1
|
Morán-Plata FJ, Muñoz-García N, González-González M, Pozo J, Carretero-Domínguez S, Mateos S, Barrena S, Belhassen-García M, Lau C, Teixeira MDA, Santos AH, Yeguas A, Balanzategui A, García-Sancho AM, Orfao A, Almeida J. A novel NKp80-based strategy for universal identification of normal, reactive and tumor/clonal natural killer-cells in blood. Front Immunol 2024; 15:1423689. [PMID: 39040115 PMCID: PMC11260609 DOI: 10.3389/fimmu.2024.1423689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Natural killer (NK) cells are traditionally identified by flow cytometry using a combination of markers (CD16/CD56/CD3), because a specific NK-cell marker is still missing. Here we investigated the utility of CD314, CD335 and NKp80, compared to CD16/CD56/CD3, for more robust identification of NK-cells in human blood, for diagnostic purposes. Methods A total of 156 peripheral blood (PB) samples collected from healthy donors (HD) and patients with diseases frequently associated with loss/downregulation of classical NK-cell markers were immunophenotyped following EuroFlow protocols, aimed at comparing the staining profile of total blood NK-cells for CD314, CD335 and NKp80, and the performance of distinct marker combinations for their accurate identification. Results NKp80 showed a superior performance (vs. CD314 and CD335) for the identification of NK-cells in HD blood. Besides, NKp80 improved the conventional CD16/CD56/CD3-based strategy to identify PB NK-cells in HD and reactive processes, particularly when combined with CD16 for further accurate NK-cell-subsetting. Although NKp80+CD16 improved the identification of clonal/tumor NK-cells, particularly among CD56- cases (53%), aberrant downregulation of NKp80 was observed in 25% of patients, in whom CD56 was useful as a complementary NK-cell marker. As NKp80 is also expressed on T-cells, we noted increased numbers of NKp80+ cytotoxic T-cells at the more advanced maturation stages, mostly in adults. Conclusion Here we propose a new robust approach for the identification of PB NK-cells, based on the combination of NKp80 plus CD16. However, in chronic lymphoproliferative disorders of NK-cells, addition of CD56 is recommended to identify clonal NK-cells, due to their frequent aberrant NKp80- phenotype.
Collapse
Affiliation(s)
- F. Javier Morán-Plata
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Noemí Muñoz-García
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - María González-González
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Julio Pozo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Sonia Carretero-Domínguez
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Sheila Mateos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cell-purification Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Susana Barrena
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Moncef Belhassen-García
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Department of Infectious Diseases, University Hospital of Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Salamanca, Spain
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Maria Dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Ana Helena Santos
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Ana Yeguas
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ana Balanzategui
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Martín García-Sancho
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Gadwa J, Amann M, Bickett TE, Knitz MW, Darragh LB, Piper M, Van Court B, Bukkapatnam S, Pham TT, Wang XJ, Saviola AJ, Deak LC, Umaña P, Klein C, D'Alessandro A, Karam SD. Selective targeting of IL2Rβγ combined with radiotherapy triggers CD8- and NK-mediated immunity, abrogating metastasis in HNSCC. Cell Rep Med 2023; 4:101150. [PMID: 37586327 PMCID: PMC10439274 DOI: 10.1016/j.xcrm.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The implementation of cancer immunotherapies has seen limited clinical success in head and neck squamous cell carcinoma (HNSCC). Interleukin-2 (IL-2), which modulates the survival and functionality of lymphocytes, is an attractive target for new immunotherapies but one that is limited by presence of regulatory T cells (Tregs) expressing the high-affinity IL-2Rα. The bispecific immunocytokine PD1-IL2v preferentially delivers IL-2 signaling through IL-2Rβγ on PD-1-expressing cells. Selectively targeting the intermediate-affinity IL-2Rβγ can be leveraged to induce anti-tumor immune responses in effector T cells and natural killer (NK) cells while limiting the negative regulation of IL-2Rα activation on Tregs. Using radiation therapy (RT) in combination with PD1-IL2v improves local tumor control and survival, and controls metastatic spread in orthotopic HNSCC tumor models. PD1-IL2v drives systemic activation and expansion of circulating and tumor-infiltrating cytotoxic T cells and NK cells while limiting Treg-mediated immunosuppression. These data show that PD1-L2v induces durable systemic tumor control in HNSCC.
Collapse
Affiliation(s)
- Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), 8952 Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology & Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Medjouel Khlifi H, Guia S, Vivier E, Narni-Mancinelli E. Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Front Immunol 2022; 13:898745. [PMID: 35757695 PMCID: PMC9231431 DOI: 10.3389/fimmu.2022.898745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors. Several activating NK cell receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response triggered by these activating receptors has made them attractive targets for exploitation in immunotherapy. In this review, we will discuss the different activating receptors associated with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the tumor context and the various therapeutic tools developed to boost NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Hakim Medjouel Khlifi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma Research Laboratories, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
5
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Baltayeva J, Konwar C, Castellana B, Mara DL, Christians JK, Beristain AG. Obesogenic diet exposure alters uterine natural killer cell biology and impairs vasculature remodeling in mice†. Biol Reprod 2021; 102:63-75. [PMID: 31436293 DOI: 10.1093/biolre/ioz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Prepregnancy obesity associates with adverse reproductive outcomes that impact maternal and fetal health. While obesity-driven mechanisms underlying adverse pregnancy outcomes remain unclear, local uterine immune cells are strong but poorly studied candidates. Uterine immune cells, particularly uterine natural killer cells (uNKs), play central roles in orchestrating developmental events in pregnancy. However, the effect of obesity on uNK biology is poorly understood. Using an obesogenic high-fat/high-sugar diet (HFD) mouse model, we set out to examine the effects of maternal obesity on uNK composition and establishment of the maternal-fetal interface. HFD exposure resulted in weight gain-dependent increases in systemic inflammation and rates of fetal resorption. While HFD did not affect total uNK frequencies, HFD exposure did lead to an increase in natural cytotoxicity receptor-1 expressing uNKs as well as overall uNK activity. Importantly, HFD-associated changes in uNK coincided with impairments in uterine artery remodeling in mid but not late pregnancy. Comparison of uNK mRNA transcripts from control and HFD mice identified HFD-directed changes in genes that play roles in promoting activity/cytotoxicity and vascular biology. Together, this work provides new insight into how obesity may impact uNK processes central to the establishment of the maternal-fetal interface in early and mid pregnancy. Moreover, these findings shed light on the cellular processes affected by maternal obesity that may relate to overall pregnancy health.
Collapse
Affiliation(s)
- Jennet Baltayeva
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - Chaini Konwar
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Barbara Castellana
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - Danielle L Mara
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Julian K Christians
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Alexander G Beristain
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Ribes S, Arcilla C, Ott M, Schütze S, Hanisch UK, Nessler S, Nau R. Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli. J Neuroinflammation 2020; 17:24. [PMID: 31952519 PMCID: PMC6969464 DOI: 10.1186/s12974-020-1700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis. This study evaluated the potential of poly(I:C) pre-treatment to induce trained immunity. Poly(I:C) was administered as a non-specific stimulus of innate immune responses to protect immunocompetent and neutropenic wild-type mice from a subsequent challenge by the intracranial injection of E. coli K1. METHODS Three days prior to infection, mice received an intraperitoneal injection of poly(I:C) or vehicle. Kaplan-Meier survival curves were analyzed. In short-term experiments, bacterial titers and the inflammatory response were characterized in the blood, cerebellum, and spleen homogenates. NK cell subpopulations in the brain and spleen were analyzed by flow cytometry. Numbers of microglia and activation scores were evaluated by histopathology. RESULTS Pre-treatment with 200 μg poly(I:C) increased survival time, reduced mortality, and enhanced bacterial clearance in the blood, cerebellum, and spleen at early infection in neutropenic mice. Poly(I:C)-mediated protection correlated with an augmented number of NK cells (CD45+NK1.1+CD3-) and Iba-1+ microglial cells and a higher production of IFN-γ in the brain. In the spleen, levels of CCL5/RANTES and IFN-γ were increased and sustained in surviving poly(I:C)-treated animals for 14 days after infection. In immunocompetent animals, survival time was not significantly prolonged in poly(I:C)-treated animals although poly(I:C) priming reduced brain bacterial concentrations compared with vehicle-injected animals at early infection. CONCLUSIONS Pre-treatment with the viral TLR3 agonist poly(I:C) modulated innate immune responses and strengthened the resistance of neutropenic mice against E. coli K1 meningoencephalitis.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Christa Arcilla
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Martina Ott
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, 37075, Göttingen, Germany
| |
Collapse
|
8
|
Le Gars M, Seiler C, Kay AW, Bayless NL, Starosvetsky E, Moore L, Shen-Orr SS, Aziz N, Khatri P, Dekker CL, Swan GE, Davis MM, Holmes S, Blish CA. Pregnancy-Induced Alterations in NK Cell Phenotype and Function. Front Immunol 2019; 10:2469. [PMID: 31708922 PMCID: PMC6820503 DOI: 10.3389/fimmu.2019.02469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pregnant women are particularly susceptible to complications of influenza A virus infection, which may result from pregnancy-induced changes in the function of immune cells, including natural killer (NK) cells. To better understand NK cell function during pregnancy, we assessed the ability of the two main subsets of NK cells, CD56dim, and CD56bright NK cells, to respond to influenza-virus infected cells and tumor cells. During pregnancy, CD56dim and CD56bright NK cells displayed enhanced functional responses to both infected and tumor cells, with increased expression of degranulation markers and elevated frequency of NK cells producing IFN-γ. To better understand the mechanisms driving this enhanced function, we profiled CD56dim and CD56bright NK cells from pregnant and non-pregnant women using mass cytometry. NK cells from pregnant women displayed significantly increased expression of several functional and activation markers such as CD38 on both subsets and NKp46 on CD56dim NK cells. NK cells also displayed diminished expression of the chemokine receptor CXCR3 during pregnancy. Overall, these data demonstrate that functional and phenotypic shifts occur in NK cells during pregnancy that can influence the magnitude of the immune response to both infections and tumors.
Collapse
Affiliation(s)
- Mathieu Le Gars
- Department of Medicine, Stanford University, Palo Alto, CA, United States.,Department of Stanford Immunology Program, Stanford University, Palo Alto, CA, United States
| | - Christof Seiler
- Department of Statistics, Stanford University, Palo Alto, CA, United States
| | - Alexander W Kay
- Department of Pediatrics, Stanford University, Palo Alto, CA, United States
| | - Nicholas L Bayless
- Department of Stanford Immunology Program, Stanford University, Palo Alto, CA, United States
| | - Elina Starosvetsky
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lindsay Moore
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Natali Aziz
- Department of Obstetrics and Gynecology, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Purvesh Khatri
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Cornelia L Dekker
- Department of Statistics, Stanford University, Palo Alto, CA, United States
| | - Gary E Swan
- Department of Obstetrics and Gynecology, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan Holmes
- Department of Pediatrics, Stanford University, Palo Alto, CA, United States
| | - Catherine A Blish
- Department of Medicine, Stanford University, Palo Alto, CA, United States.,Department of Stanford Immunology Program, Stanford University, Palo Alto, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
9
|
Wu J, Gao FX, Wang C, Qin M, Han F, Xu T, Hu Z, Long Y, He XM, Deng X, Ren DL, Dai TY. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:321. [PMID: 31324197 PMCID: PMC6642486 DOI: 10.1186/s13046-019-1310-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Background Recurrence and metastasis are the leading causes of tumour-related death in patients with oesophageal squamous cell carcinoma (ESCC). Tumour-infiltrating natural killer cells (NK cells) display powerful cytotoxicity to tumour cells and play a pivotal role in tumour therapy. However, the phenotype and functional regulation of NK cells in oesophageal squamous cell carcinoma (ESCC) remains largely unknown. Methods Single cell suspensions from blood and tissue samples were isolated by physical dissociation and filtering through a 70 μm cell strainer. Flow cytometry was applied to profile the activity and function of NK cells, and an antibody chip experiment was used to identify and quantitate cytokine levels. We studied IL-6 and IL-8 function in primary oesophageal squamous carcinoma and NK cell co-cultures in vitro and by a xenograft tumour model in vivo. Western blotting was used to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Finally, we performed an IHC array to analyse IL-6/IL-8 (interleukin 6/interleukin 8) expression in 103 pairs of tumours and matched adjacent tissues of patients with ESCC to elucidate the correlation between IL-6 or IL-8 and clinical characteristics. Results The percentages of NK cells in both peripheral blood and tumour tissues from patients with ESCC were significantly increased in comparison with those in the controls and correlated with the clinical characteristics. Furthermore, the decrease in activating receptors and increase in inhibitory receptors on the surface of tumour-infiltrating NK cells was confirmed by flow cytometry. The level of granzyme B, the effector molecule of tumour-infiltrating NK cells, was also decreased. Mechanistically, primary ESCC cells activated the STAT3 signalling pathway on NK cells through IL-6 and IL-8 secretion, leading to the downregulation of activating receptors (NKp30 and NKG2D) on the surface of NK cells. An ex vivo study showed that blockade of STAT3 attenuated the IL-6/IL-8-mediated impairment of NK cell function. Moreover, the expression of IL-6 or IL-8 in tumour tissues was validated by immunohistochemistry to be positively correlated with tumour progression and poor survival, respectively. Conclusions Tumour cell-secreted IL-6 and IL-8 impair the activity and function of NK cells via STAT3 signalling and contribute to oesophageal squamous cell carcinoma malignancy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1310-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Feng-Xia Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Mei Qin
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Fei Han
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - De-Lian Ren
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China.
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
11
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Interleukin-15-Stimulated Natural Killer Cells Clear HIV-1-Infected Cells following Latency Reversal Ex Vivo. J Virol 2018; 92:JVI.00235-18. [PMID: 29593039 DOI: 10.1128/jvi.00235-18] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Current efforts toward human immunodeficiency virus (HIV) eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8+ T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of interleukin 15 (IL-15) treatment on NK cell function and the potential for stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxicity, interferon gamma (IFN-γ) production, and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and, more importantly, IL-15-treated NK cells were able to clear latently HIV-infected cells after exposure to vorinostat, a clinically relevant latency-reversing agent. We also demonstrate that NK cells from HIV-infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation leading to future immunotherapies to clear persistent HIV infection using NK cells.IMPORTANCE In the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV-infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential and, more importantly, clearing HIV-infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication.
Collapse
|
13
|
Zhou M, Dai J, Zhou Y, Wu J, Xu T, Zhou D, Wang X. Propofol improves the function of natural killer cells from the peripheral blood of patients with esophageal squamous cell carcinoma. Exp Ther Med 2018; 16:83-92. [PMID: 29977357 PMCID: PMC6030861 DOI: 10.3892/etm.2018.6140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
Postoperative immunosuppression is associated with the recurrence and metastasis of esophageal squamous cell carcinoma (ESCC). Propofol is a commonly used intravenous anesthetic and has been reported to be associated with immunosuppression; however, little is known about its effect on innate immune cells during the postoperative period in patients with ESCC. The aim of the present study was to investigate the effects of propofol on the phenotype and cytotoxicity of natural killer (NK) cells derived from the peripheral blood of patients with ESCC. The percentage, phenotype and function of NK cells were compared between patients with ESCC and healthy volunteers using flow cytometry. NK cells were negatively sorted using magnetic beads and cocultured with propofol to assess changes in phenotype and function. The results revealed that the percentage of NK cells was significantly increased in the peripheral blood of patients with ESCC, while their activity and cytotoxicity were impaired. NK cells were successfully separated from peripheral blood in vitro and it was demonstrated that propofol enhanced their activity by influencing the expression of activating or inhibitory receptors. Furthermore, propofol was able to increase the cytotoxicity of NK cells from the peripheral blood of patients with ESCC. These results suggest that propofol is able to improve the function of NK cells in patients with ESCC and may therefore be an appropriate anesthetic for ESCC surgery.
Collapse
Affiliation(s)
- Min Zhou
- Department of Anesthesiology, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junchao Dai
- Department of Anesthesiology, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Zhou
- Department of Anesthesiology, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Denglian Zhou
- Dean's Office, South West Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
14
|
Glasner A, Levi A, Enk J, Isaacson B, Viukov S, Orlanski S, Scope A, Neuman T, Enk CD, Hanna JH, Sexl V, Jonjic S, Seliger B, Zitvogel L, Mandelboim O. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity 2018; 48:107-119.e4. [DOI: 10.1016/j.immuni.2017.12.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/15/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|