1
|
Payne T, Taylor J, Kunkel D, Konieczka K, Ingram F, Blennow K, Zetterberg H, Pearce RA, Meyer-Franke A, Terrando N, Akassoglou K, Sanders RD, Lennertz RC. Association of preoperative to postoperative change in cerebrospinal fluid fibrinogen with postoperative delirium. BJA OPEN 2024; 12:100349. [PMID: 39429436 PMCID: PMC11490679 DOI: 10.1016/j.bjao.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
Background We aimed to assess perioperative changes in fibrinogen in the cerebrospinal fluid (CSF), their association with markers of blood-brain barrier breakdown and neuroinflammation, and their association with postoperative delirium severity. Methods We conducted a secondary analysis of the Interventions for Postoperative Delirium-Biomarker 2 (IPOD-B2, NCT02926417) study, a prospective observational cohort study. We included 24 patients aged >21 yr undergoing aortic aneurysm repair. CSF samples were obtained before (n=24) and after surgery (n=13), with some participants having multiple postoperative samples. Our primary outcome was the perioperative change in CSF fibrinogen. Delirium was assessed using the Delirium Rating Scale-Revised-98. Results CSF fibrinogen increased after surgery (P<0.001), and this was associated with an increase in CSF/plasma albumin ratio (β=1.09, 95% CI 0.47-1.71, P=0.004). The peak change in CSF fibrinogen was associated with the change in CSF interleukin (IL)-10 and IL-12p70. The peak change in CSF fibrinogen was associated with the change in CSF total tau (β=0.47, 95% CI 0.24-0.71, P=0.002); however, we did not observe an association with postoperative delirium severity (incidence rate ratio = 1.20, 95% CI 0.66-2.17, P=0.540). Conclusions Our preliminary findings support the hypothesis that fibrinogen enters the brain via blood-brain barrier disruption, promoting neuroinflammation and neuronal injury. However, we did not observe an association between cerebrospinal fluid fibrinogen and peak delirium severity in this limited cohort.
Collapse
Affiliation(s)
- Thomas Payne
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jennifer Taylor
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
| | - David Kunkel
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Katherine Konieczka
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Frankie Ingram
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Robert A. Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Anke Meyer-Franke
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Cell Biology, and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Katerina Akassoglou
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology and Weill Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Robert D. Sanders
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
- Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, New South Wales, Australia
| | - Richard C. Lennertz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
2
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Sarmin N, Roknuzzaman ASM, Mouree TZ, Islam MR, Al Mahmud Z. Evaluation of serum interleukin-12 and interleukin-4 as potential biomarkers for the diagnosis of major depressive disorder. Sci Rep 2024; 14:1652. [PMID: 38238514 PMCID: PMC10796357 DOI: 10.1038/s41598-024-51932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Recently, scientists have focused on pro-inflammatory cytokines and immunological dysregulation in major depressive disorder (MDD). Some research suggests pro-inflammatory cytokines' role in MDD development, whereas anti-inflammatory studies are sparse. There is no systematic investigation of Bangladeshi MDD patients' pro- and anti-inflammatory cytokines. This study examines the blood levels of IL-12 and IL-4 in Bangladeshi patients and healthy controls (HCs) to determine the diagnostic accuracy of these cytokines to identify MDD patients from those without MDD. A total of 110 people with MDD from the department of psychiatry of a teaching hospital in Dhaka and 107 HCs from Dhaka participated in this case-control study. Depression and illness severity were gauged using DSM-5 criteria and Ham-D scores. Commercially marketed ELISA kits were used in accordance with manufacturer guidelines to measure the levels of IL-12 and IL-4 in peripheral blood, allowing a comparison of the patient and control groups. In comparison to HCs, MDD patients (5333.00 ± 307.40 pg/ml) showed noticeably higher levels of IL-12 than in HCs (2331.00 ± 207.40 pg/ml). The increased levels were positively correlated with Ham-D scores (male: r = 0.351, p < 0.050; female: r = 0.389, p < 0.050), suggesting a possible relationship to disease progression. Additionally, compared to HCs (272.81 ± 23.94 pg/ml), MDD patients had significantly higher peripheral blood levels of IL-4 (876.35 ± 66.73 pg/ml) (p < 0.001). Also, there was a positive correlation between IL-4 serum levels and Ham-D scores (male: r = 0.361, p < 0.050; female: r = 0.398, p < 0.050). Therefore, we observed increased levels of these serum cytokines and their association with the severity of depression. The results of this study demonstrate the possibility of IL-12 and IL-4 blood levels as distinct markers capable of differentiating between MDD patients and HCs, possibly acting as markers of MDD susceptibility. To ascertain the diagnostic effectiveness of these two cytokines, more research is necessary.
Collapse
Affiliation(s)
- Nisat Sarmin
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Roknuzzaman
- Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Tashfiya Zaman Mouree
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, KHA 224, Progati Sarani, Merul Badda, Dhaka, 1212, Bangladesh.
| | - Zobaer Al Mahmud
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
5
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
6
|
Cano A, Esteban-de-Antonio E, Bernuz M, Puerta R, García-González P, de Rojas I, Olivé C, Pérez-Cordón A, Montrreal L, Núñez-Llaves R, Sotolongo-Grau Ó, Alarcón-Martín E, Valero S, Alegret M, Martín E, Martino-Adami PV, Ettcheto M, Camins A, Vivas A, Gomez-Chiari M, Tejero MÁ, Orellana A, Tárraga L, Marquié M, Ramírez A, Martí M, Pividori MI, Boada M, Ruíz A. Plasma extracellular vesicles reveal early molecular differences in amyloid positive patients with early-onset mild cognitive impairment. J Nanobiotechnology 2023; 21:54. [PMID: 36788617 PMCID: PMC9930227 DOI: 10.1186/s12951-023-01793-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
In the clinical course of Alzheimer's disease (AD) development, the dementia phase is commonly preceded by a prodromal AD phase, which is mainly characterized by reaching the highest levels of Aβ and p-tau-mediated neuronal injury and a mild cognitive impairment (MCI) clinical status. Because of that, most AD cases are diagnosed when neuronal damage is already established and irreversible. Therefore, a differential diagnosis of MCI causes in these prodromal stages is one of the greatest challenges for clinicians. Blood biomarkers are emerging as desirable tools for pre-screening purposes, but the current results are still being analyzed and much more data is needed to be implemented in clinical practice. Because of that, plasma extracellular vesicles (pEVs) are gaining popularity as a new source of biomarkers for the early stages of AD development. To identify an exosome proteomics signature linked to prodromal AD, we performed a cross-sectional study in a cohort of early-onset MCI (EOMCI) patients in which 184 biomarkers were measured in pEVs, cerebrospinal fluid (CSF), and plasma samples using multiplex PEA technology of Olink© proteomics. The obtained results showed that proteins measured in pEVs from EOMCI patients with established amyloidosis correlated with CSF p-tau181 levels, brain ventricle volume changes, brain hyperintensities, and MMSE scores. In addition, the correlations of pEVs proteins with different parameters distinguished between EOMCI Aβ( +) and Aβ(-) patients, whereas the CSF or plasma proteome did not. In conclusion, our findings suggest that pEVs may be able to provide information regarding the initial amyloidotic changes of AD. Circulating exosomes may acquire a pathological protein signature of AD before raw plasma, becoming potential biomarkers for identifying subjects at the earliest stages of AD development.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Ester Esteban-de-Antonio
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Mireia Bernuz
- Grup de Sensors I Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Claudia Olivé
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Raúl Núñez-Llaves
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Óscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elvira Martín
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Pamela V Martino-Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Assumpta Vivas
- Departament de Diagnòstic Per La Imatge, Clínica Corachan, Barcelona, Spain
| | - Marta Gomez-Chiari
- Departament de Diagnòstic Per La Imatge, Clínica Corachan, Barcelona, Spain
| | | | - Adelina Orellana
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Department of Psychiatry and Glenn, Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, 78229, USA
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Mercè Martí
- Grup de Sensors I Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Isabel Pividori
- Grup de Sensors I Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institut de Biotecnologia I de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
7
|
Liu Y, Si ZZ, Zou CJ, Mei X, Li XF, Luo H, Shen Y, Hu J, Li XX, Wu L. Targeting neuroinflammation in Alzheimer’s disease: from mechanisms to clinical applications. Neural Regen Res 2023; 18:708-715. [DOI: 10.4103/1673-5374.353484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
9
|
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, Berlanga-Acosta J, Baez SDLC, Guillen-Nieto G, Valdes-Sosa PA. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:683689. [PMID: 35360215 PMCID: PMC8963375 DOI: 10.3389/fnagi.2022.683689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.
Collapse
Affiliation(s)
- Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | - Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Neurociencias de Cuba, La Habana, Cuba
| |
Collapse
|
10
|
Azhar L, Kusumo RW, Marotta G, Lanctôt KL, Herrmann N. Pharmacological Management of Apathy in Dementia. CNS Drugs 2022; 36:143-165. [PMID: 35006557 DOI: 10.1007/s40263-021-00883-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Apathy is a highly prevalent symptom of dementia. Despite its association with faster cognitive and functional decline, decreased quality of life and increased mortality, no therapies are currently approved to treat apathy. The objective of this review was to summarize the drugs that have been studied for apathy treatment in patients with dementia (specifically Alzheimer's disease [AD], Huntington's disease [HD] and Parkinson's disease [PD] dementia; dementia with Lewy bodies [DLB]; vascular dementia [VaD]; and frontotemporal dementia [FTD]) based on their putative mechanisms of action. A search for relevant studies was performed using ClinicalTrials.gov and PubMed. Eligible studies were randomized controlled trials that were available in English and included at least one drug intervention and an apathy measure scale. A total of 52 studies that included patients with AD (n = 33 studies), PD (n = 5), HD (n = 1), DLB (n = 1), FTD (n = 3), VaD (n = 1), VaD and AD (n = 4), VaD and mixed dementia (n = 1), and AD, VaD and mixed dementia (n = 3) were eligible for inclusion. These studies showed that methylphenidate, olanzapine, cholinesterase inhibitors, choline alphoscerate, citalopram, memantine, and mibampator are the only beneficial drugs in AD-related apathy. For PD-related apathy, only methylphenidate, rotigotine and rivastigmine showed benefits. Regarding FTD- and DLB-related apathy, initial studies with agomelatine and rivastigmine showed benefits, respectively. As for HD- and only-VaD-related apathy, no drugs demonstrated benefits. With regards to mixed populations, memantine, galantamine and gingko biloba showed effects on apathy in the AD plus VaD populations and nimodipine in the VaD plus mixed dementia populations. Of the drugs with positive results, some are already prescribed to patients with dementia to target other symptoms, some have characteristics-such as medical contraindications (e.g., cardiovascular) and adverse effects (e.g., gastrointestinal disturbances)-that limit their clinical use and some require further study. Future studies should investigate apathy as a primary outcome, making use of appropriate sample sizes and study durations to ensure durability of results. There should also be a consensus on using scales with high test/retest and interrater reliabilities to limit the inconsistencies between clinical trials. In conclusion, there are currently no US FDA-approved drugs that target apathy in dementia, so there is an ongoing need for the development of such drugs.
Collapse
Affiliation(s)
- Laiba Azhar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Raphael W Kusumo
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Giovanni Marotta
- Geriatric Medicine Division, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Fowler C, Rainey-Smith SR, Bird S, Bomke J, Bourgeat P, Brown BM, Burnham SC, Bush AI, Chadunow C, Collins S, Doecke J, Doré V, Ellis KA, Evered L, Fazlollahi A, Fripp J, Gardener SL, Gibson S, Grenfell R, Harrison E, Head R, Jin L, Kamer A, Lamb F, Lautenschlager NT, Laws SM, Li QX, Lim L, Lim YY, Louey A, Macaulay SL, Mackintosh L, Martins RN, Maruff P, Masters CL, McBride S, Milicic L, Peretti M, Pertile K, Porter T, Radler M, Rembach A, Robertson J, Rodrigues M, Rowe CC, Rumble R, Salvado O, Savage G, Silbert B, Soh M, Sohrabi HR, Taddei K, Taddei T, Thai C, Trounson B, Tyrrell R, Vacher M, Varghese S, Villemagne VL, Weinborn M, Woodward M, Xia Y, Ames D. Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:443-468. [PMID: 34368630 PMCID: PMC8293663 DOI: 10.3233/adr-210005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer’s disease dementia (AD)) as an ‘Inception cohort’ who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an ‘Enrichment cohort’ (as of 10 April 2019). Objective: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. Methods: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. Results: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. Conclusion: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
Collapse
Affiliation(s)
- Christopher Fowler
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Sabine Bird
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Julia Bomke
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Pierrick Bourgeat
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Belinda M Brown
- Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Samantha C Burnham
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Ashley I Bush
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Chadunow
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Collins
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - James Doecke
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia.,Cooperative Research Council for Mental Health, Melbourne, VIC, Australia
| | - Vincent Doré
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Kathryn A Ellis
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,University of Melbourne Academic Unit for Psychiatry of Old Age, Parkville, VIC, Australia.,Melbourne School of Psychological Sciences, Melbourne, VIC, Australia
| | - Lis Evered
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital Melbourne, Victoria Parade, Fitzroy, VIC, Australia
| | - Amir Fazlollahi
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Jurgen Fripp
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Simon Gibson
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Robert Grenfell
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Elise Harrison
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Richard Head
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Liang Jin
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian Kamer
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Fiona Lamb
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | | | - Simon M Laws
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Lim
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Andrea Louey
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - S Lance Macaulay
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Lucy Mackintosh
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | | | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Simon McBride
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Lidija Milicic
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Madeline Peretti
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kelly Pertile
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tenielle Porter
- Collaborative Genomics and Translation Group, Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Morgan Radler
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Alan Rembach
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Robertson
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Rodrigues
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Rebecca Rumble
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | | | - Greg Savage
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital Melbourne, Victoria Parade, Fitzroy, VIC, Australia
| | - Magdalene Soh
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Hamid R Sohrabi
- Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Tania Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia
| | - Christine Thai
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brett Trounson
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Regan Tyrrell
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Michael Vacher
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - Shiji Varghese
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Michael Woodward
- Department of Geriatric Medicine Austin Hospital, Heidelberg, VIC, Australia
| | - Ying Xia
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD, Australia
| | - David Ames
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.,University of Melbourne Academic Unit for Psychiatry of Old Age, Parkville, VIC, Australia.,National Ageing Research Institute (NARI), Parkville, VIC, Australia
| | | |
Collapse
|
12
|
Nitsch L, Schneider L, Zimmermann J, Müller M. Microglia-Derived Interleukin 23: A Crucial Cytokine in Alzheimer's Disease? Front Neurol 2021; 12:639353. [PMID: 33897596 PMCID: PMC8058463 DOI: 10.3389/fneur.2021.639353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, amyloid β plaque formation and development of neurofibrillary tangles are among the characteristics of Alzheimer's disease (AD). In addition to neurodegeneration, inflammatory processes such as activation of microglia and astrocytes are crucial in the pathogenesis and progression of AD. Cytokines are essential immune mediators of the immune response in AD. Recent data suggest a role of interleukin 23 (IL-23) and its p40 subunit in the pathogenesis of AD and corresponding animal models, in particular concerning microglia activation and amyloid β plaque formation. Moreover, in animal models, the injection of anti-p40 antibodies resulted in reduced amyloid β plaque formation and improved cognitive performance. Here, we discuss the pathomechanism of IL-23 mediated inflammation and its role in AD.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Ashford MT, Veitch DP, Neuhaus J, Nosheny RL, Tosun D, Weiner MW. The search for a convenient procedure to detect one of the earliest signs of Alzheimer's disease: A systematic review of the prediction of brain amyloid status. Alzheimers Dement 2021; 17:866-887. [PMID: 33583100 DOI: 10.1002/alz.12253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Convenient, cost-effective tests for amyloid beta (Aβ) are needed to identify those at higher risk for developing Alzheimer's disease (AD). This systematic review evaluates recent models that predict dichotomous Aβ. (PROSPERO: CRD42020144734). METHODS We searched Embase and identified 73 studies from 29,581 for review. We assessed study quality using established tools, extracted information, and reported results narratively. RESULTS We identified few high-quality studies due to concerns about Aβ determination and analytical issues. The most promising convenient, inexpensive classifiers consist of age, apolipoprotein E genotype, cognitive measures, and/or plasma Aβ. Plasma Aβ may be sufficient if pre-analytical variables are standardized and scalable assays developed. Some models lowered costs associated with clinical trial recruitment or clinical screening. DISCUSSION Conclusions about models are difficult due to study heterogeneity and quality. Promising prediction models used demographic, cognitive/neuropsychological, imaging, and plasma Aβ measures. Further studies using standardized Aβ determination, and improved model validation are required.
Collapse
Affiliation(s)
- Miriam T Ashford
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.,Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Rachel L Nosheny
- Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA.,Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.,Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA.,Department of Psychiatry, University of California San Francisco, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Peña-Bautista C, Álvarez L, Baquero M, Ferrer I, García L, Hervás-Marín D, Cháfer-Pericás C. Plasma isoprostanoids assessment as Alzheimer's disease progression biomarkers. J Neurochem 2020; 157:2187-2194. [PMID: 32918484 DOI: 10.1111/jnc.15183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease worldwide. So, there is a need to identify AD early diagnosis and monitoring biomarkers in blood samples. The aim of this study was to analyse the utility of lipid peroxidation biomarkers in AD progression evaluation. Participants (n = 19) were diagnosed with AD at early stages (Time 0, T0), and they were re-evaluated 2 years later (Time 1, T1). Plasma biomarkers from AD patients were determined at both times. Some analytes, such as dihomo-isoprostanes (17-epi-17-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-IsoP), and neuroprostanes (10-epi-10-F4t-NeuroP) showed very high probability of showing an increasing trend over time. Baseline values allowed to develop an affordable preliminary regression model to predict long-term cognitive status. So, some lipid peroxidation biomarkers would deserve consideration as useful progression AD biomarkers. The developed prediction model would constitute an important minimally invasive approach in AD personalized prognosis and perhaps could have some interest also in experimental treatments evaluation.
Collapse
Affiliation(s)
| | - Lourdes Álvarez
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Inés Ferrer
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Lorena García
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | |
Collapse
|
15
|
Albani D, Marizzoni M, Ferrari C, Fusco F, Boeri L, Raimondi I, Jovicich J, Babiloni C, Soricelli A, Lizio R, Galluzzi S, Cavaliere L, Didic M, Schönknecht P, Molinuevo JL, Nobili F, Parnetti L, Payoux P, Bocchio L, Salvatore M, Rossini PM, Tsolaki M, Visser PJ, Richardson JC, Wiltfang J, Bordet R, Blin O, Forloni G, Frisoni GB. Plasma Aβ42 as a Biomarker of Prodromal Alzheimer's Disease Progression in Patients with Amnestic Mild Cognitive Impairment: Evidence from the PharmaCog/E-ADNI Study. J Alzheimers Dis 2020; 69:37-48. [PMID: 30149449 DOI: 10.3233/jad-180321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is an open issue whether blood biomarkers serve to diagnose Alzheimer's disease (AD) or monitor its progression over time from prodromal stages. Here, we addressed this question starting from data of the European FP7 IMI-PharmaCog/E-ADNI longitudinal study in amnesic mild cognitive impairment (aMCI) patients including biological, clinical, neuropsychological (e.g., ADAS-Cog13), neuroimaging, and electroencephalographic measures. PharmaCog/E-ADNI patients were classified as "positive" (i.e., "prodromal AD" n = 76) or "negative" (n = 52) based on a diagnostic cut-off of Aβ42/P-tau in cerebrospinal fluid as well as APOE ε 4 genotype. Blood was sampled at baseline and at two follow-ups (12 and 18 months), when plasma amyloid peptide 42 and 40 (Aβ42, Aβ40) and apolipoprotein J (clusterin, CLU) were assessed. Linear Mixed Models found no significant differences in plasma molecules between the "positive" (i.e., prodromal AD) and "negative" groups at baseline. In contrast, plasma Aβ42 showed a greater reduction over time in the prodromal AD than the "negative" aMCI group (p = 0.048), while CLU and Aβ40 increased, but similarly in the two groups. Furthermore, plasma Aβ42 correlated with the ADAS-Cog13 score both in aMCI patients as a whole and the prodromal AD group alone. Finally, CLU correlated with the ADAS-Cog13 only in the whole aMCI group, and no association with ADAS-Cog13 was found for Aβ40. In conclusion, plasma Aβ42 showed disease progression-related features in aMCI patients with prodromal AD.
Collapse
Affiliation(s)
- Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Moira Marizzoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Fusco
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Lucia Boeri
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jorge Jovicich
- MR Lab Head, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, IRCCS San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Andrea Soricelli
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Samantha Galluzzi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Libera Cavaliere
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mira Didic
- Aix-Marseille Université, INSERM, INS UMR_S 1106, Marseille, France.,APHM, Timone, Service de Neurologie et Neuropsychologie, APHM Hôpital Timone Adultes, Marseille, France
| | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany, Germany
| | - José Luis Molinuevo
- Alzheimer's Disease Unit and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Flavio Nobili
- Clinical Neurology, Dept. of Neuroscience (DINOGMI), University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucilla Parnetti
- Clinica Neurologica, Università di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| | - Pierre Payoux
- INSERM, Imagerie cérébrale et handicaps neurologiques UMR 825, Toulouse, France
| | - Luisella Bocchio
- Genetic Unit, IRCCS Centro Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Faculty of Psychology, University eCampus, Novedrate (Como), Italy
| | - Marco Salvatore
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| | - Paolo Maria Rossini
- Department of Gerontology, Neurosciences and Orthopedics, Catholic University, Rome, Italy.,Policlinic A. Gemelli Foundation
| | - Magda Tsolaki
- 3rd Neurologic Clinic, Medical School, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, The Netherlands
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
| | - Jens Wiltfang
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Goettingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Régis Bordet
- University of Lille, Inserm, CHU Lille, U1171 - Degenerative and vascular cognitive disorders, Lille, France
| | - Olivier Blin
- Aix Marseille University, UMR-CNRS 7289, Service de Pharmacologie Clinique, AP-HM, Marseille, France
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
16
|
Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer's disease. Immunol Rev 2020; 297:225-246. [PMID: 32588460 PMCID: PMC7783860 DOI: 10.1111/imr.12896] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aβ) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aβ accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.
Collapse
Affiliation(s)
- Hannah E. Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Sudheer, Kumar V, Kumar P, Gupta R. Detection of Al3+ and Fe3+ ions by nitrobenzoxadiazole bearing pyridine-2,6-dicarboxamide based chemosensors: effect of solvents on detection. NEW J CHEM 2020. [DOI: 10.1039/d0nj00517g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid chemosensors, based on a pyridine-2,6-dicarboxamide fragment while containing a 4-nitrobenzoxadiazole group, are used for the sensing of Al3+ and Fe3+ ions where detection was significantly controlled by the selection of a solvent.
Collapse
Affiliation(s)
- Sudheer
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Vijay Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| |
Collapse
|
18
|
Royall DR, Bishnoi RJ, Palmer RF. Blood-based protein predictors of dementia severity as measured by δ: Replication across biofluids and cohorts. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:763-774. [PMID: 31909176 PMCID: PMC6939046 DOI: 10.1016/j.dadm.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Dementia severity can be empirically described by the latent dementia phenotype "δ" and its various composite "homologs". We have explored δ's blood-based protein biomarkers in the Texas Alzheimer's Research and Care Consortium (TARCC) study. However, it would be convenient to replicate those associations in the Alzheimer's Disease Neuroimaging Initiative (ADNI). To this end, we recently engineered a δ homolog from observed cognitive performance measures common to both projects (i.e., "dT2A"). METHODS We used nine rationally chosen peripheral blood-based protein biomarkers as indicators of a latent variable "INFLAMMATION". We then associated that construct with dT2A in structural equation models adjusted for age, gender, depressive symptoms, and apolipoprotein E (APOE) ε4 allelic burden. Significant factor loadings and INFLAMMATION's association with dT2A were confirmed in random splits of TARCC's relatively large sample, and across biofluids in the ADNI. RESULTS Nine proteins measured in serum (TARCC) or plasma (ADNI) explained ≅10% of dT2A's variance in both samples, independently of age, APOE, education, and gender. All loaded significantly on INFLAMMATION, and positively or negatively, depending on their known roles are PRO- or ANTI-inflammatory proteins, respectively. The parameters of interest were confirmed across random 50% splits of the TARCC's sample, and replicated across biofluids in the ADNI. DISCUSSION These results suggest that SEM can be used to replicate biomarker findings across samples and biofluids, and that a substantial fraction of dementia's variance is attributable to peripheral blood-based protein levels.
Collapse
Affiliation(s)
- Donald R. Royall
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Medicine, the University of Texas Health Science Center, San Antonio, TX, USA
- Family and Community Medicine, the University of Texas Health Science Center, San Antonio, TX, USA
- The Biggs Institute for Alzheimer's and Neurodegenerative Disease, the University of Texas Health Science Center, San Antonio, TX, USA
| | - Ram J. Bishnoi
- The Department of Psychiatry, The Medical College of Georgia, Augusta, GA, USA
| | - Raymond F. Palmer
- Family and Community Medicine, the University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
19
|
Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease. Acta Neuropathol Commun 2019; 7:169. [PMID: 31694701 PMCID: PMC6836495 DOI: 10.1186/s40478-019-0795-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Collapse
|
20
|
Ashton NJ, Schöll M, Heurling K, Gkanatsiou E, Portelius E, Höglund K, Brinkmalm G, Hye A, Blennow K, Zetterberg H. Update on biomarkers for amyloid pathology in Alzheimer's disease. Biomark Med 2018; 12:799-812. [DOI: 10.2217/bmm-2017-0433] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At the center of Alzheimer's disease pathogenesis is the aberrant aggregation of amyloid-β (Aβ) into oligomers, fibrils and plaques. Effective monitoring of Aβ deposition directly in patients is essential to assist anti-Aβ therapeutics in target engagement and participant selection. In the advent of approved anti-Aβ therapeutics, biomarkers will become of fundamental importance in initiating treatments having disease modifying effects at the earliest stage. Two well-established Aβ biomarkers are widely utilized: Aβ-binding ligands for positron emission tomography and immunoassays to measure Aβ42 in cerebrospinal fluid. In this review, we will discuss the current clinical, diagnostic and research state of biomarkers for Aβ pathology. Furthermore, we will explore the current application of blood-based markers to assess Aβ pathology.
Collapse
Affiliation(s)
- Nicholas J Ashton
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Kerstin Heurling
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eleni Gkanatsiou
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
21
|
Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL. Alzheimer's Disease: A Journey from Amyloid Peptides and Oxidative Stress, to Biomarker Technologies and Disease Prevention Strategies-Gains from AIBL and DIAN Cohort Studies. J Alzheimers Dis 2018; 62:965-992. [PMID: 29562546 PMCID: PMC5870031 DOI: 10.3233/jad-171145] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Worldwide there are over 46 million people living with dementia, and this number is expected to double every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by several research groups in Australia, including work by our original research group in Western Australia which was involved in the discovery and sequencing of the amyloid-β peptide (also known as Aβ or A4 peptide) extracted from cerebral amyloid plaques. This review discusses the journey from the discovery of the Aβ peptide in Alzheimer's disease (AD) brain to the establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed 1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk factor apolipoprotein E ɛ4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and sleep to cognitive decline and the accumulation of cerebral Aβ.
Collapse
Affiliation(s)
- Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Victor Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Tejal M. Shah
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, WA, Australia
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Veer B. Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Steve Pedrini
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Wei Ling Lim
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ian Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Shaun Frost
- CSIRO Australian e-Health Research Centre/Health and Biosecurity, Perth, WA, Australia
| | - Sunil Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
| | - Sid O’Bryant
- University of North Texas Health Science Centre, Fort Worth, TX, USA
| | - Alan Rembach
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George’s Hospital, Kew, VIC, Australia
| | - Kathryn Ellis
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie J. Fuller
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Belinda Brown
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha Burnham
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- eHealth, CSIRO Health and Biosecurity, Parkville, VIC, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna M. Barron
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth WA, Australia
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- Anglicare, Sydney, NSW, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Eka J. Wahjoepramono
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Prita R. Asih
- KaRa Institute of Neurological Diseases, Sydney NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Samuel E. Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin L. Masters
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| |
Collapse
|