1
|
Wen W, Li Y, Cao X, Li Y, Liu Z, Tang Z, Xie L, He R. Expression and Clinical Significance of NUDCD1, PI3K/AKT/mTOR Signaling Pathway-Related Molecules and Immune Infiltration in Breast Cancer. Clin Breast Cancer 2024; 24:e429-e451. [PMID: 38553373 DOI: 10.1016/j.clbc.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND NUDCD1 (NudC Domain Containing 1) performs an essential function in biological processes such as cell progression, migration, cell cycle, and intracellular material transport. Many solid tumors express it highly, which is a prospective biomarker and therapeutic approach. However, the expression and clinical importance of NUDCD1 across breast cancer is unclear. METHODS The expressions of NUDCD1 in breast cancers and normal breast tissues were studied utilizing the TIMER database and immunohistochemical analysis. Subsequently, we validate the association between the expression of NUDCD1 and clinicopathologic features and prognosis of breast cancer. The immunohistochemical experiments of pathway-related molecules were done on 214 breast cancer tissue microarrays. The investigation of correlation between NUDCD1 expression and tumor immune infiltration was subsequently conducted. RESULTS Through the utilization of bioinformatics analysis and immunohistochemical experiments, it was determined that NUDCD1 exhibited upregulation within breast cancer. Furthermore, it was discovered that an elevated expression of NUDCD1 may potentially be linked to a worse prognosis in breast cancer. Our study reveals that the PI3K/AKT/mTOR signaling pathway may perform a function in NUDCD1 regulating breast cancer progression via enrichment analysis. Furthermore, the expression of NUDCD1 may be associated with the degree of immunological infiltration. CONCLUSION The expression of NUDCD1 was explored to be elevated in breast cancer and was observed to be correlated with a poorer prognosis. p-AKT, PI3K, AKT, mTOR, and p-mTOR expression levels underwent significant elevation in breast cancer. The function of NUDCD1 within breast cancer might be associated with the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; Department of Pathology, Yongchuan Hospital Of Chongqing Medical University, Yongchuan 402160, Chongqing, China
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xi Cao
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yanyan Li
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ziyi Liu
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhuoqi Tang
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Liming Xie
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Rongfang He
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Feng D, Ma D. Identifying the role of NUDCD1 in human tumors from clinical and molecular mechanisms: a study based on comprehensive bioinformatics and experimental validation. Aging (Albany NY) 2023; 15:5611-5649. [PMID: 37338527 PMCID: PMC10333089 DOI: 10.18632/aging.204813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
NUDCD1 (NudC domain-containing 1) is abnormally activated in multiple tumors and has been identified as a cancer antigen. But there is still no pan-cancer analysis available for NUDCD1 in human cancers. The role of NUDCD1 across multiple tumors was explored using data from the public databases including HPA, TCGA, GEO, GTEx, TIMER2, TISIDB, UALCAN, GEPIA2, cBioPortal, GSCA and so on. Molecular experiments (e.g., quantitative real-time PCR, immunohistochemistry and western blot) were conducted to validate the expression and biological function of NUDCD1 in STAD. Results showed that NUDCD1 was highly expressed in most tumors and its levels were associated with the prognosis. Multiple genetic and epigenetic features of NUDCD1 exist in different cancers. NUDCD1 was associated with expression levels of recognized immune checkpoints (anti-CTLA-4) and immune infiltrates (e.g., CD4+ and CD8+ T cells) in some cancers. Moreover, NUDCD1 correlated with the CTRP and GDSC drug sensitivity and acted as a link between chemicals and cancers. Importantly, NUDCD1-related genes were enriched in several tumors (e.g., COAD, STAD and ESCA) and affected apoptosis, cell cycle and DNA damage cancer-related pathways. Furthermore, expression, mutation and copy number variations for the gene sets were also associated with prognosis. At last, the overexpression and contribution of NUDCD1 in STAD were experimentally validated in vitro and in vivo. NUDCD1 was involved in diverse biological processes and it influenced the occurrence and development of cancers. This first pan-cancer analysis for NUDCD1 provides a comprehensive understanding about its roles across various cancer types, especially in STAD.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
miR-144 inhibits the IGF1R-ERK1/2 signaling pathway via NUDCD1 to suppress the proliferation and metastasis of colorectal cancer cells: a study based on bioinformatics and in vitro and in vivo verification. J Cancer Res Clin Oncol 2022; 148:1903-1918. [PMID: 35476233 DOI: 10.1007/s00432-022-03951-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is a severe health condition characterized by high mortalities. NudC domain containing 1 (NUDCD1) is abnormally upregulated in multiple tumors and is recognized as a cancer antigen. In CRC, NUDCD1 upregulation accelerates tumor progression by activating the IGF1R-ERK1/2 signaling pathway. Its specific regulatory mechanisms, however, remain unclear. METHODS In the present study, we predicted the regulators of NUDCD1 and analyzed the expression profile of NUDCD1 in CRC tissues using the gene chip dataset. We also determined the regulation between miR-144, NUDCD1 and IGF1R-ERK1/2 signaling in vitro and in vivo. Then, the expression of miR-144 in CRC tissues was detected and its cell functions were verified in vitro. RESULTS As predicted by bioinformatics, we found that NUDCD1 is a predicted target of miR-144 and confirmed that miR-144 directly binds to NUDCD1. In vitro and in vivo, miR-144 was determined to specifically regulate NUDCD1 expression and as such, can reduce the activity of the IGF1R-ERK1/2 signaling pathway. Moreover, miR-144 was significantly downregulated in CRC tissues; its levels were significantly negatively correlated with CRC primary range and lymph node metastasis. Cell function studies verified that miR-144 acts as a tumor suppressor, because it significantly inhibits the proliferation, metastasis, and invasion of CRC cells as well as inducing cell cycle arrest and apoptosis. CONCLUSIONS Our study demonstrates that miR-144 regulates IGF1R-ERK1/2 signaling via NUDCD1 to inhibit CRC cell proliferation and metastasis. The miR-144/NUDCD1/IGF1R-ERK1/2 signaling axis may be crucial in the progression of CRC.
Collapse
|
5
|
Bruns IB, Beltman JB. Quantifying the contribution of transcription factor activity, mutations and microRNAs to CD274 expression in cancer patients. Sci Rep 2022; 12:4374. [PMID: 35289334 PMCID: PMC8921511 DOI: 10.1038/s41598-022-08356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis have been remarkably successful in inducing tumor remissions in several human cancers, yet a substantial number of patients do not respond to treatment. Because this may be partially due to the mechanisms giving rise to high PD-L1 expression within a patient, it is highly relevant to fully understand these mechanisms. In this study, we conduct a bioinformatic analysis to quantify the relative importance of transcription factor (TF) activity, microRNAs (miRNAs) and mutations in determining PD-L1 (CD274) expression at mRNA level based on data from the Cancer Genome Atlas. To predict individual CD274 levels based on TF activity, we developed multiple linear regression models by taking the expression of target genes of the TFs known to directly target PD-L1 as independent variables. This analysis showed that IRF1, STAT1, NFKB and BRD4 are the most important regulators of CD274 expression, explaining its mRNA levels in 90–98% of the patients. Because the remaining patients had high CD274 levels independent of these TFs, we next investigated whether mutations associated with increased CD274 mRNA levels, and low levels of miRNAs associated with negative regulation of CD274 expression could cause high CD274 levels in these patients. We found that mutations or miRNAs offered an explanation for high CD274 levels in 81–100% of the underpredicted patients. Thus, CD274 expression is largely explained by TF activity, and the remaining unexplained cases can largely be explained by mutations or low miRNA abundance.
Collapse
Affiliation(s)
- Imke B Bruns
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
6
|
Shi C, Weng M, Zhu H, Guo Y, Xu D, Jin H, Wei B, Cao Z. NUDCD1 knockdown inhibits the proliferation, migration, and invasion of pancreatic cancer via the EMT process. Aging (Albany NY) 2021; 13:18298-18309. [PMID: 34325402 PMCID: PMC8351729 DOI: 10.18632/aging.203276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
NudC domain containing 1 (NUDCD1) is an oncoprotein frequently activated or upregulated in various human cancers, but its role in pancreatic cancer (PC) remains unknown. Thus, we aimed to determine the function and mechanism of NUDCD1 in PC. We employed Western blot and quantitative real-time polymerase chain reaction to assess NUDCD1 expression in cells and PC tissues. NUDCD1 was knocked down in Patu8988 and PANC-1 cells. We conducted real-time cell analysis, wound healing assay, transwell assay and colony formation assay to evaluate the metastatic and proliferative abilities of PC cells. Western blot was conducted to assess the expression of markers associated with apoptosis and epithelial-mesenchymal transition (EMT). Also, we established a tumor xenograft model to determine the role of NUDCD1 in vivo. NUDCD1 was overexpressed in PC tissues and cells. NUDCD1 knockdown suppressed the invasion, migration, and proliferative abilities of the cells and induced PC cell apoptosis. The specific mechanism of NUDCD1 was related to the modulation of the EMT process. Data obtained from in vivo experiments revealed that NUDCD1 knockdown inhibited the tumor growth, proliferation, and metastasis by modulating the EMT and inducing the apoptosis of PC cells.
Collapse
Affiliation(s)
- Chunling Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Min Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongdong Xu
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Hairu Jin
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Binshuang Wei
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Zhensheng Cao
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| |
Collapse
|
7
|
SILAC proteomics implicates SOCS1 in modulating cellular macromolecular complexes and the ubiquitin conjugating enzyme UBE2D involved in MET receptor tyrosine kinase downregulation. Biochimie 2021; 182:185-196. [PMID: 33493533 DOI: 10.1016/j.biochi.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Suppressor of Cytokine Signaling 1 (SOCS1) functions as a tumor suppressor in hepatocellular carcinoma and many other types of cancers. SOCS1 mediates its functions by inhibiting tyrosine kinases, promoting ubiquitination and proteasomal degradation of signal transducing proteins, and by modulating transcription factors. Here, we studied the impact of SOCS1 on the hepatocyte proteome using Stable Isotopic Labelling of Amino acids in Cell culture (SILAC)-based mass spectrometry on the Hepa1-6 murine HCC cell line stably expressing wildtype SOCS1 or a mutant SOCS1 with impaired SH2 domain. As SOCS1 regulates the hepatocyte growth factor (HGF) receptor, the MET receptor tyrosine kinase (RTK), the SILAC-labelled cells were stimulated or not with HGF. Following mass spectrometry analysis, differentially modulated proteins were identified, quantified and analyzed for pathway enrichment. Of the 3440 proteins identified in Hepa-SOCS1 cells at steady state, 181 proteins were significantly modulated compared to control cells. The SH2 domain mutation and HGF increased the number of differentially modulated proteins. Protein interaction network analysis revealed enrichment of SOCS1-modulated proteins within multiprotein complexes such as ubiquitin conjugating enzymes, proteasome, mRNA spliceosome, mRNA exosome and mitochondrial ribosome. Notably, the expression of UBE2D ubiquitin conjugating enzyme, which is implicated in the control of growth factor receptor tyrosine kinase signaling, was found to be regulated by SOCS1. These findings suggest that SOCS1, induced by cytokines, growth factors and diverse other stimuli, has the potential to dynamically modulate of large macromolecular regulatory complexes to help maintain cellular homeostasis.
Collapse
|
8
|
Babeu JP, Wilson SD, Lambert É, Lévesque D, Boisvert FM, Boudreau F. Quantitative Proteomics Identifies DNA Repair as a Novel Biological Function for Hepatocyte Nuclear Factor 4α in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E626. [PMID: 31060309 PMCID: PMC6562498 DOI: 10.3390/cancers11050626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Samuel D Wilson
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Élie Lambert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François Boudreau
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
9
|
Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle. Sci Rep 2019; 9:6258. [PMID: 31000734 PMCID: PMC6472416 DOI: 10.1038/s41598-019-42530-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
The chromosome complement of the human fungal pathogen Candida albicans is unusually unstable, suggesting that the process of nuclear division is error prone. The Cdc14 phosphatase plays a key role in organising the intricate choreography of mitosis and cell division. In order to understand the role of Cdc14 in C. albicans we used quantitative proteomics to identify proteins that physically interact with Cdc14. To distinguish genuine Cdc14-interactors from proteins that bound non-specifically to the affinity matrix, we used a substrate trapping mutant combined with mass spectrometry analysis using Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC). The results identified 126 proteins that interact with Cdc14 of which 80% have not previously been identified as Cdc14 interactors in C. albicans or S. cerevisiae. In this set, 55 proteins are known from previous research in S. cerevisiae and S. pombe to play roles in the cell cycle, regulating the attachment of the mitotic spindle to kinetochores, mitotic exit, cytokinesis, licensing of DNA replication by re-activating pre-replication complexes, and DNA repair. Five Cdc14-interacting proteins with previously unknown functions localised to the Spindle Pole Bodies (SPBs). Thus, we have greatly increased the number of proteins that physically interact with Cdc14 in C. albicans.
Collapse
|