1
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Fararjeh A, Jaradat DMM, Al-Karablieh N, Al-Fawares O, Obeidat AIM, Bashabsheh RHF, Al-Khreshieh RO. Evaluation of synergism effect of human glucose-dependent insulinotropic polypeptide (GIP) on Klebsiella pneumoniae carbapenemases (KPC) producer isolated from clinical samples. Microb Pathog 2024; 194:106823. [PMID: 39059698 DOI: 10.1016/j.micpath.2024.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is increasing among Gram-negative bacteria, prompting the development of new antibiotics as well as alternative treatment approaches. Klebsiella pneumoniae Carbapenemases (KPC) has become a major concern in the treatment of infections, since KPC-producing bacteria are resistant to a number of β -lactam and non β-lactam antibiotics in addition to hydrolyzing carbapenemases. The aim of this study is to examine the synergistic effect of human Glucose-dependent Insulinotropic Polypeptide (GIP) on KPC producer. The K. pneumoniae isolates were identified by using biochemical tests and PCR genotyping. The disc diffusion method was used to assess the antimicrobial susceptibility of each isolate, and the modified Hodge test (MHT) was used to find carbapenemases. Agar well diffusion and minimum inhibitory concentration (MIC) assays were used to validate the synergistic effect of GIP against Klebsiella species. MIC values of chosen antimicrobial compounds demonstrated a considerable synergism impact when combined with human GIP, particularly against KPC strains. The antibacterial activity of the antimicrobial compounds was boosted by 4-16 times due to human GIP, reducing the MIC values. The fractional inhibitory concentration (FIC) ranged from 0.032 to 0.25 for examined antibiotics. Thus, GIP can be considered an antibacterial adjuvant with the potential to supplement the current antibiotic spectrum.
Collapse
Affiliation(s)
- AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Da'san M M Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan; Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - O'la Al-Fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Abeer I M Obeidat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Raghad H F Bashabsheh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan; Histopathology department, Jordanian Royal Medical services, Amman, Jordan
| | - Rozan O Al-Khreshieh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
3
|
Ni H, Chan BKW, Ye L, Wu H, Heng H, Xu Q, Chen K, Cheung RYC, Wang H, Chan EWC, Li F, Chen S. Lowering mortality risk in CR-HvKP infection in intestinal immunohistological and microbiota restoration. Pharmacol Res 2024; 206:107254. [PMID: 38862069 DOI: 10.1016/j.phrs.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Gut damage during carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HvKP) infection is associated with a death risk. Understanding the mechanisms by which CR-HvKP causes intestinal damage and gut microbiota alteration, and the impact on immunity, is crucial for developing therapeutic strategies. This study investigated if gastrointestinal tract damage and disruption of gut microbiota induced by CR-HvKP infection undermined host immunity and facilitated multi-organ invasion of CR-HvKP; whether the therapeutic value of the rifampicin (RIF) and zidovudine (ZDV) combination was attributed to their ability to repair damages and restore host immunity was determined. A sepsis model was utilized to assess the intestinal pathological changes. Metagenomic analysis was performed to characterize the alteration of gut microbiota. The effects of the RIF and ZDV on suppressing inflammatory responses and improving immune functions and gut microbiota were evaluated by immunopathological and transcriptomic analyses. Rapid colonic damage occurred upon activation of the inflammation signaling pathways during lethal infections. Gut inflammation compromised host innate immunity and led to a significant decrease in probiotics abundance, including Bifidobacterium and Lactobacillus. Treatment with combination drugs significantly attenuated the inflammatory response, up-regulated immune cell differentiation signaling pathways, and promoted the abundance of Bifidobacterium (33.40 %). Consistently, supplementation of Bifidobacterium alone delayed the death in sepsis model. Gut inflammation and disrupted microbiota are key disease features of CR-HvKP infection but can be reversed by the RIF and ZDV drug combination. The finding that these drugs can restore host immunity through multiple mechanisms is novel and deserves further investigation of their clinical application potential.
Collapse
Affiliation(s)
- Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan-Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Haoze Wu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Rex Yan-Chu Cheung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Pu W, Fan L, Zhang Y, You D, Li M, Ma L. Carbapenem-resistant Klebsiella pneumoniae Osteoarthritis in Two Preterm Infants Treated With Ceftazidime-avibactam. Pediatr Infect Dis J 2023; 42:1124-1127. [PMID: 37725810 DOI: 10.1097/inf.0000000000004092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a major threat to global public health. CRKP infections are challenging to treat owing to the limited number of antibiotic species, especially in preterm infants. Ceftazidime-avibactam (CAZ-AVI) is a novel antibiotic with activity against CRKP. At present, there have been no reports of using CAZ-AVI to treat osteoarthritis in premature infants. METHODS We describe 2 preterm infants with CRKP osteoarthritis treated with CAZ-AVI in a tertiary children's hospital in China. Clinical characteristics, laboratory and microbiologic data, treatment and follow-up information were retrospectively collected and analyzed. RESULTS The 2 cases were both premature infants who contracted sepsis and CRKP osteoarthritis. Meropenem and polymyxin B were initially chosen for the first infant. CAZ-AVI was then used due to persistent infection. The second infant was commenced immediately on CAZ-AVI after receipt of antimicrobial susceptibility on the 4th day after admission. Both recovered with CAZ-AVI (50 mg/kg q8h) and surgical incision and drainage. Neither had a joint deformity or limb length discrepancy at 36 and 34 months, respectively. CONCLUSIONS This is the first report on the use of CAZ-AVI to treat CRKP osteoarthritis in premature infants. Successful treatment depends on prompt recognition of the pathogen and treatment with a combination of antibiotics with or without surgery. Further study is needed to determine the pharmacokinetics and pharmacodynamics of CAZ-AVI for treating preterm infants with serious CRKP osteoarthritis.
Collapse
Affiliation(s)
- Weicong Pu
- From the Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
5
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
6
|
Abo Kamer AM, Amer NM, Abdelmegeed AA, El Maghraby GM, Gamaleldin NM. Surfactant nanovesicles for augmented antibacterial activity against carbapenemase resistant enterobacteriaceae and extended spectrum beta-lactamases producing bacteria: in vitro and in vivo evaluation. BMC Microbiol 2023; 23:73. [PMID: 36927445 PMCID: PMC10018850 DOI: 10.1186/s12866-023-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
The ubiquitous emergence of bacterial resistance is a challenging problem in infectious diseases treatment. Recently, new research lines employed nano-drug delivery systems to enhance antibacterial activity of the existing antibiotics. Accordingly, the objective of this study is to optimize surfactant nanovesicles to improve the antimicrobial effect of meropenem, ertapenem and tigecycline against Carbapenemase Resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases producing bacteria (ESBL). Klebsiella pneumoniae and Escherichia coli were used as the test organisms. In vivo and in vitro evaluations were conducted to prove the efficacy of niosome-encapsulated drugs formulations. The results revealed that surfactant vesicles were able to reduce the MIC values of the tested drugs by nine-fold change compared to their free forms. Scanning Electron Microscope (SEM) showed possible adhesion/fusion of the vesicles encapsulated drugs on the bacterial cells compared to its solution. In vivo investigations using animal skin model confirmed the superiority of nanovesicles drug encapsulation regarding both wound size and histopathological examination. Wound surface area was reduced from 24.6mm2 in absence of drug to reach 13.9, and 6.2mm2 in presence of ertapenem solution or niosomes, respectively. Nanovesicular formulations can be considered as effective drug delivery systems that can diminish bacterial resistance against β-lactams antibiotics.
Collapse
Affiliation(s)
- Amal M. Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Amer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk, Cairo 11837 Egypt
- The Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), El-Sherouk, Cairo Egypt
| |
Collapse
|
7
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
8
|
Ifrid E, Ouertatani-Sakouhi H, Jauslin T, Kicka S, Chiriano G, Harrison CF, Hilbi H, Scapozza L, Soldati T, Cosson P. 5-ethyl-2'-deoxyuridine fragilizes Klebsiella pneumoniae outer wall and facilitates intracellular killing by phagocytic cells. PLoS One 2022; 17:e0269093. [PMID: 36315510 PMCID: PMC9621411 DOI: 10.1371/journal.pone.0269093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/14/2022] [Indexed: 01/24/2023] Open
Abstract
Klebsiella pneumoniae is the causative agent of a variety of severe infections. Many K. pneumoniae strains are resistant to multiple antibiotics, and this situation creates a need for new antibacterial molecules. K. pneumoniae pathogenicity relies largely on its ability to escape phagocytosis and intracellular killing by phagocytic cells. Interfering with these escape mechanisms may allow to decrease bacterial virulence and to combat infections. In this study, we used Dictyostelium discoideum as a model phagocyte to screen a collection of 1,099 chemical compounds. Phg1A KO D. discoideum cells cannot feed upon K. pneumoniae bacteria, unless bacteria bear mutations decreasing their virulence. We identified 3 non-antibiotic compounds that restored growth of phg1A KO cells on K. pneumoniae, and we characterized the mode of action of one of them, 5-ethyl-2'-deoxyuridine (K2). K2-treated bacteria were more rapidly killed in D. discoideum phagosomes than non-treated bacteria. They were more sensitive to polymyxin and their outer membrane was more accessible to a hydrophobic fluorescent probe. These results suggest that K2 acts by rendering the membrane of K. pneumoniae accessible to antibacterial effectors. K2 was effective on three different K. pneumoniae strains, and acted at concentrations as low as 3 μM. K2 has previously been used to treat viral infections but its precise molecular mechanism of action in K. pneumoniae remains to be determined.
Collapse
Affiliation(s)
- Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Sebastien Kicka
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Christopher F. Harrison
- Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Zürich, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Han YL, Wen XH, Zhao W, Cao XS, Wen JX, Wang JR, Hu ZD, Zheng WQ. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2022; 13:1003783. [PMID: 36188002 PMCID: PMC9524375 DOI: 10.3389/fmicb.2022.1003783] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP), a type of Klebsiella pneumoniae (KP) that exhibits hypervirulence and carbapenem resistance phenotypes, can cause severe infections, both hospital- and community-acquired infections. CR-hvKP has brought great challenges to global public health and is associated with significant morbidity and mortality. There are many mechanisms responsible for the evolution of the hypervirulence and carbapenem resistance phenotypes, such as the horizontal transfer of the plasmid carrying the carbapenem resistance gene to hypervirulent Klebsiella pneumoniae (hvKP) or carbapenemase-producing Klebsiella pneumoniae (CRKP) acquiring a hypervirulence plasmid carrying a virulence-encoding gene. Notably, KP can evolve into CR-hvKP by acquiring a hybrid plasmid carrying both the carbapenem resistance and hypervirulence genes. In this review, we summarize the evolutionary mechanisms of resistance and plasmid-borne virulence as well as the prevalence of CR-hvKP.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Wen-Qi Zheng,
| |
Collapse
|
10
|
Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, Mitra SD, Khalatyan N, Krapp F, Qi C, Ozer EA, Hauser AR. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22:603. [PMID: 35799130 PMCID: PMC9263067 DOI: 10.1186/s12879-022-07558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Collapse
Affiliation(s)
- Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel L Medernach
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel W M Gatesy
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sumitra D Mitra
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Khalatyan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chao Qi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
12
|
Mouftah SF, Pál T, Higgins PG, Ghazawi A, Idaghdour Y, Alqahtani M, Omrani AS, Rizvi TA, Sonnevend Á. Diversity of carbapenem-resistant Klebsiella pneumoniae ST14 and emergence of a subgroup with KL64 capsular locus in the Arabian Peninsula. Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04384-2. [PMID: 34855011 DOI: 10.1007/s10096-021-04384-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
To understand the reasons of successful spread of carbapenem-resistant Klebsiella pneumoniae ST14 (CRKP-ST14) in countries of the Arabian Peninsula, the resistome, capsular locus, carbapenemase carrying plasmid types, and core genome of isolates from the region were compared to global isolates. Thirty-nine CRKP-ST14 strains isolated from 13 hospitals in the United Arab Emirates, Bahrain, and Saudi Arabia were selected for whole genome sequencing on Illumina MiSeq platform based on the variety of carbapenemase genes carried and plasmids bearing these genes. Their resistome, capsular locus, and core genome MLST were compared to 173 CRKP-ST14 genomes available in public databases. The selected 39 CRKP-ST14 produced either NDM-1, OXA-48, OXA-162, OXA-232, KPC-2, or co-produced NDM-1 and an OXA-48-like carbapenemase. cgMLST revealed three clusters: 16 isolates from five UAE cities (C1), 11 isolates from three UAE cities and Bahrain (C2), and 5 isolates from Saudi Arabia (C3), respectively, and seven singletons. Resistance gene profile, carbapenemase genes, and their plasmid types were variable in both C1 and C2 clusters. The majority of CRKP-ST14 had KL2, but members of the C2 cluster and two further singletons possessed KL64 capsular locus. Based on cgMLST comparison of regional and global isolates, CRKP-ST14 with KL64 from four continents formed a distinct cluster, suggesting a recent emergence and spread of this variant. Our findings confirmed clonal transmission coupled with likely horizontal gene transfer in carbapenem-resistant Klebsiella pneumoniae ST14. Dissemination of this genetically flexible, highly resistant clone warrants further monitoring.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Tibor Pál
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Youssef Idaghdour
- Pathology and Laboratory Medicine Department, BDF Hospital - Royal Medical Services, Riffa, Kingdom of Bahrain
| | - Manaf Alqahtani
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ali S Omrani
- King Faisal Specialty Hospital, Riyadh, Saudi Arabia
- Communicable Diseases Center Hamad Medical Corporation, Doha, Qatar
| | - Tahir A Rizvi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Al Nahyan Center for Health Sciences, Al Ain, United Arab Emirates
| | - Ágnes Sonnevend
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
13
|
Zhou C, Wu Q, He L, Zhang H, Xu M, Yuan B, Jin Z, Shen F. Clinical and Molecular Characteristics of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Isolates in a Tertiary Hospital in Shanghai, China. Infect Drug Resist 2021; 14:2697-2706. [PMID: 34285522 PMCID: PMC8286785 DOI: 10.2147/idr.s321704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background The convergence of carbapenem-resistance and hypervirulence in Klebsiella pneumoniae has led to a significant public health challenge. In recent years, there have been more and more reports on carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) isolates. Materials and Methods Clinical data of patients infected with CR-hvKP from January 2019 to December 2020 in a tertiary hospital were retrospectively evaluated. The number of isolates of Klebsiella pneumoniae, hypermucoviscous Klebsiella pneumoniae (hmKP), carbapenem-resistant hypermucoviscous Klebsiella pneumoniae (CR-hmKP) and carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) collected during the period of 2 years was calculated. The antimicrobial resistance gene, virulence-associated gene, capsular serotype gene and multilocus sequence typing (MLST) of CR-hvKP isolates were detected by PCR. Results During the study period, a total of 1081 isolates of non-repeat Klebsiella pneumoniae were isolated, including 392 isolates of hypermucoviscous Klebsiella pneumoniae (36.3%), 39 isolates of CR-hmKP (3.6%), and 16 isolates of CR-hvKP (1.5%). About 31.2% (5/16) of CR-hvKP were isolated from 2019, and 68.8% (11/16) of CR-hvKP were isolated from 2020. Among the 16 isolates of CR-hvKP, 13 isolates were ST11 and serotype K64, 1 isolate was ST11 and serotype K47, 1 isolate was ST23 and serotype K1, and 1 isolate was ST86 and serotype K2. The virulence-associated genes entB, fimH, rmpA2, iutA, iucA were present in all of 16 CR-hvKP isolates, followed by mrkD (n=14), rmpA (n=13), aerobactin (n=2), allS (n=1). Sixteen CR-hvKP isolates all carry carbapenemase gene bla KPC-2 and extended-spectrum β-lactamase gene bla SHV. ERIC-PCR DNA fingerprinting results showed that 16 CR-hvKP isolates were highly polymorphic, and there were significant differences in bands among the isolates, presenting a sporadic state. Conclusion Although CR-hvKP was sporadically distributed, it showed an increasing trend year by year. Therefore, clinical attention should be paid, and necessary measures should be taken to avoid the cloning and transmission of superbacterium CR-hvKP.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qiang Wu
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Maosuo Xu
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Baoyu Yuan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fang Shen
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Virulence among different types of hypervirulent Klebsiella pneumoniae with multi-locus sequence type (MLST)-11, Serotype K1 or K2 strains. Gut Pathog 2021; 13:40. [PMID: 34154656 PMCID: PMC8218402 DOI: 10.1186/s13099-021-00439-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Two different types of hypervirulent K. pneumoniae (HvKp), the MLST-11 and serotype K1/K2 strains, have been frequently described in recent studies. Although these two types of strains were described to be HvKp, their virulence was not compared. In this study, in vitro and in vivo approaches were used to assess differences in virulence. Materials and methods A total of twenty-nine isolates, including 6 strains of each of serotype K1 and K2 isolates and 17 strains of ST11 isolates, were selected for this study. Phenotypic tests of virulence were performed by the string test and analysis of the virulent associated genes was detected by PCR. In vitro models of serum resistance and phagocytosis were used as the parameters to assess the virulence. In-frame deletion of virulence-associated genes was performed to study their contributions to virulence. The median lethal dose, i.e., the LD50, in mice was determined following IP injection. Results Although serotype K1 and K2 strains and ST11 isolates had similar virulence gene profiles, the ST11 isolates showed less serum and phagocytic resistance than the serotype K1/K2 isolates. The mouse lethality test revealed that all ST11 isolates were unable to cause lethality, even at > 107 CFU, while serotypes K1 and K2 showed an LD50 at ≤ 103 CFU. Aerobactin or capsule knockout mutants exhibited a lower LD50 than the parental strain, while capsule mutants showed a more significant decrease in LD50. Conclusion Since there was a significant difference in virulence levels between the two types of HvKp when assessed in in vitro and in vivo models, it may be better to use the designation "HvKp" for some strains based on animal studies to avoid confusion. Virulence and non-virulence could be analysed in a relative manner, especially in comparison studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00439-z.
Collapse
|
15
|
From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms 2021; 9:microorganisms9061282. [PMID: 34204632 PMCID: PMC8231111 DOI: 10.3390/microorganisms9061282] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for community-acquired and nosocomial infections. The strains of this species belong to the opportunistic group, which is comprised of the multidrug-resistant strains, or the hypervirulent group, depending on their accessory genome, which determines bacterial pathogenicity and the host immune response. The aim of this survey is to present an overview of the murine models mimicking K. pneumoniae infectious processes (i.e., gastrointestinal colonization, urinary, pulmonary, and systemic infections), and the bacterial functions deployed to colonize and disseminate into the host. These in vivo approaches are pivotal to develop new therapeutics to limit K. pneumoniae infections via a modulation of the immune responses and/or microbiota.
Collapse
|
16
|
Zhang Y, Jin L, Ouyang P, Wang Q, Wang R, Wang J, Gao H, Wang X, Wang H. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother 2021; 75:327-336. [PMID: 31713615 DOI: 10.1093/jac/dkz446] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) have been increasingly reported in China. Here, a multicentre, longitudinal surveillance study on CR-hvKP is described. METHODS We retrospectively investigated carbapenem-resistant K. pneumoniae (CRKP) in 56 centres across China during 2015-17 and screened the virulence genes (iucA, iroN, rmpA and rmpA2) for the presence of virulence plasmids. Hypermucoviscosity, serum killing and Galleria mellonella lethality experiments were conducted to identify CR-hvKP among strains with all four virulence genes. Capsule typing, fitness and plasmid features of CR-hvKP were also investigated. RESULTS A total of 1052 CRKP were collected. Among these, 34.2% (360/1052) carried virulence genes and 72 of them had all four of the virulence genes tested. Fifty-five (76.4%) were considered to be CR-hvKP using the G. mellonella infection model, with KPC-2-producing K64-ST11 being the most common type (80%, 44/55). Prevalence of CR-hvKP differed greatly between regions, with the highest in Henan (25.4%, 17/67) and Shandong (25.8%, 25/97). A significant increase in CR-hvKP among KPC-2-producing ST11 strains was observed, from 2.1% (3/141) in 2015 to 7.0% (23/329) in 2017 (P=0.045). Alarmingly, compared with classic CRKP, no difference in growth was found among CR-hvKP (P=0.7028), suggesting a potential risk for dissemination. The hybrid virulence and resistance-encoding plasmid evolved from pLVPK and the resistance plasmid harbouring blaKPC-2, indicating evolution existed between the hypervirulence and hyper-resistance plasmid. CONCLUSIONS CR-hvKP were more frequently detected than previously assumed, especially among KPC-2-producing ST11. Dissemination of hypervirulence could be extremely rapid due to limited fitness cost. Also, the evolution of resistance genes into hypervirulence plasmids was identified, presenting significant challenges for public health and infection control.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pengwen Ouyang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.,Department of Clinical Laboratory, Hunan Province People's Hospital, Changsha, Hunan, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Juan Wang
- Department of Clinical Laboratory, Hunan Province People's Hospital, Changsha, Hunan, China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | | |
Collapse
|
17
|
Damisa J, Ahmed S, Harrison S. Necrotising fasciitis: a narrative review of the literature. Br J Hosp Med (Lond) 2021; 82:1-9. [PMID: 33914635 DOI: 10.12968/hmed.2020.0577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necrotising fasciitis is a severe, life-threatening and rapidly progressive soft tissue infection that often requires aggressive surgical management, with an estimated incidence of about 0.24-0.40 per 100 000 in the UK. Necrotising fasciitis can be classified based on its microbiology or the anatomy or body region affected. Initial signs of necrotising fasciitis can be minimal and non-specific but a patient often presents with pain out of proportion to clinical signs on examination, as well as erythema and oedema, in addition to systemic symptoms associated with sepsis. Diagnosis is often based on high clinical suspicion with biochemical and clinical imaging used as adjuncts. To aid with early diagnosis of necrotising fasciitis, a scoring system known as the Laboratory Risk Indicator for necrotising fasciitis was developed which has a positive predictive value of 92%. Once diagnosed, appropriate resuscitation and antibiotics, along with prompt and aggressive surgical debridement, is the mainstay of treatment.
Collapse
Affiliation(s)
- Josiah Damisa
- Department of General Surgery, Darlington Memorial Hospital, Darlington, UK
| | - Sohail Ahmed
- Department of General Surgery, Darlington Memorial Hospital, Darlington, UK
| | - Sanjay Harrison
- Department of General Surgery, Darlington Memorial Hospital, Darlington, UK
| |
Collapse
|
18
|
A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2021; 25:26-34. [PMID: 33667703 DOI: 10.1016/j.jgar.2021.02.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hypervirulence and carbapenem resistance have emerged as two distinct evolutionary directions for Klebsiella pneumoniae, which pose a great threat in clinical settings. Multiple virulence factors contribute to hypervirulence, and the mechanisms of carbapenem resistance are complicated. However, more and more K. pneumoniae strains have been identified in recent years integrating both phenotypes, resulting in devastating clinical outcomes. Hypervirulent and carbapenem-resistant K. pneumoniae (CR-hvKP) emerged in the early 2010s and thereafter have become increasingly prevalent. CR-hvKP are primarily prevalent in Asia, especially China, but are reported all over the world. Mechanisms for the emergence of CR-hvKP can be summarised by three patterns: (i) carbapenem-resistant K. pneumoniae (CRKP) acquiring a hypervirulent phenotype; (ii) hypervirulent K. pneumoniae (hvKP) acquiring a carbapenem-resistant phenotype; and (iii) K. pneumoniae acquiring both a carbapenem resistance and hypervirulence hybrid plasmid. With their global dissemination, continued surveillance of the emergence of CR-hvKP should be more highly prioritised.
Collapse
|
19
|
Wei DD, Xiong XS, Mei YF, Du FL, Wan LG, Liu Y. Microbiological and Clinical Characteristics of Klebsiella pneumoniae Isolates of K57 Capsular Serotype in China. Microb Drug Resist 2021; 27:391-400. [PMID: 32762612 DOI: 10.1089/mdr.2018.0456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Dan-dan Wei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Xiao-shun Xiong
- Department of Clinical Microbiology, Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Yan-fang Mei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Fang-ling Du
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - La-gen Wan
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
20
|
Unlu O, Demirci M. Detection of carbapenem-resistant Klebsiella pneumoniae strains harboring carbapenemase, beta-lactamase and quinolone resistance genes in intensive care unit patients. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc31. [PMID: 33299744 PMCID: PMC7709150 DOI: 10.3205/dgkh000366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aim: Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) strains are important nosocomial pathogens worldwide. In this study, we aimed to reveal the antibiotic resistance of clinical CR-Kp strains and determine the presence of KPC, OXA-48, VIM and IMP carbapenemase genes. CTX-M-1, TEM-1, SHV-1 extended-spectrum beta-lactamase (ESBL) genes, qnrA, qnrB, qnrS plasmid-mediated quinolone resistance genes and sul1 and sul2 sulfonamide resistance genes provided molecular epidemiological data. Methods: A total of 175 K. pneumoniae strains were isolated from clinical samples of patients hospitalised in an intensive care unit (ICU) betweent April and October 2017. The strains were identified with conventional methods, with VITEK 2 (BioMerieux, France) and MALDI-TOF MS (Bruker, USA). Antimicrobial susceptibilities were tested using the disc-diffusion method and E-test (BioMerieux, France). Antimicrobial resistance genes were investigated via real-time PCR in strains identified as CR-Kp. Results: High frequencies of blaTEM-1 (86.36%), blaSHV-1 (86.36%), and blaCTX-M-1 (95.45%) genes were found in CR-Kp strains. Morever, all three ESBL genes coexisted in 77.3% of all strains. blaKPC was detected in 12 (54.55%) of the strains, and 4 of them which had an MIC> 16 μg/mL to imipenem showed blaOXA-48 positivity as well. The qnrS gene determinant (86.36%) had the highest frequency, and strains carrying qnrA showed higher MICs for ciprofloxacin. Conclusion: CR-Kp strains are able to develop different antimicrobial resistance patterns according to regional changes in antimicrobial therapeutic policies. Thus, it is important to monitor the regional molecular epidemiological data for efficient treatment.
Collapse
Affiliation(s)
- Ozge Unlu
- Beykent University School of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Mehmet Demirci
- Beykent University School of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
21
|
Tan S, Gao J, Li Q, Guo T, Dong X, Bai X, Yang J, Hao S, He F. Synergistic effect of chlorogenic acid and levofloxacin against Klebsiella pneumonia infection in vitro and in vivo. Sci Rep 2020; 10:20013. [PMID: 33203903 PMCID: PMC7672055 DOI: 10.1038/s41598-020-76895-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the antibacterial effect and potential mechanisms of chlorogenic acid (CA) in Klebsiella pneumonia (KPN) induced infection in vitro and in vivo. 62 KPN strains were collected from the First People’s Hospital of Yunnan Province. CA and CA combined Levofloxacin (LFX) were detected for KPN biofilm (BF) formation in vitro. The lung infection mice model were established by KPN. The effect of CA (500 mg/kg), LFX (50 mg/kg) and CA combined LFX (250 mg/kg + 25 mg/kg) were evaluated through the survival of mice, the changes of inflammation factors of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6 in serum, the histopathological analysis of lung and the protein expression of NLRP3 signaling pathway in vivo. A total of 62 KPNs were isolated and identified, of which 13 (21%) strains were BF positive. 8 (13%) strains were extended spectrum β-lactamase strains (ESBLs), and 20 (32%) strains are ESBLs biofilm positive. In vitro study, CA and LFX showed a synergistic effect on KPN biofilm formation. In vivo mice experiment, CA, especially CA + LFX treated group significantly decreased the serum levels of TNF-α, IL-1β and IL-6, improved the survival ratio and lung pathology changes, and also reduced the protein expression of ASC, caspase 1 p20, IL-1β and phosphor NF-κB p65. CA could effectively alleviate lung infection of KPN infected mice, and the antibacterial effection is strengthened by combined with LFX. The study provide a theroy basis for making rational and scientific antibacterial therapy strategy in clinic.
Collapse
Affiliation(s)
- Shirui Tan
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jing Gao
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Xiangshu Dong
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, People's Republic of China. .,Yunnan Clinical Medical Center for Hematological Diseases, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, 650032, People's Republic of China.
| | - Shumei Hao
- School of Life Sciences, Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| | - Feifei He
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China.
| |
Collapse
|
22
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
23
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 1002] [Impact Index Per Article: 200.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
24
|
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med 2020; 287:283-300. [PMID: 31677303 PMCID: PMC7057273 DOI: 10.1111/joim.13007] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a concerning global pathogen. hvKp is more virulent than classical K. pneumoniae (cKp) and capable of causing community-acquired infections, often in healthy individuals. hvKp is carried in the gastrointestinal tract, which contributes to its spread in the community and healthcare settings. First recognized in Asia, hvKp arose as a leading cause of pyogenic liver abscesses. In the decades since, hvKp has spread globally and causes a variety of infections. In addition to liver abscesses, hvKp is distinct from cKp in its ability to metastasize to distant sites, including most commonly the eye, lung and central nervous system (CNS). hvKp has also been implicated in primary extrahepatic infections including bacteremia, pneumonia and soft tissue infections. The genetic determinants of hypervirulence are often found on large virulence plasmids as well as chromosomal mobile genetic elements which can be used as biomarkers to distinguish hvKp from cKp clinical isolates. These distinct virulence determinants of hvKp include up to four siderophore systems for iron acquisition, increased capsule production, K1 and K2 capsule types, and the colibactin toxin. Additionally, hvKp strains demonstrate hypermucoviscosity, a phenotypic description of hvKp in laboratory conditions that has become a distinguishing feature of many hypervirulent isolates. Alarmingly, multidrug-resistant hypervirulent strains have emerged, creating a new challenge in combating this already dangerous pathogen.
Collapse
Affiliation(s)
- J E Choby
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - J Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
25
|
Kochan TJ, Ozer EA, Pincus NB, Fitzpatrick MA, Hauser AR. Complete Genome Sequence of Klebsiella pneumoniae Strain TK421, a Conjugative Hypervirulent Isolate. Microbiol Resour Announc 2020; 9:e01408-19. [PMID: 31948967 PMCID: PMC6965585 DOI: 10.1128/mra.01408-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is a major cause of nosocomial infections worldwide. Here, we present the complete genome sequence of TK421, a clinical bacteremia isolate containing a hypervirulence plasmid carrying tra-associated conjugation machinery genes. Emergence of conjugative hypervirulence plasmids could portend rapid dissemination of hypervirulence among multidrug-resistant K. pneumoniae strains.
Collapse
Affiliation(s)
- Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nathan B Pincus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Margaret A Fitzpatrick
- Department of Medicine, Division of Infectious Diseases, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Huang YH, Chou SH, Liang SW, Ni CE, Lin YT, Huang YW, Yang TC. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother 2019; 73:2039-2046. [PMID: 29800340 DOI: 10.1093/jac/dky164] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae causes high mortality owing to the limited therapeutic options available. Here, we investigated an emergent carbapenem-resistant K. pneumoniae strain with hypervirulence found among KPC-2-producing strains in Taiwan. Methods KPC-producing K. pneumoniae strains were collected consecutively from clinical specimens at the Taipei Veterans General Hospital between January 2012 and December 2014. Capsular types and the presence of rmpA/rmpA2 were analysed, and PFGE and MLST performed using these strains. The strain positive for rmpA/rmpA2 was tested in an in vivo mouse lethality study to verify its virulence and subjected to WGS to delineate its genomic features. Results A total of 62 KPC-2-producing K. pneumoniae strains were identified; all of these belonged to ST11 and capsular genotype K47. One strain isolated from a fatal case with intra-abdominal abscess (TVGHCRE225) harboured rmpA and rmpA2 genes. This strain was resistant to tigecycline and colistin, in addition to carbapenems, and did not belong to the major cluster in PFGE. TVGHCRE225 exhibited high in vivo virulence in the mouse lethality experiment. WGS showed that TVGHCRE225 acquired a novel hybrid virulence plasmid harbouring a set of virulence genes (iroBCDN, iucABCD, rmpA and rmpA2, and iutA) compared with the classic ST11 KPC-2-producing strain. Conclusions We identified an XDR ST11 KPC-2-producing K. pneumoniae strain carrying a hybrid virulent plasmid in Taiwan. Active surveillance focusing on carbapenem-resistant hypervirulent K. pneumoniae strains is necessary, as the threat to human health is imminent.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Syun-Wun Liang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-En Ni
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Changing epidemiology of KPC-producing Klebsiella pneumoniae in Argentina: Emergence of hypermucoviscous ST25 and high-risk clone ST307. J Glob Antimicrob Resist 2019; 18:238-242. [PMID: 31202977 DOI: 10.1016/j.jgar.2019.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To assess the epidemiological features of 76 Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) isolates recovered from three hospitals in Buenos Aires, Argentina, during 2015-2017. METHODS Antimicrobial susceptibilities were determined according to CLSI Clinical and Laboratoy Standards guidelines. Molecular typing of KPC-Kp was performed by pulsed-field gel electrophoresis (PFGE)-Xbal and multilocus sequence typing. Plasmid encoded genes involved in carbapenem, fosfomycin and colistin resistance were detected by polymerase chain reaction (PCR) and sequencing. Also, mgrB inactivation was investigated in those colistin-resistant isolates. Genetic platforms involved in horizontal spread of blaKPC were investigated by PCR mapping. RESULTS Besides β-lactams, high resistance rates were observed for gentamycin, quinolones and trimethoprim-sulfamethoxazole. KPC-Kp sequence type (ST)258 corresponded to 26% of the isolates, while 42% corresponded to ST25. The other isolates were distributed in a diversity of lineages such as ST11 (10.5%), ST392 (10.5%), ST307, ST13, ST101, ST15 and ST551. blaKPC-2 was detected in 75 of 76 isolates, and one ST307 isolate harboured blaKPC-3. Tn4401 was identified as the genetic platform for blaKPC in epidemic lineages such as ST258 and ST307. However, in ST25 and ST392, which are usually not related to blaKPC, a blaKPC-bearing non-Tn4401 element was identified. Alterations in mgrB were detected in seven of 11 colistin-resistant isolates. CONCLUSIONS Despite previous reports in Argentina, ST258 is no longer the absolute clone among KPC-Kp isolates. In the present study, dissemination of more virulent lineages such as the hypermucoviscous ST25 was detected. The emergence of the high-risk clone ST307 and occurrence of blaKPC-3 was noticed for the first time in this region.
Collapse
|
28
|
A Nationwide Screen of Carbapenem-Resistant Klebsiella pneumoniae Reveals an Isolate with Enhanced Virulence and Clinically Undetected Colistin Heteroresistance. Antimicrob Agents Chemother 2019; 63:AAC.00107-19. [PMID: 30803966 DOI: 10.1128/aac.00107-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
The convergence of hypervirulence and multidrug resistance in Klebsiella pneumoniae is a significant concern. Here, we report the first screen for hypermucoviscosity, a trait associated with increased virulence, using a U.S. surveillance collection of carbapenem-resistant (CR) K. pneumoniae isolates. We identified one hypermucoviscous isolate, which carried a gene encoding the KPC-3 carbapenemase, among numerous resistance genes. The strain further exhibited colistin heteroresistance undetected by diagnostics. This convergence of diverse resistance mechanisms and increased virulence underscores the need for enhanced K. pneumoniae surveillance.
Collapse
|
29
|
The role of carbapenem-resistant pathogens in cSSTI and how to manage them. Curr Opin Infect Dis 2019; 32:113-122. [DOI: 10.1097/qco.0000000000000528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
31
|
First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics (Basel) 2018; 7:antibiotics7040096. [PMID: 30404152 PMCID: PMC6315367 DOI: 10.3390/antibiotics7040096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes blaKPC-3, blaTEM-1 and blaSHV-1 in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.
Collapse
|
32
|
Draft Genome Sequence of an NDM-1- and KPC-2-Coproducing Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Strain Isolated from Burn Wound Infections. GENOME ANNOUNCEMENTS 2018; 6:6/13/e00192-18. [PMID: 29599157 PMCID: PMC5876488 DOI: 10.1128/genomea.00192-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report here the draft genome sequence of an NDM-1- and KPC-2-coproducing hypervirulent carbapenem-resistant Klebsiella pneumoniae strain, isolated from a 58-year-old male in the People's Republic of China with a burn injury.
Collapse
|