were applied to the broad bean fermentation simulation system. The protein, peptide, amino acid, amino nitrogen, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the system were evaluated. The results showed that the four microorganisms were Aspergillus oryzae, Aspergillus jensenii, Staphylococcus gallinarum, and Enterobacter hormaeche. Aspergillus oryzae had the highest protease activity at pH 7.0, while the other three strains had better enzyme activity stability under neutral acidic conditions. And the total protein (F1 and F2 were 18.32 g/100 g, 19.15 g/100 g, respectively), peptides (11.79 ± 0.04 mg/g and 12.06 ± 0.04 mg/g), and amino acids (55.12 ± 2.78 mg/g and 54.11 ± 1.97 mg/g) of the fungus experimental groups (F) were higher than the bacterial experimental groups (B). In addition, the enzyme system produced by fungi exhibited a stronger ability for albumin (20 kDa) and glutenin (<30 kDa) deterioration in neutral conditions, while the bacterial enzyme system was more efficient in degrading albumin (<30 kDa) and glutenin (20-30 kDa) in acidic conditions, as indicated by SDS-PAGE. These findings showed that both bacteria and fungi played an important role in the degradation of protein in different fermentation stages of broad bean fermentation. Practical applications There is a lack of comprehensive understanding of the protein composition and protein degradation mechanism of broad beans in the fermentation stage of PXDB. This research work explored the differences in the degradation of PXDB fermented protein by different microorganisms, and provided a theoretical basis for optimizing the production of PXDB and improving the quality of PXDB.
Collapse
Affiliation(s)
- Hongbin Lin
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Binbin Zhou
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Jianhua Zhao
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Shiqi Liao
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Jinlin Han
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Jiaxing Fang
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Ping Liu
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Wenwu Ding
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Zhenming Che
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| | - Min Xu
- School of Food and Bio‐EngineeringXihua UniversityChengduChina
| |
Collapse
|
10
|
Hua Z, Liu T, Han P, Zhou J, Zhao Y, Huang L, Yuan Y. Isolation, genomic characterization, and mushroom growth-promoting effect of the first fungus-derived Rhizobium. Front Microbiol 2022; 13:947687. [PMID: 35935222 PMCID: PMC9354803 DOI: 10.3389/fmicb.2022.947687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Polyporus umbellatus is a well-known edible and medicinal mushroom, and some bacteria isolated from mushroom sclerotia may have beneficial effects on their host. These mushroom growth-promoting bacteria (MGPBs) are of great significance in the mushroom production. In this work, we aimed to isolate and identify MGPBs from P. umbellatus sclerotia. Using the agar plate dilution method, strain CACMS001 was isolated from P. umbellatus sclerotia. The genome of CACMS001 was sequenced using PacBio platform, and the phylogenomic analysis indicated that CACMS001 could not be assigned to known Rhizobium species. In co-culture experiments, CACMS001 increased the mycelial growth of P. umbellatus and Armillaria gallica and increased xylanase activity in A. gallica. Comparative genomic analysis showed that CACMS001 lost almost all nitrogen fixation genes but specially acquired one redox cofactor cluster with pqqE, pqqD, pqqC, and pqqB involved in the synthesis of pyrroloquinoline quinone, a peptide-derived redox participating in phosphate solubilization activity. Strain CACMS001 has the capacity to solubilize phosphate using Pikovskaya medium, and phnA and phoU involved in this process in CACMS001 were revealed by quantitative real-time PCR. CACMS001 is a new potential Rhizobium species and is the first identified MGPB belonging to Rhizobium. This novel bacterium would play a vital part in P. umbellatus, A. gallica, and other mushroom cultivation.
Collapse
Affiliation(s)
- Zhongyi Hua
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianrui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengjie Han
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Junhui Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuan Yuan,
| |
Collapse
|
11
|
Yang T, Gao F. High-quality pan-genome of Escherichia coli generated by excluding confounding and highly similar strains reveals an association between unique gene clusters and genomic islands. Brief Bioinform 2022; 23:6638794. [PMID: 35809555 DOI: 10.1093/bib/bbac283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023] Open
Abstract
The pan-genome analysis of bacteria provides detailed insight into the diversity and evolution of a bacterial population. However, the genomes involved in the pan-genome analysis should be checked carefully, as the inclusion of confounding strains would have unfavorable effects on the identification of core genes, and the highly similar strains could bias the results of the pan-genome state (open versus closed). In this study, we found that the inclusion of highly similar strains also affects the results of unique genes in pan-genome analysis, which leads to a significant underestimation of the number of unique genes in the pan-genome. Therefore, these strains should be excluded from pan-genome analysis at the early stage of data processing. Currently, tens of thousands of genomes have been sequenced for Escherichia coli, which provides an unprecedented opportunity as well as a challenge for pan-genome analysis of this classical model organism. Using the proposed strategies, a high-quality E. coli pan-genome was obtained, and the unique genes was extracted and analyzed, revealing an association between the unique gene clusters and genomic islands from a pan-genome perspective, which may facilitate the identification of genomic islands.
Collapse
Affiliation(s)
- Tong Yang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Park MG, Choi JY, Kim JH, Park DH, Wang M, Kim HJ, Kim SH, Lee HY, Je YH. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. PEST MANAGEMENT SCIENCE 2022; 78:2976-2984. [PMID: 35419912 DOI: 10.1002/ps.6922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) has been widely used as a biological control agent for lepidopteran pests. However, resistance to Bt is a major concern associated with Spodoptera spp. (Noctuidae) and Plutella xylostella (Plutellidae). For efficient control of Noctuidae and Plutellidae, novel Bt strains which have high toxicity and a broad host range are needed. RESULTS To develop novel Bt strains as used for bio-insecticides, the Bt IMBL-B9 with high toxicity against Spodoptera exigua, Spodoptera frugiperda and P. xylostella was isolated and characterized. The Bt kurstaki IMBL-B9 strain produced bipyramidal and cuboidal crystals consisting of cry toxins with molecular weights of 130 and 65 kDa, respectively. This strain harbors eight crystal protein genes in total, including cry1Ea and one vegetative insecticidal protein gene. The median lethal concentration (LC50 ) values of IMBL-B9 against S. exigua and S. frugiperda were 21.8- and 19.3-fold lower than those of the Bt kusrstaki strain, and 5.6- and 4.9-fold lower than those of Bt aizawai strain, respectively. To evaluate the insecticidal activity of Cry proteins from IMBL-B9, cry gene-sourced recombinant Bt strains were constructed. These strains have insecticidal activity and synergic action against lepidopteran pests. CONCLUSION In this study, a novel Bt kurstaki IMBL-B9 strain was isolated and this could be useful for the development of new bio-insecticide or cry gene-based recombinant products as an alternative solution against lepidopterans, including Noctuidae and Plutellidae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Gu Park
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ji Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Hee Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ho Yeon Lee
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Yeon Ho Je
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Eigentler L, Kalamara M, Ball G, MacPhee CE, Stanley-Wall NR, Davidson FA. Founder cell configuration drives competitive outcome within colony biofilms. THE ISME JOURNAL 2022; 16:1512-1522. [PMID: 35121821 PMCID: PMC9122948 DOI: 10.1038/s41396-022-01198-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells' potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Margarita Kalamara
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5HN, UK
| | - Cait E MacPhee
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
14
|
Genomic Features and Pervasive Negative Selection in Rhodanobacter Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer. Microbiol Spectr 2022; 10:e0259121. [PMID: 35107332 PMCID: PMC8809349 DOI: 10.1128/spectrum.02591-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhodanobacter species dominate in the Oak Ridge Reservation (ORR) subsurface environments contaminated with acids, nitrate, metal radionuclides, and other heavy metals. To uncover the genomic features underlying adaptations to these mixed-waste environments and to guide genetic tool development, we sequenced the whole genomes of eight Rhodanobacter strains isolated from the ORR site. The genome sizes ranged from 3.9 to 4.2 Mb harboring 3,695 to 4,035 protein-coding genes and GC contents approximately 67%. Seven strains were classified as R. denitrificans and one strain, FW510-R12, as R. thiooxydans based on full length 16S rRNA sequences. According to gene annotation, the top two Cluster of Orthologous Groups (COGs) with high pan-genome expansion rates (Pan/Core gene ratio) were “replication, recombination and repair” and “defense mechanisms.” The denitrifying genes had high DNA homologies except the predicted protein structure variances in NosZ. In contrast, heavy metal resistance genes were diverse with between 7 to 34% of them were located in genomic islands, and these results suggested origins from horizontal gene transfer. Analysis of the methylation patterns in four strains revealed the unique 5mC methylation motifs. Most orthologs (78%) had ratios of nonsynonymous to synonymous substitutions (dN/dS) less than one when compared to the type strain 2APBS1, suggesting the prevalence of negative selection. Overall, the results provide evidence for the important roles of horizontal gene transfer and negative selection in genomic adaptation at the contaminated field site. The complex restriction-modification system genes and the unique methylation motifs in Rhodanobacter strains suggest the potential recalcitrance to genetic manipulation. IMPORTANCE Despite the dominance of Rhodanobacter species in the subsurface of the contaminated Oak Ridge Reservation (ORR) site, very little is known about the mechanisms underlying their adaptions to the various stressors present at ORR. Recently, multiple Rhodanobacter strains have been isolated from the ORR groundwater samples from several wells with varying geochemical properties. Using Illumina, PacBio, and Oxford Nanopore sequencing platforms, we obtained the whole genome sequences of eight Rhodanobacter strains. Comparison of the whole genomes demonstrated the genetic diversity, and analysis of the long nanopore reads revealed the heterogeneity of methylation patterns in strains isolated from the same well. Although all strains contained a complete set of denitrifying genes, the predicted tertiary structures of NosZ differed. The sequence comparison results demonstrate the important roles of horizontal gene transfer and negative selection in adaptation. In addition, these strains may be recalcitrant to genetic manipulation due to the complex restriction-modification systems and methylations.
Collapse
|
15
|
Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. FORESTS 2021. [DOI: 10.3390/f12121714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacillus velezensis gram-positive bacterium, is frequently isolated from diverse niches mainly soil, water, plant roots, and fermented foods. B. velezensis is ubiquitous, non-pathogenic and endospore forming. Being frequently isolated from diverse plant holobionts it is considered host adapted microorganism and recognized of high economic importance given its ability to promote plant growth under diverse biotic and abiotic stress conditions. Additionally, the species suppress many plant diseases, including bacterial, oomycete, and fungal diseases. It is also able after plant host root colonization to induce unique physiological situation of host plant called primed state. Primed host plants are able to respond more rapidly and/or effectively to biotic or abiotic stress. Moreover, B. velezenis have the ability to resist diverse environmental stresses and help host plants to cope with, including metal and xenobiotic stresses. Within species B. velezensis strains have unique abilities allowing them to adopt different life styles. Strain level abilities knowledge is warranted and could be inferred using the ever-expanding new genomes list available in genomes databases. Pangenome analysis and subsequent identification of core, accessory and unique genomes is actually of paramount importance to decipher species full metabolic capacities and fitness across diverse environmental conditions shaping its life style. Despite the crucial importance of the pan genome, its assessment among large number of strains remains sparse and systematic studies still needed. Extensive knowledge of the pan genome is needed to translate genome sequencing efforts into developing more efficient biocontrol agents and bio-fertilizers. In this study, a genome survey of B. velezensis allowed us to (a) highlight B. velezensis species boundaries and show that Bacillus suffers taxonomic imprecision that blurs the debate over species pangenome; (b) identify drivers of their successful acquisition of specific life styles and colonization of new niches; (c) describe strategies they use to promote plant growth and development; (d) reveal the unlocked strain specific orphan secondary metabolite gene clusters (biosynthetic clusters with corresponding metabolites unknown) that product identification is still awaiting to amend our knowledge of their putative role in suppression of pathogens and plant growth promotion, and (e) to describe a dynamic pangenome with a secondary metabolite rich accessory genome.
Collapse
|
16
|
Liu H, Prajapati V, Prajapati S, Bais H, Lu J. Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Front Genet 2021; 12:724217. [PMID: 34659348 PMCID: PMC8514880 DOI: 10.3389/fgene.2021.724217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Vimalkumar Prajapati
- Division of Microbiology and Environmental, Biotechnology, Aspee Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, India
| | - Shobha Prajapati
- SVP-A School of Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Harsh Bais
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
17
|
Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution. Microbiol Spectr 2021; 9:e0031121. [PMID: 34287030 PMCID: PMC8552610 DOI: 10.1128/spectrum.00311-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.
Collapse
|
18
|
Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front Microbiol 2021; 12:571212. [PMID: 34025591 PMCID: PMC8139322 DOI: 10.3389/fmicb.2021.571212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Members of the Bacillus pumilus group (abbreviated as the Bp group) are quite diverse and ubiquitous in marine environments, but little is known about correlation with their terrestrial counterparts. In this study, 16 marine strains that we had isolated before were sequenced and comparative genome analyses were performed with a total of 52 Bp group strains. The analyses included 20 marine isolates (which included the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, differentiation, and environmental adaptation. Results Phylogenomic analysis revealed that the marine Bp group strains were grouped into three species: B. pumilus, B. altitudinis and B. safensis. All the three share a common ancestor. However, members of B. altitudinis were observed to cluster independently, separating from the other two, thus diverging from the others. Consistent with the universal nature of genes involved in the functioning of the translational machinery, the genes related to translation were enriched in the core genome. Functional genomic analyses revealed that the marine-derived and the terrestrial strains showed differences in certain hypothetical proteins, transcriptional regulators, K+ transporter (TrK) and ABC transporters. However, species differences showed the precedence of environmental adaptation discrepancies. In each species, land specific genes were found with possible functions that likely facilitate survival in diverse terrestrial niches, while marine bacteria were enriched with genes of unknown functions and those related to transcription, phage defense, DNA recombination and repair. Conclusion Our results indicated that the Bp isolates show distinct genomic features even as they share a common core. The marine and land isolates did not evolve independently; the transition between marine and non-marine habitats might have occurred multiple times. The lineage exhibited a priority effect over the niche in driving their dispersal. Certain intra-species niche specific genes could be related to a strains adaptation to its respective marine or terrestrial environment(s). In summary, this report describes the systematic evolution of 52 Bp group strains and will facilitate future studies toward understanding their ecological role and adaptation to marine and/or terrestrial environments.
Collapse
Affiliation(s)
- Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
19
|
Zhong C, Chen C, Wang L, Ning K. Integrating pan-genome with metagenome for microbial community profiling. Comput Struct Biotechnol J 2021; 19:1458-1466. [PMID: 33841754 PMCID: PMC8010324 DOI: 10.1016/j.csbj.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technology have led to the increased availability of genomes and metagenomes, which has greatly facilitated microbial pan-genome and metagenome analysis in the community. In line with this trend, studies on microbial genomes and phenotypes have gradually shifted from individuals to environmental communities. Pan-genomics and metagenomics are powerful strategies for in-depth profiling study of microbial communities. Pan-genomics focuses on genetic diversity, dynamics, and phylogeny at the multi-genome level, while metagenomics profiles the distribution and function of culture-free microbial communities in special environments. Combining pan-genome and metagenome analysis can reveal the microbial complicated connections from an individual complete genome to a mixture of genomes, thereby extending the catalog of traditional individual genomic profile to community microbial profile. Therefore, the combination of pan-genome and metagenome approaches has become a promising method to track the sources of various microbes and decipher the population-level evolution and ecosystem functions. This review summarized the pan-genome and metagenome approaches, the combined strategies of pan-genome and metagenome, and applications of these combined strategies in studies of microbial dynamics, evolution, and function in communities. We discussed emerging strategies for the study of microbial communities that integrate information in both pan-genome and metagenome. We emphasized studies in which the integrating pan-genome with metagenome approach improved the understanding of models of microbial community profiles, both structural and functional. Finally, we illustrated future perspectives of microbial community profile: more advanced analytical techniques, including big-data based artificial intelligence, will lead to an even better understanding of the patterns of microbial communities.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.,Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
20
|
Shikov AE, Malovichko YV, Lobov AA, Belousova ME, Nizhnikov AA, Antonets KS. The Distribution of Several Genomic Virulence Determinants Does Not Corroborate the Established Serotyping Classification of Bacillus thuringiensis. Int J Mol Sci 2021; 22:2244. [PMID: 33668147 PMCID: PMC7956386 DOI: 10.3390/ijms22052244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is not indicative of Bt strains' phenotypes, neither it reflects actual phylogenetic relationships within the species. In this respect, comparative genomic and proteomic techniques appear more informative, but their use in Bt strain classification remains limited. In the present work, we used a bottom-up proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification to assess which stage of Bt culture, vegetative or spore, would be more informative for strain characterization. To this end, the proteomic differences for the israelensis-attributed strains were assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis strain were also compared to the spores of strains belonging to two other major Bt serovars, namely darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the respective genes in the 104 Bt genome assemblies available at open access with serovar attributions specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at 67% identity threshold, including several virulence factors. Notable, individual phylogenies of these core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn, the distribution of accessory protein genes was not confined to the existing serovars. The obtained results indicate that neither gene presence nor the core gene sequence may serve as distinctive bases for the serovar attribution, undermining the notion that the serotyping system reflects strains' phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics data plausibly and thus may serve for draft phylogeny estimation of the novel strains.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Arseniy A. Lobov
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| |
Collapse
|
21
|
Genome Comparison Identifies Different Bacillus Species in a Bast Fibre-Retting Bacterial Consortium and Provides Insights into Pectin Degrading Genes. Sci Rep 2020; 10:8169. [PMID: 32424209 PMCID: PMC7235092 DOI: 10.1038/s41598-020-65228-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Retting of bast fibres requires removal of pectin, hemicellulose and other non-cellulosic materials from plant stem tissues by a complex microbial community. A microbial retting consortium with high-efficiency pectinolytic bacterial strains is effective in reducing retting-time and enhancing fibre quality. We report comprehensive genomic analyses of three bacterial strains (PJRB 1, 2 and 3) of the consortium and resolve their taxonomic status, genomic features, variations, and pan-genome dynamics. The genome sizes of the strains are ~3.8 Mb with 3729 to 4002 protein-coding genes. Detailed annotations of the protein-coding genes revealed different carbohydrate-degrading CAZy classes viz. PL1, PL9, GH28, CE8, and CE12. Phylogeny and structural features of pectate lyase proteins of PJRB strains divulge their functional uniqueness and evolutionary convergence with closely related Bacillus strains. Genome-wide prediction of genomic variations revealed 12461 to 67381 SNPs, and notably many unique SNPs were localized within the important pectin metabolism genes. The variations in the pectate lyase genes possibly contribute to their specialized pectinolytic function during the retting process. These findings encompass a strong foundation for fundamental and evolutionary studies on this unique microbial degradation of decaying plant material with immense industrial significance. These have preponderant implications in plant biomass research and food industry, and also posit application in the reclamation of water pollution from plant materials.
Collapse
|
22
|
Wu H, Wang D, Gao F. Toward a high-quality pan-genome landscape of Bacillus subtilis by removal of confounding strains. Brief Bioinform 2020; 22:1951-1971. [PMID: 32065216 DOI: 10.1093/bib/bbaa013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pan-genome analysis is widely used to study the evolution and genetic diversity of species, particularly in bacteria. However, the impact of strain selection on the outcome of pan-genome analysis is poorly understood. Furthermore, a standard protocol to ensure high-quality pan-genome results is lacking. In this study, we carried out a series of pan-genome analyses of different strain sets of Bacillus subtilis to understand the impact of various strains on the performance and output quality of pan-genome analyses. Consequently, we found that the results obtained by pan-genome analyses of B. subtilis can be influenced by the inclusion of incorrectly classified Bacillus subspecies strains, phylogenetically distinct strains, engineered genome-reduced strains, chimeric strains, strains with a large number of unique genes or a large proportion of pseudogenes, and multiple clonal strains. Since the presence of these confounding strains can seriously affect the quality and true landscape of the pan-genome, we should remove these deviations in the process of pan-genome analyses. Our study provides new insights into the removal of biases from confounding strains in pan-genome analyses at the beginning of data processing, which enables the achievement of a closer representation of a high-quality pan-genome landscape of B. subtilis that better reflects the performance and credibility of the B. subtilis pan-genome. This procedure could be added as an important quality control step in pan-genome analyses for improving the efficiency of analyses, and ultimately contributing to a better understanding of genome function, evolution and genome-reduction strategies for B. subtilis in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, School of Science, Tianjin University
| | - Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontier Science Center of Synthetic Biology (MOE), Key Laboratory of Systems Bioengineering (MOE), Tianjin University
| |
Collapse
|
23
|
Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y. Biocontrol Potential of a Novel Endophytic Bacterium From Mulberry ( Morus) Tree. Front Bioeng Biotechnol 2020; 7:488. [PMID: 32039187 PMCID: PMC6990687 DOI: 10.3389/fbioe.2019.00488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/30/2019] [Indexed: 01/18/2023] Open
Abstract
Mulberry (Morus) is an economically important woody tree that is suitable for use in sericulture as forage and in medicine. However, this broad-leaved tree is facing multiple threats ranging from phytopathogens to insect pests. Here, a Gram-positive, endospore-forming bacterium (ZJU1) was frequently isolated from healthy mulberry plants by screening for foliar endophytes showing antagonism against pathogens and pests. Whole-genome sequencing and annotation resulted in a genome size of 4.06 Mb and classified the bacterium as a novel strain of Bacillus amyloliquefaciens that has rarely been identified from tree leaves. An integrative approach combining traditional natural product chemistry, activity bioassays, and high-resolution mass spectrometry confirmed that strain ZJU1 uses a blend of antimicrobials including peptides and volatile organic compounds to oppose Botrytis cinerea, a major phytopathogenic fungus causing mulberry gray mold disease. We showed that the inoculation of endophyte-free plants with ZJU1 significantly decreased both leaf necrosis and mortality under field conditions. In addition to the direct interactions of endophytes with foliar pathogens, in planta studies suggested that the inoculation of endophytes also induced plant systemic defense, including high expression levels of mulberry disease resistance genes. Moreover, when applied to the generalist herbivore Spodoptera litura, ZJU1 was sufficient to reduce the pest survival rate below 50%. A previously undiscovered crystal toxin (Cry10Aa) could contribute to this insecticidal effect against notorious lepidopteran pests. These unique traits clearly demonstrate that B. amyloliquefaciens ZJU1 is promising for the development of successful strategies for biocontrol applications. The search for new plant-beneficial microbes and engineering microbiomes is therefore of great significance for sustainably improving plant performance.
Collapse
Affiliation(s)
- Sen Xie
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Marine Vallet
- Max Planck Fellow Group on Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anja David
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
24
|
Her HL, Wu YW. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics 2019; 34:i89-i95. [PMID: 29949970 PMCID: PMC6022653 DOI: 10.1093/bioinformatics/bty276] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Motivation Antimicrobial resistance (AMR) is becoming a huge problem in both developed and developing countries, and identifying strains resistant or susceptible to certain antibiotics is essential in fighting against antibiotic-resistant pathogens. Whole-genome sequences have been collected for different microbial strains in order to identify crucial characteristics that allow certain strains to become resistant to antibiotics; however, a global inspection of the gene content responsible for AMR activities remains to be done. Results We propose a pan-genome-based approach to characterize antibiotic-resistant microbial strains and test this approach on the bacterial model organism Escherichia coli. By identifying core and accessory gene clusters and predicting AMR genes for the E. coli pan-genome, we not only showed that certain classes of genes are unevenly distributed between the core and accessory parts of the pan-genome but also demonstrated that only a portion of the identified AMR genes belong to the accessory genome. Application of machine learning algorithms to predict whether specific strains were resistant to antibiotic drugs yielded the best prediction accuracy for the set of AMR genes within the accessory part of the pan-genome, suggesting that these gene clusters were most crucial to AMR activities in E. coli. Selecting subsets of AMR genes for different antibiotic drugs based on a genetic algorithm (GA) achieved better prediction performances than the gene sets established in the literature, hinting that the gene sets selected by the GA may warrant further analysis in investigating more details about how E. coli fight against antibiotics. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hsuan-Lin Her
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Luo G, Li B, Yang C, Wang Y, Bian X, Li W, Liu F, Huo G. Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front Microbiol 2019; 10:712. [PMID: 31024492 PMCID: PMC6465617 DOI: 10.3389/fmicb.2019.00712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Modulating gut microbiota to promote host health is well recognized. Therefore, people consume dietary products containing traditional probiotics in wishing to improve their health, and they need more research-based advices on how to select products with suitable probiotic species. Probiotic designers are sometimes confused about how to design precision products for different consumers by taking advantages of different probiotic species’ strengths. Additionally, large-scale analyses on traditional probiotic complementarity potentials and their roles in gut microbiome related to common diseases are not well understood. Here, we comprehensively analyzed 444 genomes of major traditional probiotic (sub) species (MTPS, n = 15) by combining one newly sequenced genome with all of the public NCBI-available MTPS-related genomes. The public human fecal metagenomic data (n = 1,815) of eight cohorts were used to evaluate the roles of MTPS, compared to other main gut bacteria, in disease association by examining the species enrichment direction in disease group or the control group. Our work provided a comprehensive genetic landscape and complementarity relations for MTPS and shed light on personalized probiotic supplements for consumers with different health status and the necessity that researchers and manufactures could explore novel probiotics as well as traditional ones.
Collapse
Affiliation(s)
- Guangwen Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Cailu Yang
- Department of Ultrasound, Maternal and Child Health Hospital of Dapeng New District, Shenzhen, China
| | - Yutang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Bian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Peng Y, Tang S, Wang D, Zhong H, Jia H, Cai X, Zhang Z, Xiao M, Yang H, Wang J, Kristiansen K, Xu X, Li J. MetaPGN: a pipeline for construction and graphical visualization of annotated pangenome networks. Gigascience 2018; 7:5114262. [PMID: 30277499 PMCID: PMC6251982 DOI: 10.1093/gigascience/giy121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023] Open
Abstract
Pangenome analyses facilitate the interpretation of genetic diversity and evolutionary history of a taxon. However, there is an urgent and unmet need to develop new tools for advanced pangenome construction and visualization, especially for metagenomic data. Here, we present an integrated pipeline, named MetaPGN, for construction and graphical visualization of pangenome networks from either microbial genomes or metagenomes. Given either isolated genomes or metagenomic assemblies coupled with a reference genome of the targeted taxon, MetaPGN generates a pangenome in a topological network, consisting of genes (nodes) and gene-gene genomic adjacencies (edges) of which biological information can be easily updated and retrieved. MetaPGN also includes a self-developed Cytoscape plugin for layout of and interaction with the resulting pangenome network, providing an intuitive and interactive interface for full exploration of genetic diversity. We demonstrate the utility of MetaPGN by constructing Escherichia coli pangenome networks from five E. coli pathogenic strains and 760 human gut microbiomes,revealing extensive genetic diversity of E. coli within both isolates and gut microbial populations. With the ability to extract and visualize gene contents and gene-gene physical adjacencies of a specific taxon from large-scale metagenomic data, MetaPGN provides advantages in expanding pangenome analysis to uncultured microbial taxa.
Collapse
Affiliation(s)
- Ye Peng
- School of Biology and Biological Engineering, South China University of Technology, Building B6, 382 Zhonghuan Road East, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Shanmei Tang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China
| | - Dan Wang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China
| | - Huanzi Zhong
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Ole MaalØes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Huijue Jia
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China
| | - Xianghang Cai
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Zhaoxi Zhang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Minfeng Xiao
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, No. 51, Zhijiang Road, Xihu District, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, No. 51, Zhijiang Road, Xihu District, Hangzhou 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Ole MaalØes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Xun Xu
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Junhua Li
- School of Biology and Biological Engineering, South China University of Technology, Building B6, 382 Zhonghuan Road East, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, Shenzhen 518083, China
| |
Collapse
|
27
|
Chun BH, Kim KH, Jeong SE, Jeon CO. Genomic and metabolic features of the Bacillus amyloliquefaciens group- B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis. Food Microbiol 2018; 77:146-157. [PMID: 30297045 DOI: 10.1016/j.fm.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/31/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
The genomic and metabolic features of the Bacillus amyloliquefaciens group comprising B. amyloliquefaciens, B. velezensis, and B. siamensis were investigated through a pan-genome analysis combined with an experimental verification of some of the functions identified. All B. amyloliquefaciens group genomes were retrieved from GenBank and their phylogenetic relatedness was subsequently investigated. Genome comparisons of B. amyloliquefaciens, B. siamensis, and B. velezensis showed that their genomic and metabolic features were similar; however species-specific features were also identified. Energy metabolism-related genes are more enriched in B. amyloliquefaciens, whereas secondary metabolite biosynthesis-related genes are enriched in B. velezensis. Compared to B. amyloliquefaciens and B. siamensis, B. velezensis harbors more genes in its core-genome which are involved in the biosynthesis of antimicrobial compounds, as well as genes involved in d-galacturonate and d-fructuronate metabolism. B. amyloliquefaciens, B. siamensis, and B. velezensis all harbor a xanthine oxidase gene cluster (xoABCDE) in their core-genomes that is involved in metabolizing xanthine and uric acid to glycine and oxalureate. A reconstruction of B. amyloliquefaciens group metabolic pathways using their individual pan-genomes revealed that the B. amyloliquefaciens group strains have the ability to metabolize diverse carbon sources aerobically, or anaerobically, and can produce various metabolites such as lactate, ethanol, acetate, CO2, xylitol, diacetyl, acetoin, and 2,3-butanediol. This study therefore provides insights into the genomic and metabolic features of the B. amyloliquefaciens group.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|