1
|
Chen CY, Chou CH, Cheng YC. The Genetic Expression Difference of A2058 Cells Treated by Plasma Direct Exposure and Plasma-Treated Medium and the Appropriate Treatment Strategy. Biomedicines 2025; 13:184. [PMID: 39857768 PMCID: PMC11762557 DOI: 10.3390/biomedicines13010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence. Methods: The intensity of reactive species in the plasma gas and the concentrations of RONS in phosphate-buffered saline (PBS) and cell culture medium were measured. A viability assay was performed after the cells were treated by plasma in PBS and medium with various volumes to realize the lethal effects of plasma under different conditions. Diverse cells were treated in the same solution to compare the sensitivities of different cells to plasma treatments. The gene expression profiles of A2058 cells after the direct and indirect treatments were analyzed by next generation gene sequencing. Accordingly, we discovered the advantages of sequential treatments on cancer therapy. Results: The cumulative concentration of hydroxyterephthalic acid (HTA) revealed that the pre-existing OH radical (•OH) in PBS increased with the treatment durations. However, there was no significant increase in the concentration of HTA in culture medium. HTA was detected in the treatment interface of PBS but not medium, showing the penetration of •OH through PBS. The concentrations of H2O2 and NO2- increased with the treatment durations, but that of NO3- was low. The direct treatments caused stronger lethal effects on cancer cells under certain conditions. The fibroblasts showed higher tolerance to plasma treatments. From gene expression analysis, the initial observations showed that both treatments influenced transcription-related pathways and exhibited shared or unique cellular stress responses. The pre-treatments, especially of direct exposure, revealed better cancer inhibition. Conclusions: The anti-cancer efficiency of plasma could be enhanced by pre-treatments and by adjusting the liquid interfaces to avoid the rapid consumption of short-lived RONS in the medium. To achieve better therapeutic effects and selectivity, more evidence is necessary to find optional plasma treatments.
Collapse
Affiliation(s)
- Chao-Yu Chen
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yun-Chien Cheng
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Artamonov MY, Pyatakovich FA, Minenko IA. Synergistic Antioxidant Effects of Molecular Hydrogen and Cold Atmospheric Plasma in Enhancing Mesenchymal Stem Cell Therapy. Antioxidants (Basel) 2024; 13:1584. [PMID: 39765910 PMCID: PMC11673711 DOI: 10.3390/antiox13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
In regenerative medicine, mesenchymal stem cells (MSCs) have shown their importance and potential in tissue reconstruction and immune system modification. However, such cells' potential is often diminished by factors such as oxidative stress, immune rejection, and inadequate engraftment. This review highlights the role of molecular hydrogen (H2) and cold atmospheric plasma (CAP) as adjunct therapies to improve the effectiveness of MSC therapy. H2 has strong antioxidative and anti-inflammatory actions as it quenches reactive oxygen species and positively stimulates the Nrf2 pathway that promotes MSC survival and life. CAP, being a modulated source of ROS and RNS, also assists MSCs by altering the cellular redox balance, thus facilitating cellular adaptation, migration, and differentiation. H2 and CAP in conjunction with each other assist in establishing an ambience favorable for promoting MSCs' survival and growth abilities, and reduce the healing time in various pathways such as wound, neuroprotection, and ischemia. Besides these concerns, this review also covers the best administration routes and doses of H2 and CAP together with MSCs in therapy. This study informs on a novel dual method aimed at improving the outcome of MSC therapy while adding several molecular targets and relevant clinical uses concerning these therapies. Research of the future has to deal with bettering these protocols so that the therapeutic benefits can be maximized without long-term implications for clinical applications.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Department of Physical Medicine and Rehabilitation, Penn Medicine Princeton Health, Plainsboro, NJ 08536, USA
| | - Felix A. Pyatakovich
- Department of Internal Medicine, Belgorod State University, 308015 Belgorod, Russia;
| | - Inessa A. Minenko
- Department of Rehabilitation, Sechenov Medical University, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Li T, Zhang Y, Zhu J, Zhang F, Xu A, Zhou T, Li Y, Liu M, Ke H, Yang T, Tang Y, Tao J, Miao L, Deng Y, Chen H. A pH-Activatable Copper-Biomineralized Proenzyme for Synergistic Chemodynamic/Chemo-Immunotherapy against Aggressive Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210201. [PMID: 36573375 DOI: 10.1002/adma.202210201] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Artificial enzymes have demonstrated therapeutic benefits against diverse malignant tumors, yet their antitumor potencies are still severely compromised by non-selective catalysis, low atomic-utilization efficiency, and undesired off-target toxicity. Herein, it is reported that peroxidase-like biomineralized copper (II) carbonate hydroxide nanocrystals inside single albumin nanocages (CuCH-NCs) act as a pH-activatable proenzyme to achieve tumor-selective and synergistic chemodynamic/chemo-immunotherapy against aggressive triple-negative breast cancers (TNBCs). These CuCH-NCs show pH-sensitive Cu2+ release, which spontaneously undergoes glutathione (GSH)-mediated reduction into Cu+ species for catalyzing the evolution of H2 O2 into hydroxyl radicals (·OH) in a single-atom-like manner to cause chemodynamic cell injury, and simultaneously activates non-toxic disulfiram to cytotoxic complex for yielding selective chemotherapeutic damage via blocking cell proliferation and amplifying cell apoptosis. CuCH-NCs exhibit considerable tumor-targeting capacity with deep penetration depth, thus affording preferable efficacy against orthotopic breast tumors through synergistic chemodynamic/chemotherapy, together with good in vivo safety. Moreover, CuCH-NCs arouse distinct immunogenic cell death effect and upregulate PD-L1 expression upon disulfiram combination, and thus synergize with anti-PD-L1 antibody to activate adaptive and innate immunities, together with relieving immunosuppression, finally yielding potent antitumor efficacy against both primary and metastatic TNBCs. These results provide insights into smart and high-performance proenzymes for synergistic therapy against aggressive cancers.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - An'an Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tian Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaoqi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 2023; 50:2025-2031. [PMID: 36538172 DOI: 10.1007/s11033-022-08026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences. METHODS AND RESULTS SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner. CONCLUSION These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.
Collapse
|
6
|
Chupradit S, Widjaja G, Radhi Majeed B, Kuznetsova M, Ansari MJ, Suksatan W, Turki Jalil A, Ghazi Esfahani B. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol Int 2023; 47:327-340. [PMID: 36342241 DOI: 10.1002/cbin.11939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Suthep, Chiang Mai, Thailand
| | - Gunawan Widjaja
- Universitas Krisnadwipayana, Universitas Indonesia, Jakarta, Indonesia
| | | | - Maria Kuznetsova
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University, Moskva, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Wanich Suksatan
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Faculty of Nursing, Bangkok, Thailand
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus.,College of Technical Engineering, The Islamic University, Najaf, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Bahar Ghazi Esfahani
- Department of Biological Sciences and Technologies, University of Isfahan, Iran, Isfahan
| |
Collapse
|
7
|
Limanowski R, Yan D, Li L, Keidar M. Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers (Basel) 2022; 14:cancers14143461. [PMID: 35884523 PMCID: PMC9316208 DOI: 10.3390/cancers14143461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) is generated in a rapid yet low-energy input streamer-discharge process at atmospheric pressure conditions. CAP is an ionized gas with a low ionization level and plenty of reactive species and radicals. These reactive components, and their near-room temperature nature, make CAP a powerful tool in medical applications, particularly cancer therapy. Here, we summarized the latest development and status of preclinical applications of CAP in cancer therapy, which may guide further clinical studies of CAP-based cancer therapy. Abstract CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.
Collapse
Affiliation(s)
- Ruby Limanowski
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA;
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| | - Lin Li
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| |
Collapse
|
8
|
Vetrik M, Kucka J, Kobera L, Konefal R, Lobaz V, Pavlova E, Bajecny M, Heizer T, Brus J, Sefc L, Pratx G, Hruby M. Fluorinated diselenide nanoparticles for radiosensitizing therapy of cancer. Free Radic Biol Med 2022; 187:132-140. [PMID: 35618181 DOI: 10.1016/j.freeradbiomed.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Radiation resistance of cancer cells represents one of the major challenges in cancer treatment. The novel self-assembled fluoralkylated diselenide nanoparticles (fluorosomes) based on seleno-l-cystine (17FSe2) possess redox-active properties that autocatalytically decompose hydrogen peroxide (H2O2) and oxidize the intracellular glutathione (GSH) that results in regulation of cellular oxidative stress. Alkylfluorinated diselenide nanoparticles showed a significant cytotoxic and radiosensitizing effect on cancer cells. The EL-4 tumor-bearing C56BL/6 mice treated with 17FSe2 followed by fractionated radiation treatment (4 × 2Gy) completely suppressed tumor growth. Our results suggest that described diselenide system behaves as a potent radiosensitizer agent targeting tumor growth and preventing tumor recurrence.
Collapse
Affiliation(s)
- Miroslav Vetrik
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic; Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA.
| | - Jan Kucka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Rafal Konefal
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Martin Bajecny
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Guillem Pratx
- Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Martin Hruby
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
9
|
No-ozone cold plasma can kill oral pathogenic microbes in H 2O 2-dependent and independent manner. Sci Rep 2022; 12:7597. [PMID: 35534525 PMCID: PMC9085805 DOI: 10.1038/s41598-022-11665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
To apply the sterilisation effect of low-temperature plasma to the oral cavity, the issue of ozone from plasma must be addressed. In this study, a new technology for generating cold plasma with almost no ozone is developed and is named Nozone (no-ozone) Cold Plasma (NCP) technology. The antimicrobial efficacy of the NCP against four oral pathogens is tested, and its specific mechanism is elucidated. The treatment of NCP on oral pathogenic microbes on a solid medium generated a growth inhibition zone. When NCP is applied to oral pathogens in a liquid medium, the growth of microbes decreased by more than 105 colony forming units, and the bactericidal effect of NCP remained after the installation of dental tips. The bactericidal effect of NCP in the liquid medium is due to the increase in hydrogen peroxide levels in the medium. However, the bactericidal effect of NCP in the solid medium depends on the charged elements of the NCP. Furthermore, the surface bactericidal efficiency of the dental-tip-installed NCP is proportional to the pore size of the tips and inversely proportional to the length of the tips. Overall, we expect this NCP device to be widely used in dentistry in the near future.
Collapse
|
10
|
Aggelopoulos CA, Christodoulou AM, Tachliabouri M, Meropoulis S, Christopoulou ME, Karalis TT, Chatzopoulos A, Skandalis SS. Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors. Front Oncol 2022; 11:826865. [PMID: 35111687 PMCID: PMC8801750 DOI: 10.3389/fonc.2021.826865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| | - Anna-Maria Christodoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Myrsini Tachliabouri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stauros Meropoulis
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria-Elpida Christopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Theodoros T. Karalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Athanasios Chatzopoulos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| |
Collapse
|
11
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines 2021; 9:biomedicines9091259. [PMID: 34572443 PMCID: PMC8465976 DOI: 10.3390/biomedicines9091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.
Collapse
|
13
|
Abstract
Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.
Collapse
|
14
|
Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat Protoc 2021; 16:2826-2850. [PMID: 33990800 DOI: 10.1038/s41596-021-00521-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
Abstract
Cold atmospheric plasma (CAP) is a potential anticancer therapy. CAP has cytotoxic effects when applied either directly to cancer cell cultures or indirectly through plasma-conditioned liquids. This protocol describes how to treat adherent cultures of human cancer cell lines with CAP or plasma-conditioned medium and determine cell viability following treatment. The protocol also includes details on how to quantify the reactive oxygen and nitrogen species present in medium following CAP treatment, using chemical probes using UV-visible or fluorescence spectroscopy. CAP treatment takes ~30 min, and 3 h are required to complete quantification of reactive oxygen and nitrogen species. By providing a standardized protocol for evaluation of the effects of CAP and plasma-conditioned medium, we hope to facilitate the comparison and interpretation of results seen across different laboratories.
Collapse
|
15
|
Open-Air Cold Plasma Device Leads to Selective Tumor Cell Cytotoxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The need for effective and safe therapies for cancer is growing as aging is modifying its epidemiology. Cold atmospheric plasma (CAP) has gained attention as a potential anti-tumor therapy. CAP is a gas with enough energy to ionize a significant fraction of its constituent particles, forming equal numbers of positive ions and electrons. Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) in plasma-activated media (PAM) were performed to characterize the physical and chemical properties of plasma. To assess the cytotoxicity of cold atmospheric plasma in human tumors, different cell lines were cultured, plated, and exposed to CAP, followed by MTT and SRB colorimetric assays 24 h later. Human fibroblasts, phenotypically normal cells, were processed similarly. Plasma cytotoxicity was higher in cells of breast cancer, urinary bladder cancer, osteosarcoma, lung cancer, melanoma, and endometrial cancer. Cytotoxicity was time-dependent and possibly related to the increased production of hydrogen peroxide in the exposed medium. Sixty seconds of CAP exposure renders selective effects, preserving the viability of fibroblast cells. These results point to the importance of conducting further studies of the therapy with plasma.
Collapse
|
16
|
Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules 2021; 26:molecules26051336. [PMID: 33801451 PMCID: PMC7958621 DOI: 10.3390/molecules26051336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.
Collapse
|
17
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
18
|
Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med 2021; 164:107-118. [PMID: 33401009 PMCID: PMC7921834 DOI: 10.1016/j.freeradbiomed.2020.12.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.
Collapse
Affiliation(s)
- Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. de Roma S/n, Oviedo, Spain
| | - Aranzazu Villasante
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain.
| |
Collapse
|
19
|
Cold atmospheric plasma induced genotoxicity and cytotoxicity in esophageal cancer cells. Mol Biol Rep 2021; 48:1323-1333. [PMID: 33547994 DOI: 10.1007/s11033-021-06178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we studied the functional effects of cold atmospheric plasma (CAP) on the esophageal cancer cell line (KYSE-30) by direct and indirect treatment and fibroblast cell lines as normal cells. KYSE-30 cells were treated with CAP at different time points of 60, 90, 120 and, 240 s for direct exposure and 90, 180, 240 and, 360 s for indirect exposure. Cell viability was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis induction in the treated cells was measured by Annexin-V/PI using flow cytometry. The expression of apoptotic related genes (BAX/BCL-2) was analyzed by real-time polymerase chain reaction. Moreover, the genotoxicity was analyzed by comet assay. Cell viability results showed that direct CAP treatment has a markedly cytotoxic impact on the reduction of KYSE-30 cells at 60 s (p = 0.000), while indirect exposure was less impactful (p > 0.05). The results of the Annexin-V/PI staining confirmed this analysis. Subsequently, the genotoxicity study of the direct CAP treatment demonstrated a longer tail-DNA length and caused increase in DNA damage in the cells (p < 0.00001) as well as shift BAX/BCL-2 toward apoptosis. The concentration of H2O2 and NO2- in direct CAP treatment was significantly higher than indirect (p > 0.05). Treatment with direct CAP showed genotoxicity in cancer cells. Collectively, our results pave a deeper understanding of CAP functions and the way for further investigations in the field of esophageal cancer treatment.
Collapse
|
20
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
21
|
K. Martusevich A, G. Galka A, A. Karuzin K, N. Tuzhilkin A, L. Malinovskaya S. Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Anticancer Effects of Plasma-Activated Medium Produced by a Microwave-Excited Atmospheric Pressure Argon Plasma Jet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4205640. [PMID: 32802265 PMCID: PMC7415084 DOI: 10.1155/2020/4205640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Cold atmospheric plasma (CAP) has been reported to have strong anticancer effects in vitro and in vivo. CAP has been known to induce apoptosis in most cancer cells by treatment to cells using direct and indirect treatment methods. There are many reports of apoptosis pathways induced by CAP, but for indirect treatment, there is still a lack of fundamental research on how CAP can cause apoptosis in cancer cells. In this study, we applied an indirect treatment method to determine how CAP can induce cancer cell death. First, plasma-activated medium (PAM) was produced by a 2.45 GHz microwave-excited atmospheric pressure plasma jet (ME-APPJ). Next, the amounts of various reactive species in the PAM were estimated using colorimetric methods. The concentration of NO2– and H2O2 in PAM cultured with cancer cells was measured, and intracellular reactive oxidative stress (ROS) changes were observed using flow cytometry. When PAM was incubated with A549 lung cancer cells, there was little change in NO2– concentration, but the concentration of H2O2 gradually decreased after 30 min. While the intracellular ROS of A549 cells was rapidly increased at 2 hours, there was no significant change in that of PAM-treated normal cells. Furthermore, PAM had a significant cytotoxic effect on A549 cells but had little effect on normal cell viability. In addition, using flow cytometry, we confirmed that apoptosis of A549 cells occurred following flow cytometry and western blot analysis. These results suggest that among various reactive species produced by PAM, hydrogen peroxide plays a key role in inducing cancer cell apoptosis.
Collapse
|
23
|
Shi L, Yao H, Liu Z, Xu M, Tsung A, Wang Y. Endogenous PAD4 in Breast Cancer Cells Mediates Cancer Extracellular Chromatin Network Formation and Promotes Lung Metastasis. Mol Cancer Res 2020; 18:735-747. [PMID: 32193354 DOI: 10.1158/1541-7786.mcr-19-0018] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/09/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Peptidyl arginine deiminase 4 (PAD4/PADI4) is a posttranslational modification enzyme that converts protein arginine or mono-methylarginine to citrulline. The PAD4-mediated hypercitrullination reaction in neutrophils causes the release of nuclear chromatin to form a chromatin network termed neutrophil extracellular traps (NET). NETs were first described as antimicrobial fibers that bind and kill bacteria. However, it is not known whether PAD4 can mediate the release of chromatin DNA into the extracellular space of cancer cells. Here, we report that murine breast cancer 4T1 cells expressing high levels of PADI4 can release cancer extracellular chromatin networks (CECN) in vitro and in vivo. Deletion of Padi4 using CRISPR/Cas9 abolished CECN formation in 4T1 cells. Padi4 deletion from 4T1 cells also reduced the rate of tumor growth in an allograft model, and decreased lung metastasis by 4T1 breast cancers. DNase I treatment, which degrades extracellular DNA including CECNs, also reduced breast to lung metastasis of Padi4 wild-type 4T1 cells in allograft experiments in the Padi4-knockout mice. We further demonstrated that DNase I treatment in this mouse model did not alter circulating tumor cells but decreased metastasis through steps after intravasation. Taken together, our genetic studies show that PAD4 plays a cell autonomous role in cancer metastasis, thus revealing a novel strategy for preventing cancer metastasis by inhibiting cancer cell endogenous PAD4. IMPLICATIONS: This study shows that PADI4 can mediate the formation of CECNs in 4T1 cells, and that endogenous PADI4 plays an essential role in breast cancer lung metastasis. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/5/735/F1.large.jpg.
Collapse
Affiliation(s)
- Lai Shi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania.,The Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, State College, Pennsylvania
| | - Huanling Yao
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Zheng Liu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ming Xu
- The Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, State College, Pennsylvania.,Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, Pennsylvania
| | - Allan Tsung
- Division of Surgical Oncology, James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania. .,The Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, State College, Pennsylvania.,School of Life Sciences, Henan University, Kaifeng, Henan, China.,School of Medicine, Henan University, Kaifeng, Henan, China
| |
Collapse
|
24
|
|
25
|
Wang L, Xia C, Guo Y, Yang C, Cheng C, Zhao J, Yang X, Cao Z. Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol 2020; 15:115-125. [PMID: 31989838 DOI: 10.2217/fmb-2019-0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The global of spread multidrug-resistant Pseudomonas aeruginosa has become a public health threat. Cold atmospheric plasma (CAP) is reported to have bactericidal efficacy; however, its effects on clinical super multidrug-resistant P. aeruginosa are unclear. The aim of this study was to investigate the bactericidal efficacy of CAP on a strain of super multidrug-resistant P. aeruginosa. Materials & methods: The effects of CAP treatments were evaluated using assays for the detection of growth, viability, metabolism, virulence factors and reactive oxygen species (ROS) levels. Results: Both CAP treatments dose-dependently inhibited cell viability and metabolic activity, and decreased the expression of several virulence factors. CAP treatment induced a significant increase in intracellular ROS levels, and ROS scavengers inhibited this effect. Conclusion: CAP treatment is a promising option for the clinical inhibition of multidrug-resistant P. aeruginosa, and the development of CAP technologies might be the key to solving the long-standing problem of drug-resistant bacteria.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Chuankai Xia
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Yajun Guo
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Cheng Cheng
- The Institute of Plasma Physics, Chinese Academy of Science, Hefei 230000, Anhui, PR China
| | - Jun Zhao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| | - Zhicheng Cao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei 23000, Anhui, PR China
| |
Collapse
|
26
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Murakami T. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism. Sci Rep 2019; 9:17138. [PMID: 31748630 PMCID: PMC6868247 DOI: 10.1038/s41598-019-53219-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
A biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H[Formula: see text]O[Formula: see text]) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H[Formula: see text]O[Formula: see text] and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H[Formula: see text]O[Formula: see text] infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Seikei University, Department of Systems Design Engineering, Faculty of Science and Technology, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.
| |
Collapse
|
28
|
Labay C, Hamouda I, Tampieri F, Ginebra MP, Canal C. Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies. Sci Rep 2019; 9:16160. [PMID: 31695110 PMCID: PMC6834627 DOI: 10.1038/s41598-019-52673-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the last years, great advances have been made in therapies based in cold atmospheric plasmas (CAP). CAP generate reactive oxygen and nitrogen species (RONS) which can be transferred to liquids. These CAP activated liquids display the same biological efficacy (i.e. on killing cancer cells) as CAP themselves, opening the door for minimally invasive therapies. However, injection of a liquid in the body results in fast diffusion due to extracellular fluids and blood flow. Therefore, the development of efficient vehicles which allow local confinement and delivery of RONS to the diseased site is a fundamental requirement. In this work, we investigate the generation of RONS (H2O2, NO2-, short-lived RONS) in alginate hydrogels by comparing two atmospheric pressure plasma jets: kINPen and a helium needle, at a range of plasma treatment conditions (time, gas flow, distance to the sample). The physic-chemical properties of the hydrogels remain unchanged by the plasma treatment, while the hydrogel shows several-fold larger capacity for generation of RONS than a typical isotonic saline solution. Part of the RONS are quickly released to a receptor media, so special attention has to be put on the design of hydrogels with in-situ crosslinking. Remarkably, the hydrogels show capacity for sustained release of the RONS. The plasma-treated hydrogels remain fully biocompatible (due the fact that the species generated by plasma are previously washed away), indicating that no cytotoxic modifications have occurred on the polymer. Moreover, the RONS generated in alginate solutions showed cytotoxic potential towards bone cancer cells. These results open the door for the use of hydrogel-based biomaterials in CAP-associated therapies.
Collapse
Affiliation(s)
- Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Inès Hamouda
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain.
| |
Collapse
|
29
|
Khalili M, Daniels L, Lin A, Krebs FC, Snook AE, Bekeschus S, Bowne WB, Miller V. Non-Thermal Plasma-Induced Immunogenic Cell Death in Cancer: A Topical Review. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:423001. [PMID: 31485083 PMCID: PMC6726388 DOI: 10.1088/1361-6463/ab31c1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumor-specific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed tumor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce immunogenic cell death in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.
Collapse
Affiliation(s)
- Marian Khalili
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Lynsey Daniels
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Abraham Lin
- Plasma, Laser Ablation, and Surface Modeling (PLASMANT) Group, Department of Chemistry, University of Antwerp
- Center for Oncological Research (CORE), University of Antwerp
| | - Fred C. Krebs
- Department of Microbiology and Immunology, and Institute for Molecular Medicine &. Infectious Disease, Drexel University College of Medicine, Philadelphia, PA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str.2, 17489 Greifswald, Germany
| | - Wilbur B. Bowne
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Vandana Miller
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, and Institute for Molecular Medicine &. Infectious Disease, Drexel University College of Medicine, Philadelphia, PA
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str.2, 17489 Greifswald, Germany
| |
Collapse
|
30
|
Bauer G, Sersenová D, Graves DB, Machala Z. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Sci Rep 2019; 9:13931. [PMID: 31558835 PMCID: PMC6763425 DOI: 10.1038/s41598-019-50329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2-. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
31
|
Tornin J, Mateu-Sanz M, Rodríguez A, Labay C, Rodríguez R, Canal C. Pyruvate Plays a Main Role in the Antitumoral Selectivity of Cold Atmospheric Plasma in Osteosarcoma. Sci Rep 2019; 9:10681. [PMID: 31337843 PMCID: PMC6650457 DOI: 10.1038/s41598-019-47128-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor but current therapies still have poor prognosis. Cold Atmospheric Plasma (CAP) and Plasma activated media (PAM) have shown potential to eliminate cancer cells in other tumors. It is thought that Reactive Oxygen and Nitrogen species (RONS) in PAM are key players but cell culture media composition alters treatment outcomes and data interpretation due to scavenging of certain RONS. In this work, an atmospheric pressure plasma jet was employed to obtain PAM in the presence or absence of pyruvate and used to treat the SaOS-2 (OS) cell line or hBM-MSC healthy cells. OS cells show higher sensitivity to PAM treatment than healthy cells, both in medium with and without pyruvate, activating apoptosis, DNA damage and deregulating cellular pathways mediated by c-JUN, AKT, AMPK or STAT3. In line with previous works, lack of pyruvate increases cytotoxic potential of PAM affecting cancer and healthy cells by increasing 10–100 times the concentration of H2O2 without altering that of nitrites and thus decreasing CAP anti-tumor selectivity. Suitable conditions for CAP anti-cancer selectivity can be obtained by modifying plasma process parameters (distance, flow, treatment time) to obtain adequate balance of the different RONS in cell culture media.
Collapse
Affiliation(s)
- Juan Tornin
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Aida Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Rene Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,CIBER oncology (CIBERONC), Madrid, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.
| |
Collapse
|
32
|
Rivera JF, Sridharan SV, Nolan JK, Miloro SA, Alam MA, Rickus JL, Janes DB. Real-time characterization of uptake kinetics of glioblastoma vs. astrocytes in 2D cell culture using microelectrode array. Analyst 2018; 143:4954-4966. [PMID: 30225487 DOI: 10.1039/c8an01198b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular measurement of uptake/release kinetics and associated concentration dependencies provides mechanistic insight into the underlying biochemical processes. Due to the recognized importance of preserving the natural diffusion processes within the local microenvironment, measurement approaches which provide uptake rate and local surface concentration of adherent cells in static media are needed. This paper reports a microelectrode array device and a methodology to measure uptake kinetics as a function of cell surface concentration in adherent 2D cell cultures in static fluids. The microelectrode array simultaneously measures local concentrations at five positions near the cell surface in order to map the time-dependent concentration profile which in turn enables determination of surface concentrations and uptake rates, via extrapolation to the cell plane. Hydrogen peroxide uptake by human astrocytes (normal) and glioblastoma multiforme (GBM43, cancer) was quantified for initial concentrations of 20 to 500 μM over time intervals of 4000 s. For both cell types, the overall uptake rate versus surface concentration relationships exhibited non-linear kinetics, well-described by a combination of linear and Michaelis-Menten mechanisms and in agreement with the literature. The GBM43 cells showed a higher uptake rate over the full range of concentrations, primarily due to a larger linear component. Diffusion-reaction models using the non-linear parameters and standard first-order relationships are compared. In comparison to results from typical volumetric measurements, the ability to extract both uptake rate and surface concentration in static media provides kinetic parameters that are better suited for developing reaction-diffusion models to adequately describe behavior in more complex culture/tissue geometries. The results also highlight the need for characterization of the uptake rate over a wider range of cell surface concentrations in order to evaluate the potential therapeutic role of hydrogen peroxide in cancerous cells.
Collapse
Affiliation(s)
- Jose F Rivera
- Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yan D, Xu W, Yao X, Lin L, Sherman JH, Keidar M. The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Sci Rep 2018; 8:15418. [PMID: 30337623 PMCID: PMC6194007 DOI: 10.1038/s41598-018-33914-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/03/2018] [Indexed: 11/09/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas with a near room temperature. CAP is a controllable source for reactive species, neutral particles, electromagnetic field and UV radiation. CAP showed the promising application in cancer treatment through the demonstration in vitro and in vivo. In this study, we first demonstrate the existence of an activation state on the CAP-treated cancer cells, which drastically decreases the threshold of cell vulnerability to the cytotoxicity of the CAP-originated reactive species such as H2O2 and NO2-. The cytotoxicity of CAP treatment is still dependent on the CAP-originated reactive species. The activation state of cancer cells will not cause noticeable cytotoxicity. This activation is an instantaneous process, started even just 2 s after the CAP treatment begins. The noticeable activation on the cancer cells starts 10-20 s during the CAP treatment. In contrast, the de-sensitization of activation takes 5 hours after the CAP treatment. The CAP-based cell activation explains the mechanism by which direct CAP treatment causes a much stronger cytotoxicity over the cancer cells compared with an indirect CAP treatment do, which is a key to understand what the effect of CAP on cancer cells.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, USA.
| | - Wenjun Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoliang Yao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, USA
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, USA
| | - Jonathan H Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, DC, 20037, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, USA.
| |
Collapse
|
34
|
Iuchi K, Morisada Y, Yoshino Y, Himuro T, Saito Y, Murakami T, Hisatomi H. Cold atmospheric-pressure nitrogen plasma induces the production of reactive nitrogen species and cell death by increasing intracellular calcium in HEK293T cells. Arch Biochem Biophys 2018; 654:136-145. [PMID: 30026027 DOI: 10.1016/j.abb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Cold atmospheric-pressure plasma (CAP) has been emerging as a promising tool for cancer therapy in recent times. In this study, we used a CAP device with nitrogen gas (N2CAP) and investigated the effect of the N2CAP on the viability of cultured cells. Moreover, we investigated whether N2CAP-produced hydrogen peroxide (H2O2) in the medium is involved in N2CAP-induced cell death. Here, we found that the N2CAP irradiation inhibited cell proliferation in the human embryonic kidney cell line HEK293T and that the N2CAP induced cell death in an irradiation time- and distance-dependent manner. Furthermore, the N2CAP and H2O2 increased intracellular calcium levels and induced caspase-3/7 activation in HEK293T cells. The N2CAP irradiation induced a time-dependent production of H2O2 and nitrite/nitrate in PBS or culture medium. However, the amount of H2O2 in the solution after N2CAP irradiation was too low to induce cell death. Interestingly, carboxy-PTIO, a nitric oxide scavenger, or BAPTA-AM, a cell-permeable calcium chelator, inhibited N2CAP-induced morphological change and cell death. These results suggest that the production of reactive nitrogen species and the increase in intracellular calcium were involved in the N2CAP-induced cell death.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Yukina Morisada
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Yuri Yoshino
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Takahiro Himuro
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Yoji Saito
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Tomoyuki Murakami
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| |
Collapse
|
35
|
Saadati F, Mahdikia H, Abbaszadeh HA, Abdollahifar MA, Khoramgah MS, Shokri B. Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B 16F 10 melanoma cancer cells treatment. Sci Rep 2018; 8:7689. [PMID: 29769707 PMCID: PMC5955918 DOI: 10.1038/s41598-018-25990-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
In this study a novel method was implemented and investigated in order to destroy cancer cells inside the mouse body on a clinical level. In the case of in-vitro study, MTT assay was employed to discover an effective dose of applied plasma and distinguish the plasma effect in direct and in indirect treatments. Tumor growth was also measured in in-vivo section so that the effectiveness of direct and indirect treatments could be compared. Furthermore, an investigation was conducted to study the interferences between a conventional method (chemotherapy) and plasma treatment so as to increase the effectiveness of treatment inside the body. Hematoxylin and Eosin, Flow Cytometry, TUNEL and Western Blot assay were used to investigate any cell alteration and the impact of various treatment methods on cancer cell and amount of their apoptosis and protein levels. Radiology and CT scan images were taken to determine the final tumor volume. The results showed a significant cell death and substantial reduction in tumor growth in direct plasma treatment in comparison with indirect plasma treatment. Eventually, dramatic destruction of cancer cells was observed while using of indirect plasma-chemotherapy combination, thus introducing an effective method for deep tissue tumors can be introduced.
Collapse
Affiliation(s)
- Fariba Saadati
- Physics Department of Shahid Beheshti University, G.C., P.O. Box, 19839-69411, Tehran, Iran
| | - Hamed Mahdikia
- Laser and Plasma research institute, Shahid Beheshti University, G.C., P.O. Box, 19839-69411, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center & Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Hearing Disorders Research Center, Loghman Hakim Medical Center & Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Shokri
- Physics Department of Shahid Beheshti University, G.C., P.O. Box, 19839-69411, Tehran, Iran. .,Laser and Plasma research institute, Shahid Beheshti University, G.C., P.O. Box, 19839-69411, Tehran, Iran.
| |
Collapse
|