1
|
Sihvonen AJ, Pitkäniemi A, Siponkoski ST, Kuusela L, Martínez-Molina N, Laitinen S, Särkämö ER, Pekkola J, Melkas S, Schlaug G, Sairanen V, Särkämö T. Structural Neuroplasticity Effects of Singing in Chronic Aphasia. eNeuro 2024; 11:ENEURO.0408-23.2024. [PMID: 38688718 PMCID: PMC11091951 DOI: 10.1523/eneuro.0408-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Singing-based treatments of aphasia can improve language outcomes, but the neural benefits of group-based singing in aphasia are unknown. Here, we set out to determine the structural neuroplasticity changes underpinning group-based singing-induced treatment effects in chronic aphasia. Twenty-eight patients with at least mild nonfluent poststroke aphasia were randomized into two groups that received a 4-month multicomponent singing intervention (singing group) or standard care (control group). High-resolution T1 images and multishell diffusion-weighted MRI data were collected in two time points (baseline/5 months). Structural gray matter (GM) and white matter (WM) neuroplasticity changes were assessed using language network region of interest-based voxel-based morphometry (VBM) and quantitative anisotropy-based connectometry, and their associations to improved language outcomes (Western Aphasia Battery Naming and Repetition) were evaluated. Connectometry analyses showed that the singing group enhanced structural WM connectivity in the left arcuate fasciculus (AF) and corpus callosum as well as in the frontal aslant tract (FAT), superior longitudinal fasciculus, and corticostriatal tract bilaterally compared with the control group. Moreover, in VBM, the singing group showed GM volume increase in the left inferior frontal cortex (Brodmann area 44) compared with the control group. The neuroplasticity effects in the left BA44, AF, and FAT correlated with improved naming abilities after the intervention. These findings suggest that in the poststroke aphasia group, singing can bring about structural neuroplasticity changes in left frontal language areas and in bilateral language pathways, which underpin treatment-induced improvement in speech production.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit and Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre and UQ Centre for Clinical Research, The University of Queensland, Brisbane QLD 4072, Australia
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki 00029, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit and Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Sini-Tuuli Siponkoski
- Cognitive Brain Research Unit and Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Linda Kuusela
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki 00029, Finland
| | - Noelia Martínez-Molina
- Cognitive Brain Research Unit and Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | | | | - Johanna Pekkola
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki 00029, Finland
| | - Susanna Melkas
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki 00029, Finland
| | - Gottfried Schlaug
- Department of Neurology, UMass Medical School, Springfield, Massachusetts 01655
- Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, Massachusetts 01655
| | - Viljami Sairanen
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Helsinki 00029, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit and Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
2
|
Sihvonen AJ, Ferguson MA, Chen V, Soinila S, Särkämö T, Joutsa J. Focal Brain Lesions Causing Acquired Amusia Map to a Common Brain Network. J Neurosci 2024; 44:e1922232024. [PMID: 38423761 PMCID: PMC11007473 DOI: 10.1523/jneurosci.1922-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Music is a universal human attribute. The study of amusia, a neurologic music processing deficit, has increasingly elaborated our view on the neural organization of the musical brain. However, lesions causing amusia occur in multiple brain locations and often also cause aphasia, leaving the distinct neural networks for amusia unclear. Here, we utilized lesion network mapping to identify these networks. A systematic literature search was carried out to identify all published case reports of lesion-induced amusia. The reproducibility and specificity of the identified amusia network were then tested in an independent prospective cohort of 97 stroke patients (46 female and 51 male) with repeated structural brain imaging, specifically assessed for both music perception and language abilities. Lesion locations in the case reports were heterogeneous but connected to common brain regions, including bilateral temporoparietal and insular cortices, precentral gyrus, and cingulum. In the prospective cohort, lesions causing amusia mapped to a common brain network, centering on the right superior temporal cortex and clearly distinct from the network causally associated with aphasia. Lesion-induced longitudinal structural effects in the amusia circuit were confirmed as reduction of both gray and white matter volume, which correlated with the severity of amusia. We demonstrate that despite the heterogeneity of lesion locations disrupting music processing, there is a common brain network that is distinct from the language network. These results provide evidence for the distinct neural substrate of music processing, differentiating music-related functions from language, providing a testable target for noninvasive brain stimulation to treat amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki 00014, Finland
- Queensland Aphasia Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki 00029, Finland
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
- Center for the Study of World Religions, Harvard Divinity School, Cambridge, Massachusetts 02138
| | - Vicky Chen
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Seppo Soinila
- Division of Clinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku 20521, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki 00014, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku 20521, Finland
- Neurocenter and Turku PET Center, Turku University Hospital, Turku 20521, Finland
| |
Collapse
|
3
|
Sun Y, Oxenham V, Lo CY, Walsh J, Martens WL, Cremer P, Thompson WF. Acquired amusia after a right middle cerebral artery infarction - a case study. Neurocase 2024; 30:18-28. [PMID: 38734872 DOI: 10.1080/13554794.2024.2350104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
A 62-year-old musician-MM-developed amusia after a right middle-cerebral-artery infarction. Initially, MM showed melodic deficits while discriminating pitch-related differences in melodies, musical memory problems, and impaired sensitivity to tonal structures, but normal pitch discrimination and spectral resolution thresholds, and normal cognitive and language abilities. His rhythmic processing was intact when pitch variations were removed. After 3 months, MM showed a large improvement in his sensitivity to tonality, but persistent melodic deficits and a decline in perceiving the metric structure of rhythmic sequences. We also found visual cues aided melodic processing, which is novel and beneficial for future rehabilitation practice.
Collapse
Affiliation(s)
- Yanan Sun
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Vincent Oxenham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Chi Yhun Lo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Jessica Walsh
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - William L Martens
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Phillip Cremer
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - William Forde Thompson
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Faculty of Society and Design, Bond University, Queensland, Australia
| |
Collapse
|
4
|
Orpella J, Assaneo MF, Ripollés P, Noejovich L, López-Barroso D, de Diego-Balaguer R, Poeppel D. Differential activation of a frontoparietal network explains population-level differences in statistical learning from speech. PLoS Biol 2022; 20:e3001712. [PMID: 35793349 PMCID: PMC9292101 DOI: 10.1371/journal.pbio.3001712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/18/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
People of all ages display the ability to detect and learn from patterns in seemingly random stimuli. Referred to as statistical learning (SL), this process is particularly critical when learning a spoken language, helping in the identification of discrete words within a spoken phrase. Here, by considering individual differences in speech auditory–motor synchronization, we demonstrate that recruitment of a specific neural network supports behavioral differences in SL from speech. While independent component analysis (ICA) of fMRI data revealed that a network of auditory and superior pre/motor regions is universally activated in the process of learning, a frontoparietal network is additionally and selectively engaged by only some individuals (high auditory–motor synchronizers). Importantly, activation of this frontoparietal network is related to a boost in learning performance, and interference with this network via articulatory suppression (AS; i.e., producing irrelevant speech during learning) normalizes performance across the entire sample. Our work provides novel insights on SL from speech and reconciles previous contrasting findings. These findings also highlight a more general need to factor in fundamental individual differences for a precise characterization of cognitive phenomena. In the context of speech, statistical learning is thought to be an important mechanism for language acquisition. This study shows that language statistical learning is boosted by the recruitment of a fronto-parietal brain network related to auditory-motor synchronization and its interplay with a mandatory auditory-motor learning system.
Collapse
Affiliation(s)
- Joan Orpella
- Department of Psychology, New York University, New York, New York, United States of America
| | - M. Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Querétaro, Mexico
- * E-mail:
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, United States of America
- Music and Audio Research Lab (MARL), New York University, New York, New York, United States of America
- Center for Language, Music and Emotion (CLaME), New York University, New York, New York, United States of America
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Laura Noejovich
- Department of Psychology, New York University, New York, New York, United States of America
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga–IBIMA and University of Málaga, Málaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Málaga, Málaga, Spain
| | - Ruth de Diego-Balaguer
- ICREA, Barcelona, Spain
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - David Poeppel
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Language, Music and Emotion (CLaME), New York University, New York, New York, United States of America
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Ernst Struengmann Institute for Neuroscience, Frankfurt, Germany
| |
Collapse
|
5
|
Sihvonen AJ, Pitkäniemi A, Särkämö T, Soinila S. Isn't There Room for Music in Chronic Pain Management? THE JOURNAL OF PAIN 2022; 23:1143-1150. [PMID: 35124251 DOI: 10.1016/j.jpain.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic pain with its comorbidities, such as depression, insomnia, and social deprivation, is a major cause of disability and health-economic burden. Insufficient response to pain medication and potentially serious adverse effects have led the majority of chronic pain patients to seek relief from non-pharmacological remedies. Along with this trend, pain research has paid increasing interest in critical evaluation of various complementary treatments. Music-based treatments have emerged as an efficacious and safe means to enhance the management of acute and chronic pain. We review the current position of music-based interventions in the treatment of chronic pain and present explanations for the analgesic effects of music through modulation of the primary nociception and discuss the contribution of the mesolimbic dopaminergic system to the affective component of pain perception. We propose ways to translate the novel theoretical understanding into clinical practice in different health care settings, primary health care in particular, and discuss the preconditions of successful implementation. We argue that music interventions provide low-cost, easily applicable complementary pain treatments not requiring heavy utilization of health care resources. Finally, we provide research and quality improvement frameworks and make suggestions to cover the gaps of existing evidence. PERSPECTIVE: This article addresses the current evidence for analgesic effects of music interventions, discusses its neurobiological basis and evaluates potential use of music in treating chronic pain patients in different health care settings. We also propose directions for future research to cover shortages in the currently published data.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Centre for Clinical Research, The University of Queensland, Australia.
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Finland
| |
Collapse
|
6
|
Sihvonen AJ, Soinila S, Särkämö T. Post-stroke enriched auditory environment induces structural connectome plasticity: secondary analysis from a randomized controlled trial. Brain Imaging Behav 2022; 16:1813-1822. [PMID: 35352235 PMCID: PMC9279272 DOI: 10.1007/s11682-022-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Post-stroke neuroplasticity and cognitive recovery can be enhanced by multimodal stimulation via environmental enrichment. In this vein, recent studies have shown that enriched sound environment (i.e., listening to music) during the subacute post-stroke stage improves cognitive outcomes compared to standard care. The beneficial effects of post-stroke music listening are further pronounced when listening to music containing singing, which enhances language recovery coupled with structural and functional connectivity changes within the language network. However, outside the language network, virtually nothing is known about the effects of enriched sound environment on the structural connectome of the recovering post-stroke brain. Here, we report secondary outcomes from a single-blind randomized controlled trial (NCT01749709) in patients with ischaemic or haemorrhagic stroke (N = 38) who were randomly assigned to listen to vocal music, instrumental music, or audiobooks during the first 3 post-stroke months. Utilizing the longitudinal diffusion-weighted MRI data of the trial, the present study aimed to determine whether the music listening interventions induce changes on structural white matter connectome compared to the control audiobook intervention. Both vocal and instrumental music groups increased quantitative anisotropy longitudinally in multiple left dorsal and ventral tracts as well as in the corpus callosum, and also in the right hemisphere compared to the audiobook group. Audiobook group did not show increased structural connectivity changes compared to both vocal and instrumental music groups. This study shows that listening to music, either vocal or instrumental promotes wide-spread structural connectivity changes in the post-stroke brain, providing a fertile ground for functional restoration.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Turku, Finland. .,School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre and UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Turku, Finland
| |
Collapse
|
7
|
Martínez-Molina N, Siponkoski ST, Pitkäniemi A, Moisseinen N, Kuusela L, Pekkola J, Laitinen S, Särkämö ER, Melkas S, Kleber B, Schlaug G, Sihvonen A, Särkämö T. Neuroanatomical correlates of speech and singing production in chronic post-stroke aphasia. Brain Commun 2022; 4:fcac001. [PMID: 35174327 PMCID: PMC8842683 DOI: 10.1093/braincomms/fcac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
A classical observation in neurology is that aphasic stroke patients with impairments in speech production can nonetheless sing the same utterances. This preserved ability suggests a distinctive neural architecture for singing that could contribute to speech recovery. However, to date, these structural correlates remain unknown. Here, we combined a multivariate lesion-symptom mapping and voxel-based morphometry approach to analyse the relationship between lesion patterns and grey matter volume and production rate in speech and singing tasks. Lesion patterns for spontaneous speech and cued repetition extended into frontal, temporal and parietal areas typically reported within the speech production network. Impairment in spontaneous singing was associated with damage to left anterior-posterior superior and middle temporal gyri. Preservation of grey matter volume in the same regions where damage led to poor speech and singing production supported better performance in these tasks. When dividing the patients into fluent and dysfluent singers based on singing performance from demographically matched controls, we found that preservation of left middle temporal gyrus was related to better spontaneous singing. These findings provide insights into the structural correlates of singing in chronic aphasia and may serve as biomarkers to predict treatment response in clinical trials using singing-based interventions for speech rehabilitation.
Collapse
Affiliation(s)
- Noelia Martínez-Molina
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Correspondence to: Noelia Martínez Molina Music, Ageing and Rehabilitation Team Cognitive Brain Research Unit Department of Psychology and Logopedics University of Helsinki, Helsinki, Finland E-mail:
| | - Sini-Tuuli Siponkoski
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Anni Pitkäniemi
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Nella Moisseinen
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Linda Kuusela
- Department of Physics, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Pekkola
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Laitinen
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Espoo Hospital, Espoo, Finland
| | - Essi-Reetta Särkämö
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Private Choir Conductor, Vantaa, Finland
| | - Susanna Melkas
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Gottfried Schlaug
- Department of Neurology, UMass Medical School—Baystate and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA, USA
| | - Aleksi Sihvonen
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Teppo Särkämö
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Sihvonen AJ, Särkämö T. Music processing and amusia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:55-67. [PMID: 35964992 DOI: 10.1016/b978-0-12-823493-8.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Music is a universal and important human trait, which is orchestrated by complex brain network centered in the temporal lobe but connecting broadly to multiple cortical and subcortical regions. In the human brain, music engages a widespread bilateral network of regions that govern auditory perception, syntactic and semantic processing, attention and memory, emotion and reward, and motor skills. The ability to perceive or produce music can be severely impaired either due to abnormal brain development or brain damage, leading to a condition called amusia. Modern neuroimaging studies of amusia have provided valuable knowledge about the structure and function of specific brain regions and white matter pathways that are crucial for music perception, highlighting the role of the right frontotemporal network in this process. In this chapter, we provide an overview on the neural basis of music processing in a healthy brain and review evidence obtained from the studies of congenital and acquired amusia.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Clinical and Neural Predictors of Treatment Response to Music Listening Intervention after Stroke. Brain Sci 2021; 11:brainsci11121576. [PMID: 34942878 PMCID: PMC8699822 DOI: 10.3390/brainsci11121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with post-stroke impairments present often significant variation in response to therapeutic interventions. Recent studies have shown that daily music listening can aid post-stroke recovery of language and memory, but reliable predictors of treatment response are unknown. Utilizing data from the music intervention arms of a single-blind randomized controlled trial (RCT) on stroke patients (N = 31), we built regression models to predict the treatment response of a two-month music listening intervention on language skills and verbal memory with baseline demographic, clinical and musical data as well as fMRI data from a music listening task. Clinically, greater improvement in verbal memory and language skills after the music listening intervention were predicted by the severity of the initial deficit and educational level. Neurally, greater baseline fMRI activation during vocal music listening in the left parietal cortical and medial frontal areas predicted greater treatment-induced improvement in language skills and greater baseline engagement of the auditory network during instrumental music listening predicted improvement in both verbal memory and language skills. Our results suggest that clinical, demographic, and neuroimaging data predicts music listening treatment response. This data could be used clinically to target music-based treatments.
Collapse
|
10
|
Sihvonen AJ, Pitkäniemi A, Leo V, Soinila S, Särkämö T. Resting-state language network neuroplasticity in post-stroke music listening: A randomized controlled trial. Eur J Neurosci 2021; 54:7886-7898. [PMID: 34763370 DOI: 10.1111/ejn.15524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023]
Abstract
Recent evidence suggests that post-stroke vocal music listening can aid language recovery, but the network-level functional neuroplasticity mechanisms of this effect are unknown. Here, we sought to determine if improved language recovery observed after post-stroke listening to vocal music is driven by changes in longitudinal resting-state functional connectivity within the language network. Using data from a single-blind randomized controlled trial on stroke patients (N = 38), we compared the effects of daily listening to self-selected vocal music, instrumental music and audio books on changes of the resting-state functional connectivity within the language network and their correlation to improved language skills and verbal memory during the first 3 months post-stroke. From acute to 3-month stage, the vocal music and instrumental music groups increased functional connectivity between a cluster comprising the left inferior parietal areas and the language network more than the audio book group. However, the functional connectivity increase correlated with improved verbal memory only in the vocal music group cluster. This study shows that listening to vocal music post-stroke promotes recovery of verbal memory by inducing changes in longitudinal functional connectivity in the language network. Our results conform to the variable neurodisplacement theory underpinning aphasia recovery.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Sihvonen AJ, Sammler D, Ripollés P, Leo V, Rodríguez-Fornells A, Soinila S, Särkämö T. Right ventral stream damage underlies both poststroke aprosodia and amusia. Eur J Neurol 2021; 29:873-882. [PMID: 34661326 DOI: 10.1111/ene.15148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to determine and compare lesion patterns and structural dysconnectivity underlying poststroke aprosodia and amusia, using a data-driven multimodal neuroimaging approach. METHODS Thirty-nine patients with right or left hemisphere stroke were enrolled in a cohort study and tested for linguistic and affective prosody perception and musical pitch and rhythm perception at subacute and 3-month poststroke stages. Participants listened to words spoken with different prosodic stress that changed their meaning, and to words spoken with six different emotions, and chose which meaning or emotion was expressed. In the music tasks, participants judged pairs of short melodies as the same or different in terms of pitch or rhythm. Structural magnetic resonance imaging data were acquired at both stages, and machine learning-based lesion-symptom mapping and deterministic tractography were used to identify lesion patterns and damaged white matter pathways giving rise to aprosodia and amusia. RESULTS Both aprosodia and amusia were behaviorally strongly correlated and associated with similar lesion patterns in right frontoinsular and striatal areas. In multiple regression models, reduced fractional anisotropy and lower tract volume of the right inferior fronto-occipital fasciculus were the strongest predictors for both disorders, over time. CONCLUSIONS These results highlight a common origin of aprosodia and amusia, both arising from damage and disconnection of the right ventral auditory stream integrating rhythmic-melodic acoustic information in prosody and music. Comorbidity of these disabilities may worsen the prognosis and affect rehabilitation success.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Daniela Sammler
- Research Group "Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, USA
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Department of Cognition, Development, and Education Psychology, University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Sihvonen AJ, Ripollés P, Leo V, Saunavaara J, Parkkola R, Rodríguez-Fornells A, Soinila S, Särkämö T. Vocal music listening enhances post-stroke language network reorganization. eNeuro 2021; 8:ENEURO.0158-21.2021. [PMID: 34140351 PMCID: PMC8266215 DOI: 10.1523/eneuro.0158-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022] Open
Abstract
Listening to vocal music has been recently shown to improve language recovery in stroke survivors. The neuroplasticity mechanisms supporting this effect are, however, still unknown. Using data from a three-arm single-blind randomized controlled trial including acute stroke patients (N=38) and a 3-month follow-up, we set out to compare the neuroplasticity effects of daily listening to self-selected vocal music, instrumental music, and audiobooks on both brain activity and structural connectivity of the language network. Using deterministic tractography we show that the 3-month intervention induced an enhancement of the microstructural properties of the left frontal aslant tract (FAT) for the vocal music group as compared to the audiobook group. Importantly, this increase in the strength of the structural connectivity of the left FAT correlated with improved language skills. Analyses of stimulus-specific activation changes showed that the vocal music group exhibited increased activations in the frontal termination points of the left FAT during vocal music listening as compared to the audiobook group from acute to 3-month post-stroke stage. The increased activity correlated with the structural neuroplasticity changes in the left FAT. These results suggest that the beneficial effects of vocal music listening on post-stroke language recovery are underpinned by structural neuroplasticity changes within the language network and extend our understanding of music-based interventions in stroke rehabilitation.Significance statementPost-stroke language deficits have a devastating effect on patients and their families. Current treatments yield highly variable outcomes and the evidence for their long-term effects is limited. Patients often receive insufficient treatment that are predominantly given outside the optimal time window for brain plasticity. Post-stroke vocal music listening improves language outcome which is underpinned by neuroplasticity changes within the language network. Vocal music listening provides a complementary rehabilitation strategy which could be safely implemented in the early stages of stroke rehabilitation and seems to specifically target language symptoms and recovering language network.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
- Centre for Clinical Research, The University of Queensland, Australia
| | - Pablo Ripollés
- Department of Psychology, New York University, USA
- Music and Audio Research Laboratory, New York University, USA
- Center for Language Music and emotion, New York UniversityUSA
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Education Psychology, University of Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital and University of Turku, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital and University of Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
13
|
Sihvonen AJ, Leo V, Ripollés P, Lehtovaara T, Ylönen A, Rajanaro P, Laitinen S, Forsblom A, Saunavaara J, Autti T, Laine M, Rodríguez-Fornells A, Tervaniemi M, Soinila S, Särkämö T. Vocal music enhances memory and language recovery after stroke: pooled results from two RCTs. Ann Clin Transl Neurol 2020; 7:2272-2287. [PMID: 33022148 PMCID: PMC7664275 DOI: 10.1002/acn3.51217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Previous studies suggest that daily music listening can aid stroke recovery, but little is known about the stimulus‐dependent and neural mechanisms driving this effect. Building on neuroimaging evidence that vocal music engages extensive and bilateral networks in the brain, we sought to determine if it would be more effective for enhancing cognitive and language recovery and neuroplasticity than instrumental music or speech after stroke. Methods Using data pooled from two single‐blind randomized controlled trials in stroke patients (N = 83), we compared the effects of daily listening to self‐selected vocal music, instrumental music, and audiobooks during the first 3 poststroke months. Outcome measures comprised neuropsychological tests of verbal memory (primary outcome), language, and attention and a mood questionnaire performed at acute, 3‐month, and 6‐month stages and structural and functional MRI at acute and 6‐month stages. Results Listening to vocal music enhanced verbal memory recovery more than instrumental music or audiobooks and language recovery more than audiobooks, especially in aphasic patients. Voxel‐based morphometry and resting‐state and task‐based fMRI results showed that vocal music listening selectively increased gray matter volume in left temporal areas and functional connectivity in the default mode network. Interpretation Vocal music listening is an effective and easily applicable tool to support cognitive recovery after stroke as well as to enhance early language recovery in aphasia. The rehabilitative effects of vocal music are driven by both structural and functional plasticity changes in temporoparietal networks crucial for emotional processing, language, and memory.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York
| | | | - Aki Ylönen
- Private Music Therapy Practitioner, Turku, Finland
| | | | - Sari Laitinen
- Private Music Therapy Practitioner, Helsinki, Finland
| | | | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Taina Autti
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,CICERO Learning, University of Helsinki, Helsinki, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Leo V, Sihvonen AJ, Linnavalli T, Tervaniemi M, Laine M, Soinila S, Särkämö T. Cognitive and neural mechanisms underlying the mnemonic effect of songs after stroke. NEUROIMAGE-CLINICAL 2019; 24:101948. [PMID: 31419766 PMCID: PMC6706631 DOI: 10.1016/j.nicl.2019.101948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/05/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Abstract
Sung melody provides a mnemonic cue that can enhance the acquisition of novel verbal material in healthy subjects. Recent evidence suggests that also stroke patients, especially those with mild aphasia, can learn and recall novel narrative stories better when they are presented in sung than spoken format. Extending this finding, the present study explored the cognitive mechanisms underlying this effect by determining whether learning and recall of novel sung vs. spoken stories show a differential pattern of serial position effects (SPEs) and chunking effects in non-aphasic and aphasic stroke patients (N = 31) studied 6 months post-stroke. The structural neural correlates of these effects were also explored using voxel-based morphometry (VBM) and deterministic tractography (DT) analyses of structural MRI data. Non-aphasic patients showed more stable recall with reduced SPEs in the sung than spoken task, which was coupled with greater volume and integrity (indicated by fractional anisotropy, FA) of the left arcuate fasciculus. In contrast, compared to non-aphasic patients, the aphasic patients showed a larger recency effect (better recall of the last vs. middle part of the story) and enhanced chunking (larger units of correctly recalled consecutive items) in the sung than spoken task. In aphasics, the enhanced chunking and better recall on the middle verse in the sung vs. spoken task correlated also with better ability to perceive emotional prosody in speech. Neurally, the sung > spoken recency effect in aphasic patients was coupled with greater grey matter volume in a bilateral network of temporal, frontal, and parietal regions and also greater volume of the right inferior fronto-occipital fasciculus (IFOF). These results provide novel cognitive and neurobiological insight on how a repetitive sung melody can function as a verbal mnemonic aid after stroke. Non-aphasic stroke patients show more stable recall of sung than spoken stories. Aphasic patients show larger recency and chunking effects to sung vs. spoken stories. The left dorsal pathway mediates better recall of sung stories in non-aphasics. The right ventral pathway mediates better recall of sung stories in aphasics. Large-scale bilateral cortical networks are linked to musical mnemonics in aphasia.
Collapse
Affiliation(s)
- Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Department of Neurosciences, Faculty of Medicine, University of Helsinki, Finland
| | - Tanja Linnavalli
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; CICERO Learning, University of Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, Turku University Hospital, Department of Neurology, University of Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
15
|
Wenhart T, Bethlehem RAI, Baron-Cohen S, Altenmüller E. Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Mol Autism 2019; 10:20. [PMID: 31073395 PMCID: PMC6498518 DOI: 10.1186/s13229-019-0272-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study. Sample and methods Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models. Results Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively. Conclusions Results show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
Collapse
Affiliation(s)
- T Wenhart
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| | - R A I Bethlehem
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Baron-Cohen
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - E Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
16
|
Särkämö T, Sihvonen AJ. Golden oldies and silver brains: Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders. Cortex 2018; 109:104-123. [PMID: 30312779 DOI: 10.1016/j.cortex.2018.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023]
Abstract
During the last decades, there have been major advances in mapping the brain regions that underlie our ability to perceive, experience, and produce music and how musical training can shape the structure and function of the brain. This progress has fueled and renewed clinical interest towards uncovering the neural basis for the impaired or preserved processing of music in different neurological disorders and how music-based interventions can be used in their rehabilitation and care. This article reviews our contribution to and the state-of-the-art of this field. We will provide a short overview outlining the key brain networks that participate in the processing of music and singing in the healthy brain and then present recent findings on the following key music-related research topics in neurological disorders: (i) the neural architecture underlying deficient processing of music (amusia), (ii) the preservation of singing in aphasia and music-evoked emotions and memories in Alzheimer's disease, (iii) the mnemonic impact of songs as a verbal learning tool, and (iv) the cognitive, emotional, and neural efficacy of music-based interventions and activities in the rehabilitation and care of major ageing-related neurological illnesses (stroke, Alzheimer's disease, and Parkinson's disease).
Collapse
Affiliation(s)
- Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland.
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, University of Helsinki, Finland; Faculty of Medicine, University of Turku, Finland
| |
Collapse
|
17
|
Leo V, Sihvonen AJ, Linnavalli T, Tervaniemi M, Laine M, Soinila S, Särkämö T. Sung melody enhances verbal learning and recall after stroke. Ann N Y Acad Sci 2018; 1423:296-307. [PMID: 29542823 DOI: 10.1111/nyas.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/20/2023]
Abstract
Coupling novel verbal material with a musical melody can potentially aid in its learning and recall in healthy subjects, but this has never been systematically studied in stroke patients with cognitive deficits. In a counterbalanced design, we presented novel verbal material (short narrative stories) in both spoken and sung formats to stroke patients at the acute poststroke stage and 6 months poststroke. The task comprised three learning trials and a delayed recall trial. Memory performance on the spoken and sung tasks did not differ at the acute stage, whereas sung stories were learned and recalled significantly better compared with spoken stories at the 6 months poststroke stage. Interestingly, this pattern of results was evident especially in patients with mild aphasia, in whom the learning of sung versus spoken stories improved more from the acute to the 6-month stages compared with nonaphasic patients. Overall, these findings suggest that singing could be used as a mnemonic aid in the learning of novel verbal material in later stages of recovery after stroke.
Collapse
Affiliation(s)
- Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Tanja Linnavalli
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- CICERO Learning, University of Helsinki, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, Department of Neurology, University of Turku, Turku University Hospital, Turku, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|