1
|
Feng Y, Gao C, Xie D, Liu L, Chen B, Liu S, Yang H, Gao Z, Wilson DA, Tu Y, Peng F. Directed Neural Stem Cells Differentiation via Signal Communication with Ni-Zn Micromotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301736. [PMID: 37402480 DOI: 10.1002/adma.202301736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/06/2023]
Abstract
Neural stem cells (NSCs), with the capability of self-renewal, differentiation, and environment modulation, are considered promising for stroke, brain injury therapy, and neuron regeneration. Activation of endogenous NSCs, is attracting increasing research enthusiasm, which avoids immune rejection and ethical issues of exogenous cell transplantation. Yet, how to induce directed growth and differentiation in situ remain a major challenge. In this study, a pure water-driven Ni-Zn micromotor via a self-established electric-chemical field is proposed. The micromotors can be magnetically guided and precisely approach target NSCs. Through the electric-chemical field, bioelectrical signal exchange and communication with endogenous NSCs are allowed, thus allowing for regulated proliferation and directed neuron differentiation in vivo. Therefore, the Ni-Zn micromotor provides a platform for controlling cell fate via a self-established electrochemical field and targeted activation of endogenous NSCs.
Collapse
Affiliation(s)
- Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haihong Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhan Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Hong DK, Kho AR, Lee SH, Kang BS, Park MK, Choi BY, Suh SW. Pathophysiological Roles of Transient Receptor Potential (Trp) Channels and Zinc Toxicity in Brain Disease. Int J Mol Sci 2023; 24:ijms24076665. [PMID: 37047637 PMCID: PMC10094935 DOI: 10.3390/ijms24076665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Maintaining the correct ionic gradient from extracellular to intracellular space via several membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these transporters is the transient receptor potential (TRP) channel family that consists of six putative transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP channels by brain disease, several cations are translocated through TRP channels. Brain disease, especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is essential for regulating diverse physiological functions, the brain-disease-induced excessive release and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain disease is critical for the prevention of brain damage. In this review, we summarize recent experimental research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP channels may serve as targets for treating and preventing neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Cardoso PHDO, Boleti APDA, Silva PSE, Mukoyama LTH, Guindo AS, de Moraes LFRN, de Oliveira CFR, Macedo MLR, Carvalho CME, de Castro AP, Migliolo L. Evaluation of a Novel Synthetic Peptide Derived from Cytolytic Mycotoxin Candidalysin. Toxins (Basel) 2022; 14:toxins14100696. [PMID: 36287965 PMCID: PMC9610734 DOI: 10.3390/toxins14100696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of neuroinflammation in neurology is becoming increasingly apparent. In addition to neuroinflammatory diseases such as multiple sclerosis, the role of neuroinflammation has been identified in many non-inflammatory neurological disorders such as stroke, epilepsy, and cancer. The immune response within the brain involves the presence of CNS resident cells; mainly glial cells, such as microglia, the CNS resident macrophages. We evaluated the peptide Ca-MAP1 bioinspired on the C. albicans immature cytolytic toxin candidalysin to develop a less hemolytic peptide with anti-neuroinflammatory, antibacterial, and cytotoxic activity against tumor cells. In silico and in vitro studies were performed at various concentrations. Ca-MAP1 exhibits low hemolytic activity at lower concentrations and was not cytotoxic to MRC-5 and BV-2 cells. Ca-MAP1 showed activity against Acinetobacter baumannii, Escherichia coli ATCC, E. coli KPC, Klebsiella pneumoniae ATCC, Pseudomonas aeruginosa, and Staphylococcus aureus ATCC. Furthermore, Ca-MAP1 exhibits anti-neuroinflammatory activity in the BV-2 microglia model, with 93.78% inhibition of nitrate production at 18.1 µM. Ca-MAP1 presents cytotoxic activity against tumor cell line NCI-H292 at 36.3 μM, with an IC50 of 38.4 µM. Ca-MAP1 demonstrates results that qualify it to be evaluated in the next steps to promote the control of infections and provide an alternative antitumor therapy.
Collapse
Affiliation(s)
- Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alexya Sandim Guindo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alinne Pereira de Castro
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
- Correspondence: ; Tel.: +55-67-33123473
| |
Collapse
|
4
|
Bradley-Garcia M, Winocur G, Sekeres MJ. Episodic Memory and Recollection Network Disruptions Following Chemotherapy Treatment in Breast Cancer Survivors: A Review of Neuroimaging Findings. Cancers (Basel) 2022; 14:4752. [PMID: 36230678 PMCID: PMC9563268 DOI: 10.3390/cancers14194752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term memory disturbances are amongst the most common and disruptive cognitive symptoms experienced by breast cancer survivors following chemotherapy. To date, most clinical assessments of long-term memory dysfunction in breast cancer survivors have utilized basic verbal and visual memory tasks that do not capture the complexities of everyday event memories. Complex event memories, including episodic memory and autobiographical memory, critically rely on hippocampal processing for encoding and retrieval. Systemic chemotherapy treatments used in breast cancer commonly cause neurotoxicity within the hippocampus, thereby creating a vulnerability to memory impairment. We review structural and functional neuroimaging studies that have identified disruptions in the recollection network and related episodic memory impairments in chemotherapy-treated breast cancer survivors, and argue for the need to better characterize hippocampally mediated memory dysfunction following chemotherapy treatments. Given the importance of autobiographical memory for a person's sense of identity, ability to plan for the future, and general functioning, under-appreciation of how this type of memory is impacted by cancer treatment can lead to overlooking or minimizing the negative experiences of breast cancer survivors, and neglecting a cognitive domain that may benefit from intervention strategies.
Collapse
Affiliation(s)
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Centre, Toronto, ON M6A 2E1, Canada
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Melanie J Sekeres
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
6
|
Onzi GR, D'Agustini N, Garcia SC, Guterres SS, Pohlmann PR, Rosa DD, Pohlmann AR. Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions. Drug Saf 2022; 45:601-621. [PMID: 35606623 DOI: 10.1007/s40264-022-01182-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
Among the potential adverse effects of breast cancer treatment, chemotherapy-related cognitive impairment (CRCI) has gained increased attention in the past years. In this review, we provide an overview of the literature regarding CRCI in breast cancer, focusing on three main aspects. The first aspect relates to the molecular mechanisms linking individual drugs commonly used to treat breast cancer and CRCI, which include oxidative stress and inflammation, reduced neurogenesis, reduced levels of specific neurotransmitters, alterations in neuronal dendrites and spines, and impairment in myelin production. The second aspect is related to the clinical characteristics of CRCI in patients with breast cancer treated with different drug combinations. Data suggest the incidence rates of CRCI in breast cancer vary considerably, and may affect more than 50% of treated patients. Both chemotherapy regimens with or without anthracyclines have been associated with CRCI manifestations. While cross-sectional studies suggest the presence of symptoms up to 20 years after treatment, longitudinal studies confirm cognitive impairments lasting for at most 4 years after the end of chemotherapy. The third and final aspect is related to possible therapeutic interventions. Although there is still no standard of care to treat CRCI, several pharmacological and non-pharmacological approaches have shown interesting results. In summary, even if cognitive impairments derived from chemotherapy resolve with time, awareness of CRCI is crucial to provide patients with a better understanding of the syndrome and to offer them the best care directed at improving quality of life.
Collapse
Affiliation(s)
- Giovana R Onzi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| | - Nathalia D'Agustini
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Silvia S Guterres
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela D Rosa
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Serviço de Oncologia, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Adriana R Pohlmann
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
7
|
Fardani F, Gholami A, Ansari H. Investigating the effect of zinc on the prevention of acute peripheral neuropathy in cancer patients treated with taxanes. Adv Biomed Res 2022; 11:61. [PMID: 36124021 PMCID: PMC9482377 DOI: 10.4103/abr.abr_263_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a major complication of many chemotherapeutic agents, including taxanes. Here, we aimed to investigate the effect of zinc on CIPN. Materials and Methods: This is a double-blinded controlled clinical trial that was performed in 2020–2021 in Isfahan on 55 cancer patients. We collected the data regarding CIPN, its severity, presence of abnormal deep-tendon reflexes, paresthesia, restriction in daily activities, and restriction in self-care and pain. Patients were divided into two groups: Patients in the first group were treated with capsules of zinc sulfate 25 mg daily and the control group received placebo. The duration of treatments was 3 months. Patients were visited 6, 9, and 12 weeks after study initiation. Results: There was a statistically significant decrease in the frequency of CIPN in the intervention group (37.03% vs. 14.8%, P < 0.001). The evaluation of the severity of neuropathy and presence of abnormal deep-tendon reflexes also demonstrated significant decrease in the intervention group during the study (P < 0.001 for both), but no significant changes were observed in the placebo group (P > 0.05). The activity limitations and pain severity improved significantly both in the intervention and placebo groups (P < 0.001 for both groups and items). The intervention group, however, had significantly lower frequencies of activity limitation and lower pain severity within compared to the control group during the study (P < 0.001). Conclusion: Zinc supplement therapy resulted in reduced frequency and intensity of CIPN in patients undergoing chemotherapy with taxanes.
Collapse
|
8
|
Országhová Z, Mego M, Chovanec M. Long-Term Cognitive Dysfunction in Cancer Survivors. Front Mol Biosci 2022; 8:770413. [PMID: 34970595 PMCID: PMC8713760 DOI: 10.3389/fmolb.2021.770413] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a frequent side effect experienced by an increasing number of cancer survivors with a significant impact on their quality of life. Different definitions and means of evaluation have been used in available literature; hence the exact incidence of CRCI remains unknown. CRCI can be described as cognitive symptoms reported by cancer patients in self-reported questionnaires or as cognitive changes evaluated by formal neuropsychological tests. Nevertheless, association between cognitive symptoms and objectively assessed cognitive changes is relatively weak or absent. Studies have focused especially on breast cancer patients, but CRCI has been reported in multiple types of cancer, including colorectal, lung, ovarian, prostate, testicular cancer and hematological malignancies. While CRCI has been associated with various treatment modalities, including radiotherapy, chemotherapy, hormone therapy and novel systemic therapies, it has been also detected prior to cancer treatment. Therefore, the effects of cancer itself with or without the psychological distress may be involved in the pathogenesis of CRCI as a result of altered coping mechanisms after cancer diagnosis. The development of CRCI is probably multifactorial and the exact mechanisms are currently not completely understood. Possible risk factors include administered treatment, genetic predisposition, age and psychological factors such as anxiety, depression or fatigue. Multiple mechanisms are suggested to be responsible for CRCI, including direct neurotoxic injury of systemic treatment and radiation while other indirect contributing mechanisms are hypothesized. Chronic neuroinflammation mediated by active innate immune system, DNA-damage or endothelial dysfunction is hypothesized to be a central mechanism of CRCI pathogenesis. There is increasing evidence of potential plasma (e.g., damage associated molecular patterns, inflammatory components, circulating microRNAs, exosomes, short-chain fatty acids, and others), cerebrospinal fluid and radiological biomarkers of cognitive dysfunction in cancer patients. Discovery of biomarkers of cognitive impairment is crucial for early identification of cancer patients at increased risk for the development of CRCI or development of treatment strategies to lower the burden of CRCI on long-term quality of life. This review summarizes current literature on CRCI with a focus on long-term effects of different cancer treatments, possible risk factors, mechanisms and promising biomarkers.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
9
|
Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions. Int J Mol Sci 2021; 22:12697. [PMID: 34884513 PMCID: PMC8657487 DOI: 10.3390/ijms222312697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy.
Collapse
Affiliation(s)
| | | | - Alonso Martinez-Canabal
- Cell Biology Department, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, ON M6A 2E1, Canada;
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
10
|
Popp I, Rau A, Kellner E, Reisert M, Fennell JT, Rothe T, Nieder C, Urbach H, Egger K, Grosu AL, Kaller CP. Hippocampus-Avoidance Whole-Brain Radiation Therapy Is Efficient in the Long-Term Preservation of Hippocampal Volume. Front Oncol 2021; 11:714709. [PMID: 34490112 PMCID: PMC8417356 DOI: 10.3389/fonc.2021.714709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose With improved life expectancy, preventing neurocognitive decline after cerebral radiotherapy is gaining more importance. Hippocampal damage has been considered the main culprit for cognitive deficits following conventional whole-brain radiation therapy (WBRT). Here, we aimed to determine to which extent hippocampus-avoidance WBRT (HA-WBRT) can prevent hippocampal atrophy compared to conventional WBRT. Methods and Materials Thirty-five HA-WBRT and 48 WBRT patients were retrospectively selected, comprising a total of 544 contrast-enhanced T1-weighted magnetic resonance imaging studies, longitudinally acquired within 24 months before and 48 months after radiotherapy. HA-WBRT patients were treated analogously to the ongoing HIPPORAD-trial (DRKS00004598) protocol with 30 Gy in 12 fractions and dose to 98% of the hippocampus ≤ 9 Gy and to 2% ≤ 17 Gy. WBRT was mainly performed with 35 Gy in 14 fractions or 30 Gy in 10 fractions. Anatomical images were segmented and the hippocampal volume was quantified using the Computational Anatomy Toolbox (CAT), including neuroradiological expert review of the segmentations. Results After statistically controlling for confounding variables such as age, gender, and total intracranial volume, hippocampal atrophy was found after both WBRT and HA-WBRT (p < 10-6). However, hippocampal decline across time following HA-WBRT was approximately three times lower than following conventional WBRT (p < 10-6), with an average atrophy of 3.1% versus 8.5% in the first 2 years after radiation therapy, respectively. Conclusion HA-WBRT is a therapeutic option for patients with multiple brain metastases, which can effectively and durably minimize hippocampal atrophy compared to conventional WBRT.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jamina Tara Fennell
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Rothe
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Memantine Protects against Paclitaxel-Induced Cognitive Impairment through Modulation of Neurogenesis and Inflammation in Mice. Cancers (Basel) 2021; 13:cancers13164177. [PMID: 34439331 PMCID: PMC8394018 DOI: 10.3390/cancers13164177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is an adverse side effect of cancer treatment with increasing awareness. Hippocampal damage and related neurocognitive impairment may mediate the development of CICI, in which altered neurogenesis may play a role. In addition, increased inflammation may be related to chemotherapy-induced hippocampal damage. Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that may enhance neurogenesis and modulate inflammation, may be useful for treating CICI. To test this hypothesis, paclitaxel was administered to eight-week-old male B6 mice to demonstrate the relationship between CICI and impaired neurogenesis, and then, we evaluated the impact of different memantine regimens on neurogenesis and inflammation in this CICI model. The results demonstrated that both the pretreatment and cotreatment regimens with memantine successfully reversed impaired neurogenesis and spatial memory impairment in behavior tests. The pretreatment regimen unsuccessfully inhibited the expression of peripheral and central TNF-α and IL-1β and did not improve the mood alterations following paclitaxel treatment. However, the cotreatment regimen led to a better modulatory effect on inflammation and restoration of mood disturbance. In conclusion, this study illustrated that impaired neurogenesis is one of the mechanisms of paclitaxel-induced CICI. Memantine may serve as a potential treatment for paclitaxel-induced CICI, but different treatment strategies may lead to variations in the treatment efficacy.
Collapse
|
12
|
Du J, Zhang A, Li J, Liu X, Wu S, Wang B, Wang Y, Jia H. Doxorubicin-Induced Cognitive Impairment: The Mechanistic Insights. Front Oncol 2021; 11:673340. [PMID: 34055643 PMCID: PMC8158153 DOI: 10.3389/fonc.2021.673340] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy can significantly prolong the survival of patients with breast cancer; Nevertheless, the majority of patients receiving chemotherapy such as doxorubicin may have cognitive deficits that manifest as impairments in learning, reasoning, attention, and memory. The phenomenon of chemotherapy-induced cognitive decline is termed as chemotherapy-related cognitive impairment (CRCI) or chemo-brain. Doxorubicin (DOX), a commonly used drug in adjuvant chemotherapy for patients with breast cancer, has been reported to induce chemo-brain through a variety of mechanisms including DNA damage, oxidative stress, inflammation, dysregulation of apoptosis and autophagy, changes in neurotransmitter levels, mitochondrial dysfunction, glial cell interactions, neurogenesis inhibition, and epigenetic factors. These mechanisms do not operate independently but are inter-related, coordinately contributing to the development of chemo-brain. Here we review the relationships of these mechanisms and pathways in attempt to provide mechanistic insights into the doxorubicin-induced cognitive impairment.
Collapse
Affiliation(s)
- Jiajia Du
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Aoxue Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xin Liu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Wu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Park KY, Kim S, Kim MS. Effects of taxol on neuronal differentiation of postnatal neural stem cells cultured from mouse subventricular zone. Differentiation 2021; 119:1-9. [PMID: 33848959 DOI: 10.1016/j.diff.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Taxol (paclitaxel), a chemotherapeutic agent for several cancers, can adversely affect the peripheral nervous system. Recently, its negative impact on cognitive function in cancer patients has become evident. In rodents, taxol impaired learning and memory, with other possible negative effects on the brain. In this study, we investigated the effects of taxol on cultured neural stem cells (NSCs) from the mouse neurogenic region, the subventricular zone (SVZ). Taxol significantly decreased both proliferation and neuronal differentiation of NSCs. Transient treatment with taxol for one day during a 4-day differentiation greatly decreased neurogenesis along with an abnormal cell cycle progression. Yet, taxol did not kill differentiated Tuj1+ neurons and those neurons had longer neurites than neurons under control conditions. For glial differentiation, taxol significantly reduced oligodendrogenesis as observed by immunostaining for Olig2 and O4. However, differentiation of astrocytes was not affected by taxol. In contrast, differentiated oligodendrocytes were extremely sensitive to taxol. Almost no Olig2-positive cells were observed after three days of treatment with taxol. Taxol has distinct effects on neurons and glial cells during their production through differentiation from NSCs as well as post-differentiation. Thus, we suggest that taxol might interfere with neurogenesis of NSCs possibly through a disturbance in the cell cycle and may eliminate differentiated oligodendrocytes.
Collapse
Affiliation(s)
- Ki-Youb Park
- Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 614-100, South Korea.
| | - Seokyung Kim
- Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 614-100, South Korea
| | - Man Su Kim
- College of Pharmacy, Inje University, Gimhae, 50834, South Korea
| |
Collapse
|
14
|
Kumari A, Shriwas O, Sisodiya S, Santra MK, Guchhait SK, Dash R, Panda D. Microtubule-targeting agents impair kinesin-2-dependent nuclear transport of β-catenin: Evidence of inhibition of Wnt/β-catenin signaling as an important antitumor mechanism of microtubule-targeting agents. FASEB J 2021; 35:e21539. [PMID: 33742719 DOI: 10.1096/fj.202002594r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
An aberrant accumulation of nuclear β-catenin is closely associated with the augmentation of cancer malignancy. In this work, we report that several microtubule-targeting agents (MTAs) such as vinblastine, taxol, and C12 (combretastatin-2-aminoimidazole analog) inhibit Wnt/β-catenin signaling in oral squamous cell carcinoma (OSCC). We showed that the inhibition of microtubule dynamics by MTAs decreased the level of β-catenin by increasing Axin and adenomatous polyposis coli levels and reducing the level of dishevelled. Furthermore, MTAs strongly reduced the localization of β-catenin in the nucleus. The reduction in the level of nuclear β-catenin was neither due to the degradation of β-catenin in the nucleus nor due to an increase in the export of nuclear β-catenin from the nucleus. A motor protein kinesin-2 was found to assist the nuclear transportation of β-catenin. Interestingly, Wnt/β-catenin signaling antagonist treatment synergized with MTAs and the activators of Wnt/β-catenin signaling antagonized with the MTAs. C12 potently suppressed the growth of 4-Nitroquinoline 1-oxide-induced OSCC in the tongue of C57 black 6 mice and also abrogated Wnt/β-catenin signaling pathway in the tumor. Our results provide evidence that the decrease in Wnt/β-catenin signaling is an important antitumor effect of MTAs and the combined use of MTAs with Wnt/β-catenin signaling antagonists could be a promising strategy for cancer chemotherapy.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Shailendra Sisodiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneshwar, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| |
Collapse
|
15
|
Abstract
A wide variety of symptoms is associated with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, and these symptoms can overlap with other conditions and diseases. Knowing the distribution of symptoms across diseases and individuals can support clinical actions on timelines shorter than those for drug and vaccine development. Here, we focus on zinc deficiency symptoms, symptom overlap with other conditions, as well as zinc effects on immune health and mechanistic zinc deficiency risk groups. There are well-studied beneficial effects of zinc on the immune system including a decreased susceptibility to and improved clinical outcomes for infectious pathogens including multiple viruses. Zinc is also an anti-inflammatory and anti-oxidative stress agent, relevant to some severe Coronavirus Disease 2019 (COVID-19) symptoms. Unfortunately, zinc deficiency is common worldwide and not exclusive to the developing world. Lifestyle choices and preexisting conditions alone can result in zinc deficiency, and we compile zinc risk groups based on a review of the literature. It is also important to distinguish chronic zinc deficiency from deficiency acquired upon viral infection and immune response and their different supplementation strategies. Zinc is being considered as prophylactic or adjunct therapy for COVID-19, with 12 clinical trials underway, highlighting the relevance of this trace element for global pandemics. Using the example of zinc, we show that there is a critical need for a deeper understanding of essential trace elements in human health, and the resulting deficiency symptoms and their overlap with other conditions. This knowledge will directly support human immune health for decreasing susceptibility, shortening illness duration, and preventing progression to severe cases in the current and future pandemics.
Collapse
Affiliation(s)
- Marcin P. Joachimiak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| |
Collapse
|
16
|
John J, Kinra M, Mudgal J, Viswanatha GL, Nandakumar K. Animal models of chemotherapy-induced cognitive decline in preclinical drug development. Psychopharmacology (Berl) 2021; 238:3025-3053. [PMID: 34643772 PMCID: PMC8605973 DOI: 10.1007/s00213-021-05977-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Chemotherapy-induced cognitive impairment (CICI), chemobrain, and chemofog are the common terms for mental dysfunction in a cancer patient/survivor under the influence of chemotherapeutics. CICI is manifested as short/long term memory problems and delayed mental processing, which interferes with a person's day-to-day activities. Understanding CICI mechanisms help in developing therapeutic interventions that may alleviate the disease condition. Animal models facilitate critical evaluation to elucidate the underlying mechanisms and form an integral part of verifying different treatment hypotheses and strategies. OBJECTIVES A methodical evaluation of scientific literature is required to understand cognitive changes associated with the use of chemotherapeutic agents in different preclinical studies. This review mainly emphasizes animal models developed with various chemotherapeutic agents individually and in combination, with their proposed mechanisms contributing to the cognitive dysfunction. This review also points toward the analysis of chemobrain in healthy animals to understand the mechanism of interventions in absence of tumor and in tumor-bearing animals to mimic human cancer conditions to screen potential drug candidates against chemobrain. RESULTS Substantial memory deficit as a result of commonly used chemotherapeutic agents was evidenced in healthy and tumor-bearing animals. Spatial and episodic cognitive impairments, alterations in neurotrophins, oxidative and inflammatory markers, and changes in long-term potentiation were commonly observed changes in different animal models irrespective of the chemotherapeutic agent. CONCLUSION Dyscognition exists as one of the serious side effects of cancer chemotherapy. Due to differing mechanisms of chemotherapeutic agents with differing tendencies to alter behavioral and biochemical parameters, chemotherapy may present a significant risk in resulting memory impairments in healthy as well as tumor-bearing animals.
Collapse
Affiliation(s)
- Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| | - G. L. Viswanatha
- Independent Researcher, Kengeri, Bangalore, Karnataka India 560060
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India 576104
| |
Collapse
|
17
|
Chang A, Chung NC, Lawther AJ, Ziegler AI, Shackleford DM, Sloan EK, Walker AK. The Anti-Inflammatory Drug Aspirin Does Not Protect Against Chemotherapy-Induced Memory Impairment by Paclitaxel in Mice. Front Oncol 2020; 10:564965. [PMID: 33381448 PMCID: PMC7768078 DOI: 10.3389/fonc.2020.564965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammation has been proposed to play a causal role in chemobrain which—if true—would represent an opportunity to repurpose existing anti-inflammatory drugs for the prevention and treatment of chemobrain. Here, we show that the chemoagent paclitaxel induces memory impairment and anhedonia in mice within 24 h of treatment cessation, but inflammation is not present until 2 weeks after treatment. We find no evidence of brain inflammation as measured by cytokine analysis at any time point. Furthermore, treating with aspirin to block inflammation did not affect paclitaxel-induced memory impairment. These findings suggest that inflammation may not be responsible for memory impairment induced by paclitaxel. These results contrast with recent findings of a causal role for inflammation in cancer-induced memory deficits in mice that were prevented by treatment with oral aspirin, suggesting that cognitive impairment in cancer patients undergoing treatment may arise from multiple convergent mechanisms.
Collapse
Affiliation(s)
- Aeson Chang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ni-Chun Chung
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Adam K Walker
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.,School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
18
|
Nguyen LD, Ehrlich BE. Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. EMBO Mol Med 2020; 12:e12075. [PMID: 32346964 PMCID: PMC7278555 DOI: 10.15252/emmm.202012075] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is a life-saving treatment for cancer patients, but also causes long-term cognitive impairment, or "chemobrain", in survivors. However, several challenges, including imprecise diagnosis criteria, multiple confounding factors, and unclear and heterogeneous molecular mechanisms, impede effective investigation of preventions and treatments for chemobrain. With the rapid increase in the number of cancer survivors, chemobrain is an urgent but unmet clinical need. Here, we leverage the extensive knowledge in various fields of neuroscience to gain insights into the mechanisms for chemobrain. We start by outlining why the post-mitotic adult brain is particularly vulnerable to chemotherapy. Next, through drawing comparisons with normal aging, Alzheimer's disease, and traumatic brain injury, we identify universal cellular mechanisms that may underlie the cognitive deficits in chemobrain. We further identify existing neurological drugs targeting these cellular mechanisms that can be repurposed as treatments for chemobrain, some of which were already shown to be effective in animal models. Finally, we briefly describe future steps to further advance our understanding of chemobrain and facilitate the development of effective preventions and treatments.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Pharmacology and Interdepartmental Neuroscience ProgramYale UniversityNew HavenCTUSA
| | - Barbara E Ehrlich
- Department of Pharmacology and Interdepartmental Neuroscience ProgramYale UniversityNew HavenCTUSA
| |
Collapse
|
19
|
Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp Neurol 2019; 324:113118. [PMID: 31756316 DOI: 10.1016/j.expneurol.2019.113118] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy has significantly increased the number of cancer survivors. However, chemotherapy itself carries various adverse effects that limit the efficacy of treatment and quality of life of the cancer patients. Most patients who have received chemotherapy report some cognitive deficit characterized by dysfunction in memory, learning, concentration, and reasoning. The phenomenon of cognitive decline developed from chemotherapy treatment is referred to as chemotherapy-induced cognitive impairment (CICI) or chemobrain. The two most common cancers occurring worldwide are lung and breast cancer. The predominant chemotherapeutic drugs used to treat lung and breast cancer are doxorubicin and cisplatin. There is evidence to suggest that both drugs potentially induce chemobrain. The evidence around the proposed pathogenesis of chemobrain caused by these two drugs is inconsistent. Understanding the underlying mechanisms involved in the development of chemobrain would aid in the prevention or treatment of the adverse effects of chemotherapy on brain. This review will summarize and discuss controversial findings and possible mechanisms involved in the development of chemobrain and the interventions which could limit it from in vitro, in vivo, and clinical studies.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
20
|
Slivicki RA, Mali SS, Hohmann AG. Voluntary exercise reduces both chemotherapy-induced neuropathic nociception and deficits in hippocampal cellular proliferation in a mouse model of paclitaxel-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2019; 6:100035. [PMID: 31528755 PMCID: PMC6739464 DOI: 10.1016/j.ynpai.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Paclitaxel treatment did not alter voluntary running activity. Voluntary running reduced mechanical and cold allodynia induced by paclitaxel. Voluntary running reduced paclitaxel-induced deficits in hippocampal cellular proliferation.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side-effect of all major chemotherapeutic agents. Here, we explored efficacy of voluntary exercise as a nonpharmacological strategy for suppressing two distinct adverse side effects of chemotherapy treatment. We evaluated whether voluntary running would suppress both neuropathic pain and deficits in hippocampal cell proliferation in a mouse model of CIPN induced by the taxane chemotherapeutic agent paclitaxel. Mice were given free access to running wheels or were housed without running wheels during one of three different intervention phases: 1) during the onset (i.e. development phase) of paclitaxel-induced neuropathy, 2) prior to dosing with paclitaxel or its vehicle, or 3) following the establishment (i.e. maintenance phase) of paclitaxel-induced neuropathy. Paclitaxel treatment did not alter running wheel behavior relative to vehicle-treated animals in any study. Animals that engaged in voluntary running during the development phase of paclitaxel-induced neuropathy failed to display mechanical or cold hypersensitivities relative to sedentary control animals that did not have access to running wheels. A prior history of voluntary running delayed the onset of, but did not fully prevent, development of paclitaxel-induced neuropathic pain behavior. Voluntary running reduced already established mechanical and cold allodynia induced by paclitaxel. Importantly, voluntary running did not alter mechanical or cold responsivity in vehicle-treated animals, suggesting that the observed antinociceptive effect of exercise was dependent upon the presence of the pathological pain state. In the same animals evaluated for nociceptive responding, paclitaxel also reduced cellular proliferation but not cellular survival in the dentate gyrus of the hippocampus, as measured by immunohistochemistry for Ki67 and BrdU expression, respectively. Voluntary running abrogated paclitaxel-induced reductions in cellular proliferation to levels observed in vehicle-treated mice and also increased BrdU expression levels irrespective of chemotherapy treatment. Our studies support the hypothesis that voluntary exercise may be beneficial in suppressing both neuropathic pain and markers of hippocampal cellular function that are impacted by toxic challenge with chemotherapeutic agents.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S. Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405-7007, United States.
| |
Collapse
|
21
|
Ren X, Boriero D, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"), a condition that significantly impairs the quality of life of many cancer survivors. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1088-1097. [PMID: 30759363 PMCID: PMC6502692 DOI: 10.1016/j.bbadis.2019.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called "chemobrain" or "chemofog" by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.
Collapse
Affiliation(s)
- Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Diana Boriero
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Department of Neurosciences, Biomedicine, and Movement Disorders, Section on Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Luksana Chaiswing
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Subbarao Bondada
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
23
|
Affiliation(s)
- Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University
| |
Collapse
|
24
|
Santhakumar H, Nair RV, Philips DS, Shenoy SJ, Thekkuveettil A, Ajayaghosh A, Jayasree RS. Real Time Imaging and Dynamics of Hippocampal Zn 2+ under Epileptic Condition Using a Ratiometric Fluorescent Probe. Sci Rep 2018; 8:9069. [PMID: 29899532 PMCID: PMC5998144 DOI: 10.1038/s41598-018-27029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 01/07/2023] Open
Abstract
Zinc, the essential trace element in human body exists either in the bound or free state, for both structural and functional roles. Insights on Zn2+ distribution and its dynamics are essential in view of the fact that Zn2+ dyshomeostasis is a risk factor for epileptic seizures, Alzheimer's disease, depression, etc. Herein, a bipyridine bridged bispyrrole (BP) probe is used for ratiometric imaging and quantification of Zn2+ in hippocampal slices. The green fluorescence emission of BP shifts towards red in the presence of Zn2+. The probe is used to detect and quantify the exogenous and endogenous Zn2+ in glioma cells and hippocampal slices. The dynamics of chelatable zinc ions during epileptic condition is studied in the hippocampal neurons, in vitro wherein the translocation of Zn2+ from presynaptic to postsynaptic neuronal bodies is imaged and ratiometrically quantified. Raman mapping technique is used to confirm the dynamics of Zn2+ under epileptic condition. Finally, the Zn2+ distribution was imaged in vivo in epileptic rats and the total Zn2+ in rat brain was quantified. The results favour the use of BP as an excellent Zn2+ imaging probe in biological system to understand the zinc associated diseases and their management.
Collapse
Affiliation(s)
- Hema Santhakumar
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India
| | - Resmi V Nair
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India
| | - Divya Susan Philips
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, SCTIMST, Trivandrum, 695012, Kerala, India
| | | | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India.
| |
Collapse
|