1
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Cerqueira de Araujo A, Josse T, Sibut V, Urabe M, Asadullah A, Barbe V, Nakai M, Huguet E, Periquet G, Drezen JM. Chelonus inanitus bracovirus encodes lineage-specific proteins and truncated immune IκB-like factors. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host–parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.
Collapse
Affiliation(s)
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Vonick Sibut
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Mariko Urabe
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Azam Asadullah
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Madoka Nakai
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
3
|
Zhao J, Teng T, Wang J. An Autographa californica nucleopolyhedrovirus-encoded microRNA, AcMNPV-miR-4, downregulates the expression of host gene alg-2. J Gen Virol 2022; 103. [PMID: 35830328 DOI: 10.1099/jgv.0.001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa california multiple nucleopolyhedrovirus (AcMNPV)-encoded microRNAs (miRNAs) that regulate viral genes to achieve infection have been reported previously. Here, we report another AcMNPV encoded miRNA, AcMNPV-miR-4 (Ac-miR-4), which downregulated the host gene, apoptosis-linked gene (alg-2). This regulation was verified by dual-luciferase reporter assays. The effects of Ac-miR-4 on virus infection were assessed. The results showed that the production of infectious budded virions (BV) was decreased and the occlusion-derived virion (ODV) embedding into polyhedra was delayed when Sf9 cells were administered an overdose of Ac-miR-4. All these findings suggest that Ac-miR-4 prolongs cell lifespan and reduces virus virulence at a relatively early stage but increases ODV at a very late stage. This finding may be attributed to the downregulation effects of alg-2, which lead to weakened ALG-2 related functions, such as cell apoptosis, vesicle budding and protein transport.
Collapse
Affiliation(s)
- Jin Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 518107, PR China
| | - Tingkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jinwen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
4
|
Wu X, Wu Z, Ye X, Pang L, Sheng Y, Wang Z, Zhou Y, Zhu J, Hu R, Zhou S, Chen J, Wang Z, Shi M, Huang J, Chen X. The Dual Functions of a Bracovirus C-Type Lectin in Caterpillar Immune Response Manipulation. Front Immunol 2022; 13:877027. [PMID: 35663984 PMCID: PMC9157488 DOI: 10.3389/fimmu.2022.877027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Parasitoids are widespread in natural ecosystems and normally equipped with diverse viral factors to defeat host immune responses. On the other hand, parasitoids can enhance the antibacterial abilities and improve the hypoimmunity traits of parasitized hosts that may encounter pathogenic infections. These adaptive strategies guarantee the survival of parasitoid offspring, yet their underlying mechanisms are poorly understood. Here, we focused on Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and found that C. vestalis parasitization decreases the number of host hemocytes, leading to disruption of the encapsulation reaction. We further found that one bracovirus C-type lectin gene, CvBV_28-1, is highly expressed in the hemocytes of parasitized hosts and participates in suppressing the proliferation rate of host hemocytes, which in turn reduces their population and represses the process of encapsulation. Moreover, CvBV_28-1 presents a classical bacterial clearance ability via the agglutination response in a Ca2+-dependent manner in response to gram-positive bacteria. Our study provides insights into the innovative strategy of a parasitoid-derived viral gene that has dual functions to manipulate host immunity for a successful parasitism.
Collapse
Affiliation(s)
- Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiachen Zhu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rongmin Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Pinto CPG, Walker AA, Robinson SD, King GF, Rossi GD. Proteotranscriptomics reveals the secretory dynamics of teratocytes, regulators of parasitization by an endoparasitoid wasp. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104395. [PMID: 35413336 DOI: 10.1016/j.jinsphys.2022.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Parasitoid wasps have evolved sophisticated mechanisms of host regulation that establish a favorable environment for the development of immature parasitoids. While maternal venom and symbiotic virus-like particles are well-known mechanisms of host regulation, another less-studied mechanism is the secretion of host regulation factors by cells called teratocytes, extra-embryonic cells released during parasitoid larval eclosion. Consequently, identification and characterization of teratocyte secretory products has not been reported in detail for any parasitoid wasp. We aimed to analyze teratocyte secretory products released into hemolymph of the larval sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) by its biological control agent, the koinobiont endoparasitoid wasp Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae). Teratocytes were released upon eclosion of parasitoid larvae four days after parasitization (DAP) and increased in number and size until six DAP. Total D. saccharalis hemocyte viability was reduced immediately after parasitization until DAP 2, while total hemocyte count was lower from the third DAP, and phenoloxidase and lysozyme activity were disrupted compared to non-parasitized controls. To examine the secretory products of teratocytes, we generated a teratocyte transcriptome and compared its in silico translated open reading frames to mass spectra obtained from hemolymph from parasitized and unparasitized hosts. This led to the identification of 57 polypeptides secreted by teratocytes, the abundance of which we tracked over 0-10 DAP. Abundant teratocyte products included proteins similar to bracovirus proteins and multiple disulfide-rich peptides. Most teratocyte products accumulated in hemolymph, reaching their highest concentrations immediately before parasitoid pupation. Our results provide insights into host regulation by teratocytes and reveal molecules that may be useful in biotechnology.
Collapse
Affiliation(s)
- Ciro P G Pinto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guilherme D Rossi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
| |
Collapse
|
6
|
Gu Q, Wu Z, Zhou Y, Wang Z, Shi M, Huang J, Chen X. A teratocyte-specific serpin from the endoparasitoid wasp Cotesia vestalis inhibits the prophenoloxidase-activating system of its host Plutella xylostella. INSECT MOLECULAR BIOLOGY 2022; 31:202-215. [PMID: 34897868 PMCID: PMC9303735 DOI: 10.1111/imb.12751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Many endoparasitoids adopt several parasitic factors, such as venom, polydnavirus and teratocytes, to suppress the immune response of their associated hosts including melanization for successful parasitism. A teratocyte-specific expressed serpin gene, designated as CvT-serpin6, was identified from the parasitoid Cotesia vestalis. The immunoblot result suggested that CvT-serpin6 was secreted into extracellular space. qPCR results showed that CvT-serpin6 was mainly transcribed at later stages of parasitism, and the transcriptional abundance of CvT-serpin6 in teratocytes was significantly increased in response to the challenge of bacteria. Inhibitory assay indicated that recombinant CvT-serpin6 (rCvT-serpin6) could inhibit the activation of Plutella xylostella prophenoloxidase and ultimately resulted in the inhibition of melanization in P. xylostella haemolymph. Furthermore, we confirmed that rCvT-serpin6 could form SDS-stable complexes with activated PxPAP1 and PxPAP3 in a dose-dependent manner. Altogether, our results further shed insight into the molecular mechanisms that teratocytes involved in controlling host immune response.
Collapse
Affiliation(s)
- Qijuan Gu
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- College of Agriculture and Food scienceZhejiang Agriculture and Forestry UniversityHangzhouChina
| | - Zhiwei Wu
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Yuenan Zhou
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Zhizhi Wang
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Min Shi
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect PestsZhejiang UniversityHangzhouChina
| | - Jianhua Huang
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Xuexin Chen
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Identification and Functional Characterization of Toxoneuron nigriceps Ovarian Proteins Involved in the Early Suppression of Host Immune Response. INSECTS 2022; 13:insects13020144. [PMID: 35206718 PMCID: PMC8876978 DOI: 10.3390/insects13020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The endophagous parasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) of the larval stages of the tobacco budworm Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae) injects the egg, the venom, the calyx fluid, which includes a Polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian Proteins (OPs) into the host body during oviposition. The host metabolism and immune system are disrupted prematurely shortly after parasitization by the combined action of the TnBV, venom, and OPs. OPs are involved in the early suppression of host immune response, before TnBV infects and expresses its genes in the host tissues. In this work, we evaluated the effect of HPLC fractions deriving from in toto OPs. Two fractions caused a reduction in hemocyte viability and were subsequently tested to detect changes in hemocyte morphology and functionality. The two fractions provoked severe oxidative stress and actin cytoskeleton disruption, which might explain the high rate of hemocyte mortality, loss of hemocyte functioning, and hence the host’s reduced hemocyte encapsulation ability. Moreover, through a transcriptome and proteomic approach we identify the proteins of the two fractions: eight proteins were identified that might be involved in the observed host hemocyte changes. Our findings will contribute to a better understanding of the secreted ovarian components and their role in parasitoid wasp strategy for evading host immune responses.
Collapse
|
8
|
Wang Y, Wu X, Wang Z, Chen T, Zhou S, Chen J, Pang L, Ye X, Shi M, Huang J, Chen X. Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLoS Pathog 2021; 17:e1009365. [PMID: 33647060 PMCID: PMC7951984 DOI: 10.1371/journal.ppat.1009365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Parasites alter host energy homeostasis for their own development, but the mechanisms underlying this phenomenon remain largely unknown. Here, we show that Cotesia vestalis, an endoparasitic wasp of Plutella xylostella larvae, stimulates a reduction of host lipid levels. This process requires excess secretion of P. xylostella tachykinin (PxTK) peptides from enteroendocrine cells (EEs) in the midgut of the parasitized host larvae. We found that parasitization upregulates PxTK signaling to suppress lipogenesis in midgut enterocytes (ECs) in a non-cell-autonomous manner, and the reduced host lipid level benefits the development of wasp offspring and their subsequent parasitic ability. We further found that a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for PxTK induction, which in turn reduces the systemic lipid level of the host. Taken together, these findings illustrate a novel mechanism for parasite manipulation of host energy homeostasis by a symbiotic bracovirus gene to promote the development and increase the parasitic efficiency of an agriculturally important wasp species. Parasitic wasps are ubiquitous on earth and diverse. They lay eggs in or on the bodies of their hosts, and they have evolved adaptive strategies to regulate the energy metabolism of their hosts to match their own specific nutrition requirements. Here, we found that Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella, uses symbiotic bracovirus as a weapon to manipulate host systemic lipid levels. Specifically, a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for the induction of PxTK, which in turn suppresses lipogenesis in the midgut of the parasitized host, leading to a nutritional lipid level suitable for the development and subsequent parasitic efficiency of C. vestalis wasps. Our study provides innovative insights into the mechanisms by which parasitic wasps manipulate host lipid homeostasis and may help to expand our knowledge of other parasitic systems.
Collapse
Affiliation(s)
- Yanping Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Salvia R, Scieuzo C, Grimaldi A, Fanti P, Moretta A, Franco A, Varricchio P, Vinson SB, Falabella P. Role of Ovarian Proteins Secreted by Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) in the Early Suppression of Host Immune Response. INSECTS 2021; 12:insects12010033. [PMID: 33466542 PMCID: PMC7824821 DOI: 10.3390/insects12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Toxoneuron nigriceps is an endoparasitoid of the tobacco budworm Heliothis virescens. Parasitoid strategies to survive involve different regulating factors that are injected into the host body together with the egg: the venom and the calyx fluid, containing a Polydnavirus (PDV) and Ovarian Proteins (OPs). The combination of these factors increases the success of parasitism. Although many studies have been reported on venom protein components and the knowledge on PDVs is increasing, little is known on OPs. These secretions are able to interfere early with the host cellular immune response, acting specifically on host haemocytes, cells involved in immune response. Our results show that OPs induce several alterations on haemocytes, including cellular oxidative stress condition and modifications of actin cytoskeleton, so inducing both a loss of haemocyte functionality and cell death. Overall, in synergy with PDV and venom, OPs positively contribute to the evasion of the host immune response by T. nigriceps. Abstract Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). During oviposition, T. nigriceps injects into the host body, along with the egg, the venom, the calyx fluid, which contains a Polydnavirus (T. nigriceps BracoVirus: TnBV), and the Ovarian Proteins (OPs). Although viral gene expression in the host reaches detectable levels after a few hours, a precocious disruption of the host metabolism and immune system is observed right after parasitization. This alteration appears to be induced by female secretions including TnBV venom and OPs. OPs, originating from the ovarian calyx cells, are involved in the induction of precocious symptoms in the host immune system alteration. It is known that OPs in braconid and ichneumonid wasps can interfere with the cellular immune response before Polydnavirus infects and expresses its genes in the host tissues. Here we show that T. nigriceps OPs induce several alterations on host haemocytes that trigger cell death. The OP injection induces an extensive oxidative stress and a disorganization of actin cytoskeleton and these alterations can explain the high-level of haemocyte mortality, the loss of haemocyte functionality, and so the reduction in encapsulation ability by the host.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Paolo Fanti
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
| | - Antonio Moretta
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paola Varricchio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy;
| | - S. Bradleigh Vinson
- Department of Entomology, Texas A&M University, 370 Olsen Blvd, College Station, TX 77843-2475, USA;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence:
| |
Collapse
|
10
|
Chang Y, Tang CK, Lin YH, Tsai CH, Lu YH, Wu YL. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Sci Rep 2020; 10:2096. [PMID: 32034183 PMCID: PMC7005799 DOI: 10.1038/s41598-020-58375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/11/2020] [Indexed: 01/28/2023] Open
Abstract
Sufficient energy supply to the host immune system is important for resisting pathogens. Therefore, during pathogen infection, the host metabolism is reassigned from storage, growth, and development to the immune system. Previous studies in Drosophila melanogaster have demonstrated that systemic metabolic switching upon an immune challenge is activated by extracellular adenosine signaling, modulating carbohydrate mobilization and redistributing energy to the hemocytes. In the present study, we discovered that symbiotic virus (SmBV) of the parasitoid wasp Snellenius manilae is able to down-regulate the extracellular adenosine of its host, Spodoptera litura, to inhibit metabolism switching. The decreased carbohydrate mobilization, glycogenolysis, and ATP synthesis upon infection results in the host being unable to supply energy to its immune system, thus benefitting the development of wasp larvae. When we added adenosine to the infected S. litura larvae, we observed enhanced host immune responses that decreased the pupation rate of S. manilae. Previous studies showed that after pathogen infection, the host activates its adenosine pathway to trigger immune responses. However, our results suggest a different model: we found that in S. manilae, SmBV modulates the host adenosine pathway such that wasp eggs and larvae can evade the host immune response.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
12
|
Salvia R, Grimaldi A, Girardello R, Scieuzo C, Scala A, Bufo SA, Vogel H, Falabella P. Aphidius ervi Teratocytes Release Enolase and Fatty Acid Binding Protein Through Exosomal Vesicles. Front Physiol 2019; 10:715. [PMID: 31275155 PMCID: PMC6593151 DOI: 10.3389/fphys.2019.00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
The molecular bases of the host-parasitoid interactions in the biological system Acyrthosiphon pisum (Harris) (Homoptera, Aphididae) and Aphidius ervi (Haliday) (Hymenoptera, Braconidae) have been elucidated allowing the identification of a gamma-glutamyl transpeptidase, the active component of maternal venom secretion, and teratocytes, the embryonic parasitic factors responsible for host physiology regulation after parasitization. Teratocytes, cells deriving from the dissociation of the serosa, the parasitoid embryonic membrane, are responsible for extra-oral digestion of host tissues in order to provide a suitable nutritional environment for the development of parasitoid larvae. Teratocytes rapidly grow in size without undergoing any cell division, synthesize, and release in the host hemolymph two proteins: a fatty acid binding protein (Ae-FABP) and an enolase (Ae-ENO). Ae-FABP is involved in transport of fatty acids deriving from host tissues to the parasitoid larva. Ae-ENO is an extracellular glycolytic enzyme that functions as a plasminogen like receptor inducing its activation to plasmin. Both Ae-FABP and Ae-ENO lack their signal peptides, and they are released in the extracellular environment through an unknown secretion pathway. Here, we investigated the unconventional mechanism by which teratocytes release Ae-FABP and Ae-ENO in the extracellular space. Our results, obtained using immunogold staining coupled with TEM and western blot analyses, show that these two proteins are localized in vesicles released by teratocytes. The specific dimension of these vesicles and the immunodetection of ALIX and HSP70, two exosome markers, strongly support the hypothesis that these vesicles are exosomes.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
13
|
Jagdale SS, Joshi RS. Facilitator roles of viruses in enhanced insect resistance to biotic stress. CURRENT OPINION IN INSECT SCIENCE 2019; 33:111-116. [PMID: 31358189 DOI: 10.1016/j.cois.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Virus-insect interactions are primarily parasitic, yet diverse mutualistic interactions, some of which are symbiogenic, also occur. These viruses can modify insect physiology and behavior so that hosts can gain resistance against various biotic challenges like pathogen and parasites. In the recent past, many insect mutualistic viruses have been reported. Viruses can show symbiogenic interactions with some insects, which have been explored at the molecular level. However, understanding about molecular mechanisms for many of the mutualistic viruses is still enigmatic. Exploration of these interactions and its mechanism can shed light on phenomenon of virus mediated biotic stress resistance in insects.
Collapse
Affiliation(s)
- Shounak S Jagdale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; Biochemical Sciences Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
14
|
Darboux I, Cusson M, Volkoff AN. The dual life of ichnoviruses. CURRENT OPINION IN INSECT SCIENCE 2019; 32:47-53. [PMID: 31113631 DOI: 10.1016/j.cois.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Ichnoviruses (IVs) are mutualistic, double-stranded DNA viruses playing a key role in the successful parasitism of thousands of endoparasitoid wasp species. IV particles are produced exclusively in the female wasp reproductive tract. They are co-injected along with the parasitoid egg into caterpillar hosts upon parasitization. The expression of viral genes by infected host cells leads to an immunosuppressive state and delayed development of the host, two pathologies that are critical to the successful development of the wasp egg and larva. Ichnovirus is one of the two recognized genera within the family Polydnaviridae (polydnaviruses or PDVs), the other genus being Bracovirus (BV), associated with braconid wasps. IVs are associated with ichneumonid wasps belonging to the subfamilies Campopleginae and Banchinae; attempts to identify IV particles in other ichneumonid subfamilies have so far been unsuccessful. Functional studies targeting IV genes expressed in parasitized hosts, along with investigations of the molecular mechanisms responsible for viral morphogenesis in the female wasp, have resulted in a better understanding of the biology of these atypical viruses.
Collapse
Affiliation(s)
- Isabelle Darboux
- UMR DGIMI 1333 INRA Université de Montpellier, Montpellier, France.
| | - Michel Cusson
- Centre de foresterie des Laurentides, Ressources naturelles Canada, Québec, Canada
| | | |
Collapse
|
15
|
Visconti V, Eychenne M, Darboux I. Modulation of antiviral immunity by the ichnovirus HdIV in Spodoptera frugiperda. Mol Immunol 2019; 108:89-101. [PMID: 30784767 DOI: 10.1016/j.molimm.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts found in thousands of endoparasitoid species and essential for successful parasitism. The two genera of PDVs, ichnovirus (IV) and bracovirus (BV), use different sets of virulence factors to ensure successful parasitization of the host. Previous studies have shown that PDVs target apoptosis, one of the innate antiviral responses in many host organisms. However, IV and BV have been shown to have opposite effects on this process. BV induces apoptosis in host cells, whereas some IV proteins have been shown to have anti-apoptotic activity. The different biological contexts in which the assays were performed may account for this difference. In this study, we evaluated the interplay between apoptosis and the ichnovirus HdIV from the parasitoid Hyposoter didymator, in the HdIV-infected hemocytes and fat bodies of S. frugiperda larvae, and in the Sf9 insect cell line challenged with HdIV. We found that HdIV induced cell death in hemocytes and fat bodies, whereas anti-apoptotic activity was observed in HdIV-infected Sf9 cells, with and without stimulation with viral PAMPs or chemical inducers. We also used an RT-qPCR approach to determine the expression profiles of a set of genes known to encode key components of the other main antiviral immune pathways described in insects. The analysis of immune gene transcription highlighted differences in antiviral responses to HdIV as a function of host cell type. However, all these antiviral pathways appeared to be neutralized by low levels of expression for the genes encoding the key components of these pathways, in all biological contexts. Finally, we investigated the effect of HdIV on the general antiviral defenses of the lepidopteran larvae in more detail, by studying the survival of S. frugiperda co-infected with HdIV and the entomopathogenic densovirus JcDV. Coinfected S. frugiperda larvae have increased resistance to JcDV at an early phase of infection, whereas HdIV effects enhance the virulence of the virus at later stages of infection. Overall, these results reveal complex interactions between HdIV and its cellular environment.
Collapse
Affiliation(s)
- Vincent Visconti
- UMR 1333 INRA - Université de Montpellier Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), 34095 Montpellier, France.
| | - Magali Eychenne
- UMR 1333 INRA - Université de Montpellier Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), 34095 Montpellier, France
| | - Isabelle Darboux
- UMR 1333 INRA - Université de Montpellier Diversité, Génomes & Interactions Microorganismes-Insectes (DGIMI), 34095 Montpellier, France.
| |
Collapse
|
16
|
Salvia R, Nardiello M, Scieuzo C, Scala A, Bufo SA, Rao A, Vogel H, Falabella P. Novel Factors of Viral Origin Inhibit TOR Pathway Gene Expression. Front Physiol 2018; 9:1678. [PMID: 30534083 PMCID: PMC6275226 DOI: 10.3389/fphys.2018.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Asha Rao
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Patrizia Falabella
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Ye XQ, Shi M, Huang JH, Chen XX. Parasitoid polydnaviruses and immune interaction with secondary hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:124-129. [PMID: 29352983 DOI: 10.1016/j.dci.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts.
Collapse
Affiliation(s)
- Xi-Qian Ye
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hua Huang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|