1
|
Yu J, Du X, Zhang S, Long J, Wu P, Li Z, Lyu X, Hong Q, Chen P, Gao B. Galunisertib promotes bevacizumab-induced vascular normalization in nasopharyngeal carcinoma: Multi-parameter MRI evaluation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200858. [PMID: 39280586 PMCID: PMC11399656 DOI: 10.1016/j.omton.2024.200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Tumor vascular normalization (TVN) is associated with antitumor therapeutic efficacy in nasopharyngeal carcinoma (NPC). However, the short time window of TVN is the biggest hindrance to its wide clinical application. We investigated whether targeting transforming growth factor beta can enhance the TVN effect of bevacizumab (BEV)-induced patient-derived xenograft (PDX) models of NPC. We constructed mouse subcutaneous PDX models of NPC and classified the mice into four drug-treatment groups, namely placebo control, galunisertib, BEV, and galunisertib + BEV. We performed MRI multi-parameter examinations at different time points and evaluated the vascular density, vascular structure, and tumor hypoxia microenvironment by histopathology. The efficacy of chemotherapy and drug delivery was evaluated by administering cisplatin. We found that combined therapy with galunisertib and BEV significantly delayed tumor growth, enhanced the TVN effect, and improved chemotherapeutic efficacy compared with monotherapy. Mechanistically, galunisertib reversed the epithelial-mesenchymal transition process and inhibited the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor by downregulating LAMC2. Correlation analysis of MRI data and pathological indicators showed that there was a good correlation between them.
Collapse
Affiliation(s)
- Jing Yu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xia Du
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuai Zhang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jinhua Long
- Department of Head & Neck, The Affiliated Tumor Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Peng Wu
- Philips Healthcare, Shanghai 200072, China
| | - Zongxue Li
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xinyue Lyu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Qin Hong
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang 550001, Guizhou Province, China
| | - Pengyu Chen
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
2
|
Oraiopoulou ME, Couturier DL, Bunce EV, Cannell IG, Sweeney PW, Naylor H, Golinska M, Hannon GJ, Sakkalis V, Bohndiek SE. The in vitro dynamics of pseudo-vascular network formation. Br J Cancer 2024; 131:457-467. [PMID: 38902534 PMCID: PMC11300916 DOI: 10.1038/s41416-024-02722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.
Collapse
Affiliation(s)
- Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ellie V Bunce
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Paul W Sweeney
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Huw Naylor
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Monika Golinska
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Wang H, Shi Y, Zhou X, Zhang L, Yang A, Zhou D, Ma T. HNRNPA2B1 stabilizes NFATC3 levels to potentiate its combined actions with FOSL1 to mediate vasculogenic mimicry in GBM cells. Cell Biol Toxicol 2024; 40:44. [PMID: 38862832 PMCID: PMC11166796 DOI: 10.1007/s10565-024-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.
Collapse
Affiliation(s)
- Hanting Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yiwen Shi
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Aodan Yang
- The First Clinical College of China Medical University, Shenyang, 110002, China
| | - Dabo Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Saupe M, Wiedemeier S, Gastrock G, Römer R, Lemke K. Flexible Toolbox of High-Precision Microfluidic Modules for Versatile Droplet-Based Applications. MICROMACHINES 2024; 15:250. [PMID: 38398978 PMCID: PMC10891953 DOI: 10.3390/mi15020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Although the enormous potential of droplet-based microfluidics has been successfully demonstrated in the past two decades for medical, pharmaceutical, and academic applications, its inherent potential has not been fully exploited until now. Nevertheless, the cultivation of biological cells and 3D cell structures like spheroids and organoids, located in serially arranged droplets in micro-channels, has a range of benefits compared to established cultivation techniques based on, e.g., microplates and microchips. To exploit the enormous potential of the droplet-based cell cultivation technique, a number of basic functions have to be fulfilled. In this paper, we describe microfluidic modules to realize the following basic functions with high precision: (i) droplet generation, (ii) mixing of cell suspensions and cell culture media in the droplets, (iii) droplet content detection, and (iv) active fluid injection into serially arranged droplets. The robustness of the functionality of the Two-Fluid Probe is further investigated regarding its droplet generation using different flow rates. Advantages and disadvantages in comparison to chip-based solutions are discussed. New chip-based modules like the gradient, the piezo valve-based conditioning, the analysis, and the microscopy module are characterized in detail and their high-precision functionalities are demonstrated. These microfluidic modules are micro-machined, and as the surfaces of their micro-channels are plasma-treated, we are able to perform cell cultivation experiments using any kind of cell culture media, but without needing to use surfactants. This is even more considerable when droplets are used to investigate cell cultures like stem cells or cancer cells as cell suspensions, as 3D cell structures, or as tissue fragments over days or even weeks for versatile applications.
Collapse
Affiliation(s)
- Mario Saupe
- Institute for Bioprocessing and Analytical Measurement Techniques e.V., 37308 Heilbad Heiligenstadt, Germany; (S.W.); (G.G.); (R.R.); (K.L.)
- Department of Physical Chemistry and Microreaction Technologies, Technical University of Ilmenau, 98693 Ilmenau, Germany
| | - Stefan Wiedemeier
- Institute for Bioprocessing and Analytical Measurement Techniques e.V., 37308 Heilbad Heiligenstadt, Germany; (S.W.); (G.G.); (R.R.); (K.L.)
| | - Gunter Gastrock
- Institute for Bioprocessing and Analytical Measurement Techniques e.V., 37308 Heilbad Heiligenstadt, Germany; (S.W.); (G.G.); (R.R.); (K.L.)
| | - Robert Römer
- Institute for Bioprocessing and Analytical Measurement Techniques e.V., 37308 Heilbad Heiligenstadt, Germany; (S.W.); (G.G.); (R.R.); (K.L.)
| | - Karen Lemke
- Institute for Bioprocessing and Analytical Measurement Techniques e.V., 37308 Heilbad Heiligenstadt, Germany; (S.W.); (G.G.); (R.R.); (K.L.)
| |
Collapse
|
5
|
Ma X, Liu J. Predictive value of MRI features on glioblastoma. Eur Radiol 2023; 33:4472-4474. [PMID: 37020071 PMCID: PMC10182105 DOI: 10.1007/s00330-023-09535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 04/07/2023]
Affiliation(s)
- Xiaodong Ma
- Department of Neurosurgery, General Hospital of Chinese PLA, 28th Fuxing Road, 100853, Beijing, China.
| | - Jiayu Liu
- Department of Neurosurgery, General Hospital of Chinese PLA, 28th Fuxing Road, 100853, Beijing, China
| |
Collapse
|
6
|
Annese T, Errede M, d’Amati A, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Differential P-Glycoprotein/CD31 Expression as Markers of Vascular Co-Option in Primary Central Nervous System Tumors. Diagnostics (Basel) 2022; 12:diagnostics12123120. [PMID: 36553127 PMCID: PMC9777393 DOI: 10.3390/diagnostics12123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined. METHODS We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets. RESULTS The results have shown that (i) co-opted vessels could be recognized by the presence of metabolically overactive (evaluated as mitochondria expression) and P-gp+ or S100A10+ tumor cells surrounding CD31+ endothelial cells; (ii) vascular co-option occurs in the intratumoral area of meningioma and astrocytoma; and (iii) vascular co-option is prevalent in peritumoral glioblastoma area. CONCLUSIONS The described approach identifies new markers for cellular components of the vessel wall and techniques that uncover the order and localization of vascularization mechanisms, which may contribute to developing new and possibly more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence:
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
7
|
Buccarelli M, Castellani G, Ricci-Vitiani L. Glioblastoma-Specific Strategies of Vascularization: Implications in Anti-Angiogenic Therapy Resistance. J Pers Med 2022; 12:jpm12101625. [PMID: 36294763 PMCID: PMC9604754 DOI: 10.3390/jpm12101625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis has long been implicated as a crucial process in GBM growth and progression. GBM can adopt several strategies to build up its abundant and aberrant vasculature. Targeting GBM angiogenesis has gained more and more attention in anti-cancer therapy, and many strategies have been developed to interfere with this hallmark. However, recent findings reveal that the effects of anti-angiogenic treatments are temporally limited and that tumors become refractory to therapy and more aggressive. In this review, we summarize the GBM-associated neovascularization processes and their implication in drug resistance mechanisms underlying the transient efficacy of current anti-angiogenic therapies. Moreover, we describe potential strategies and perspectives to overcome the mechanisms adopted by GBM to develop resistance to anti-angiogenic therapy as new potential therapeutic approaches.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Dynamic Contrast-Enhanced MRI in the Abdomen of Mice with High Temporal and Spatial Resolution Using Stack-of-Stars Sampling and KWIC Reconstruction. Tomography 2022; 8:2113-2128. [PMID: 36136874 PMCID: PMC9498490 DOI: 10.3390/tomography8050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Application of quantitative dynamic contrast-enhanced (DCE) MRI in mouse models of abdominal cancer is challenging due to the effects of RF inhomogeneity, image corruption from rapid respiratory motion and the need for high spatial and temporal resolutions. Here we demonstrate a DCE protocol optimized for such applications. The method consists of three acquisitions: (1) actual flip-angle B1 mapping, (2) variable flip-angle T1 mapping and (3) acquisition of the DCE series using a motion-robust radial strategy with k-space weighted image contrast (KWIC) reconstruction. All three acquisitions employ spoiled radial imaging with stack-of-stars sampling (SoS) and golden-angle increments between the views. This scheme is shown to minimize artifacts due to respiratory motion while simultaneously facilitating view-sharing image reconstruction for the dynamic series. The method is demonstrated in a genetically engineered mouse model of pancreatic ductal adenocarcinoma and yielded mean perfusion parameters of Ktrans = 0.23 ± 0.14 min−1 and ve = 0.31 ± 0.17 (n = 22) over a wide range of tumor sizes. The SoS-sampled DCE method is shown to produce artifact-free images with good SNR leading to robust estimation of DCE parameters.
Collapse
|
10
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
11
|
Ribatti D, Pezzella F. Vascular Co-Option and Other Alternative Modalities of Growth of Tumor Vasculature in Glioblastoma. Front Oncol 2022; 12:874554. [PMID: 35433447 PMCID: PMC9005970 DOI: 10.3389/fonc.2022.874554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Non-angiogenic tumors grow in the absence of angiogenesis by two main mechanisms: cancer cells infiltrating and occupying the normal tissues to exploit pre-existing vessels (vascular co-option); the cancer cells themselves forms channels able to provide blood flow (the so called vasculogenic mimicry). In the original work on vascular co-option initiated by Francesco Pezzella, the non-angiogenic cancer cells were described as “exploiting” pre-existing vessels. Vascular co-option has been described in primary and secondary (metastatic) sites. Vascular co-option is defined as a process in which tumor cells interact with and exploit the pre-existing vasculature of the normal tissue in which they grow. As part of this process, cancer cells first migrate toward vessels of the primary tumor, or extravasate at a metastatic site and rest along the ab-luminal vascular surface. The second hallmark of vascular co-option is the interaction of cancer cells with the ab-luminal vascular surface. The first evidence for this was provided in a rat C6 glioblastoma model, showing that the initial tumor growth phase was not always avascular as these initial tumors can be vascularized by pre-existing vessels. The aim of this review article is to analyze together with vascular co-option, other alternative mode of vascularization occurring in glioblastoma multiforme (GBM), including vasculogenic mimicry, angiotropism and trans-differentiation of glioblastoma stem cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
12
|
Chen S, Li X, Wang H, Chen G, Zhou Y. Anti-VEGFR2 monoclonal antibody(MSB0254) inhibits angiogenesis and tumor growth by blocking the signaling pathway mediated by VEGFR2 in glioblastoma. Biochem Biophys Res Commun 2022; 604:158-164. [PMID: 35305420 DOI: 10.1016/j.bbrc.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Angiogenesis is a key physiological process that plays a key role in glioblastoma (GBM) progression and displays therapeutic resistance to antiangiogenic therapies. In this study, we aimed to identify whether vascular endothelial growth factor receptor 2(VEGFR2)monoclonal antibodies(mab)could inhibit tumorigenicity and the formation of vascular mimicry (VM) in GBM. The bioinformatic analysis from TCGA, CGGA, and TCPA databases and Immunohistochemistry (IHC) revealed that VEGFR2 is highly expressed in glioma tissues and results in a poor prognosis and is positively associated with VM markers (CD34 and PAS). The anti-VEGFR2 monoclonal antibodies(MSB0254)could inhibit the invasion, migration, and VM formation of U251 and primary glioma cells in vitro. In vivo, MSB0254 (m) could not only inhibit the growth of transplanted tumors of U251 and GL261 cells, but also significantly inhibit the expression of CD34, VEGFR2, Ki67, MMP2, MMP9 and reduce the expression of CD34/PAS and inhibit VM formation. The VEGFR2 monoclonal antibody could inhibit the angiogenesis and tumor growth of GBM by blocking the signaling pathway mediated by VEGFR2. It may become a new supplementary treatment for GBM.
Collapse
Affiliation(s)
- Sansong Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China; Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No.2 Zheshan Road, Wuhu, 241001, Anhui Province, China
| | - Xuetao Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
13
|
Assessing the reproducibility of high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging in patients with gliomas. Sci Rep 2021; 11:23217. [PMID: 34853347 PMCID: PMC8636480 DOI: 10.1038/s41598-021-02450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022] Open
Abstract
Temporal and spatial resolution of dynamic contrast-enhanced MR imaging (DCE-MRI) is critical to reproducibility, and the reproducibility of high-resolution (HR) DCE-MRI was evaluated. Thirty consecutive patients suspected to have brain tumors were prospectively enrolled with written informed consent. All patients underwent both HR-DCE (voxel size, 1.1 × 1.1 × 1.1 mm3; scan interval, 1.6 s) and conventional DCE (C-DCE; voxel size, 1.25 × 1.25 × 3.0 mm3; scan interval, 4.0 s) MRI. Regions of interests (ROIs) for enhancing lesions were segmented twice in each patient with glioblastoma (n = 7) to calculate DCE parameters (Ktrans, Vp, and Ve). Intraclass correlation coefficients (ICCs) of DCE parameters were obtained. In patients with gliomas (n = 25), arterial input functions (AIFs) and DCE parameters derived from T2 hyperintense lesions were obtained, and DCE parameters were compared according to WHO grades. ICCs of HR-DCE parameters were good to excellent (0.84–0.95), and ICCs of C-DCE parameters were moderate to excellent (0.66–0.96). Maximal signal intensity and wash-in slope of AIFs from HR-DCE MRI were significantly greater than those from C-DCE MRI (31.85 vs. 7.09 and 2.14 vs. 0.63; p < 0.001). Both 95th percentile Ktrans and Ve from HR-DCE and C-DCE MRI could differentiate grade 4 from grade 2 and 3 gliomas (p < 0.05). In conclusion, HR-DCE parameters generally showed better reproducibility than C-DCE parameters, and HR-DCE MRI provided better quality of AIFs.
Collapse
|
14
|
Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021; 9:7984-7995. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.
Collapse
Affiliation(s)
- Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Jose M Paez-Muñoz
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María L García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
15
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Díaz-Flores L, González-Marrero I, Ávila J, Martín-Vasallo P. Disproportion in Pericyte/Endothelial Cell Proliferation and Mechanisms of Intussusceptive Angiogenesis Participate in Bizarre Vessel Formation in Glioblastoma. Cells 2021; 10:cells10102625. [PMID: 34685606 PMCID: PMC8534221 DOI: 10.3390/cells10102625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in the brain. In addition to the vascular pattern with thin-walled vessels and findings of sprouting angiogenesis, GBM presents a bizarre microvasculature (BM) formed by vascular clusters, vascular garlands, and glomeruloid bodies. The mechanisms in BM morphogenesis are not well known. Our objective was to assess the role of pericyte/endothelial proliferation and intussusceptive angiogenic mechanisms in the formation of the BM. For this purpose, we studied specimens of 66 GBM cases using immunochemistry and confocal microscopy. In the BM, the results showed (a) transitional forms between the BM patterns, mostly with prominent pericytes covering all the abluminal endothelial cell (EC) surface of the vessels, (b) a proliferation index high in the prominent pericytes and low in ECs (47.85 times higher in pericytes than in ECs), (c) intravascular pillars (hallmark of intussusceptive angiogenesis) formed by transcapillary interendothelial bridges, endothelial contacts of opposite vessel walls, and vessel loops, and (d) the persistence of these findings in complex glomeruloid bodies. In conclusion, disproportion in pericyte/EC proliferation and mechanisms of intussusceptive angiogenesis participate in BM formation. The contributions have morphogenic and clinical interest since pericytes and intussusceptive angiogenesis can condition antiangiogenic therapy in GBM.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
| | - María-del-Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Ibrahim González-Marrero
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Julio Ávila
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain
| | - Pablo Martín-Vasallo
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-318358; Fax: +34-922-319279
| |
Collapse
|
16
|
Carlson JC, Cantu Gutierrez M, Lozzi B, Huang-Hobbs E, Turner WD, Tepe B, Zhang Y, Herman AM, Rao G, Creighton CJ, Wythe JD, Deneen B. Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro Oncol 2021; 23:932-944. [PMID: 33367832 DOI: 10.1093/neuonc/noaa297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive type of primary brain tumor, as most patients succumb to the disease less than two years after diagnosis. Critically, studies demonstrate that glioma recruits surrounding blood vessels, while some work suggests that tumor stem cells themselves directly differentiate into endothelial cells, yet the molecular and cellular dynamics of the endothelium in glioma are poorly characterized. The goal of this study was to establish molecular and morphological benchmarks for tumor associated vessels (TAVs) and tumor derived endothelial cells (TDECs) during glioblastoma progression. METHODS Using In-Utero Electroporation and CRISPR/Cas9 genome engineering to generate a native, immunocompetent mouse model of glioma, we characterized vascular-tumor dynamics in three dimensions during tumor progression. We employed bulk and single-cell RNA-Sequencing to elucidate the relationship between TAVs and TDECs. We confirmed our findings in a patient derived orthotopic xenograft (PDOX) model. RESULTS Using a mouse model of glioma, we identified progressive alteration of vessel function and morphogenesis over time. We also showed in our mouse model that TDECs are a rare subpopulation that contributes to vessels within the tumor, albeit to a limited degree. Furthermore, transcriptional profiling demonstrates that both TAVs and TDECs are molecularly distinct, and both populations feature extensive molecular heterogeneity. Finally, the distinct molecular signatures of these heterogeneous populations are also present in human glioma. CONCLUSIONS Our findings show extensive endothelial heterogeneity within the tumor and tumor microenvironment and provide insights into the diverse cellular and molecular mechanisms that drive glioma vascularization and angiogenesis during tumorigenesis.
Collapse
Affiliation(s)
- Jeff C Carlson
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Manuel Cantu Gutierrez
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Emmet Huang-Hobbs
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Williamson D Turner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yiqun Zhang
- Dan L Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Alexander M Herman
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Dan L Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci 2021; 22:6514. [PMID: 34204510 PMCID: PMC8235363 DOI: 10.3390/ijms22126514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Rosińska
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Julie Gavard
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| |
Collapse
|
18
|
Keil VC, Gielen GH, Pintea B, Baumgarten P, Datsi A, Hittatiya K, Simon M, Hattingen E. DCE-MRI in Glioma, Infiltration Zone and Healthy Brain to Assess Angiogenesis: A Biopsy Study. Clin Neuroradiol 2021; 31:1049-1058. [PMID: 33900414 PMCID: PMC8648693 DOI: 10.1007/s00062-021-01015-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
Purpose To explore the focal predictability of vascular growth factor expression and neovascularization using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in glioma. Methods 120 brain biopsies were taken in vital tumor, infiltration zone and normal brain tissue of 30 glioma patients: 17 IDH(isocitrate dehydrogenase)-wildtype glioblastoma (GBM), 1 IDH-wildtype astrocytoma °III (together prognostic group 1), 3 IDH-mutated GBM (group 2), 3 anaplastic astrocytomas IDH-mutated (group 3), 4 anaplastic oligodendrogliomas and 2 low-grade oligodendrogliomas (together prognostic group 4). A mixed linear model evaluated the predictabilities of microvessel density (MVD), vascular area ratio (VAR), mean vessel size (MVS), vascular endothelial growth factor and receptors (VEGF-A, VEGFR‑2) and vascular endothelial-protein tyrosine phosphatase (VE-PTP) expression from Tofts model kinetic and model-free curve parameters. Results All kinetic parameters were associated with VEGF‑A (all p < 0.001) expression. Ktrans, kep and ve were associated with VAR (p = 0.006, 0.004 and 0.01, respectively) and MVS (p = 0.0001, 0.02 and 0.003, respectively) but not MVD (p = 0.84, 0.74 and 0.73, respectively). Prognostic groups differed in Ktrans (p = 0.007) and ve (p = 0.004) values measured in the infiltration zone. Despite significant differences of VAR, MVS, VEGF‑A, VEGFR‑2, and VE-PTP in vital tumor tissue and the infiltration zone (p = 0.0001 for all), there was no significant difference between kinetic parameters measured in these zones. Conclusion The DCE-MRI kinetic parameters show correlations with microvascular parameters in vital tissue and also reveal blood-brain barrier abnormalities in the infiltration zones adequate to differentiate glioma prognostic groups. Supplementary Information The online version of this article (10.1007/s00062-021-01015-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera C Keil
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Radiology, Amsterdam University Medical Center, location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital BG Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.,Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,Institute of Neuropathology (Edinger Institute), University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Angeliki Datsi
- ITZ, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Kanishka Hittatiya
- Center for Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neurosurgery, Ev. Krankenhaus Bielefeld, Haus Gilead I, Burgsteig 13, 33617, Bielefeld, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neuroradiology, University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov 2021; 11:874-899. [PMID: 33811122 DOI: 10.1158/2159-8290.cd-20-1638] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Resistance to anticancer therapies includes primary resistance, usually related to lack of target dependency or presence of additional targets, and secondary resistance, mostly driven by adaptation of the cancer cell to the selection pressure of treatment. Resistance to targeted therapy is frequently acquired, driven by on-target, bypass alterations, or cellular plasticity. Resistance to immunotherapy is often primary, orchestrated by sophisticated tumor-host-microenvironment interactions, but could also occur after initial efficacy, mostly when only partial responses are obtained. Here, we provide an overview of resistance to tumor and immune-targeted therapies and discuss challenges of overcoming resistance, and current and future directions of development. SIGNIFICANCE: A better and earlier identification of cancer-resistance mechanisms could avoid the use of ineffective drugs in patients not responding to therapy and provide the rationale for the administration of personalized drug associations. A clear description of the molecular interplayers is a prerequisite to the development of novel and dedicated anticancer drugs. Finally, the implementation of such cancer molecular and immunologic explorations in prospective clinical trials could de-risk the demonstration of more effective anticancer strategies in randomized registration trials, and bring us closer to the promise of cure.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Paris Saclay University, Saint-Aubin, France
| | - Aurelien Marabelle
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Semih Dogan
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Charles Soria
- Paris Saclay University, Saint-Aubin, France. .,Drug Development Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
20
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
21
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
22
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Abecassis IJ, Cordy B, Durfy S, Andre JB, Levitt MR, Ellenbogen RG, Silbergeld DL, Ko AL. Evaluating angioarchitectural characteristics of glial and metastatic brain tumors with conventional magnetic resonance imaging. J Clin Neurosci 2020; 76:46-52. [PMID: 32312627 PMCID: PMC10947781 DOI: 10.1016/j.jocn.2020.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Primary and metastatic brain tumors can overlap in traditional imaging features detected on preoperative conventional magnetic resonance imaging (MRI). The research objective was to determine whether morphological vascular characteristics present in routine preoperative imaging using traditional MRI sequences are predictive of primary versus metastatic brain tumors; secondarily to determine association of conventional and vascular-related imaging parameters with intraoperative blood loss, pathological invasion, and World Health Organization (WHO) tumor grade. A retrospective review analyzed 100 consecutive intracranial tumor surgeries, 50 WHO grade II-IV gliomas and 50 intracranial metastases. Two blinded expert readers independently evaluated preoperative MRIs, obtained via standard morphological imaging sequences, for adjacent or intra-tumoral arterial aneurysm, peritumoral venous ectasia, prominence, or engorgement ("aberrant peritumoral vessels"), and prominent intra-tumoral flow voids. Multivariate analysis was performed to develop models predictive of glioma and glioblastoma (GBM). Aberrant peritumoral vessels and prominent intra-tumoral flow voids were statistically significant predictors of glioma in univariate analyses (p = 0.048, p = 0.001, respectively) and when combined in multivariate analysis (OR = 5.23, p = 0.001), particularly for GBM (OR = 9.08, p < 0.001). Multivariate modeling identified prominent intra-tumoral flow voids and FLAIR invasion as the strongest combined predictors of gliomas and GBM. Aberrant peritumoral vessels and larger tumor volume predicted higher intraoperative blood loss in all analyses. No vascular-related parameters predicted pathological invasion on multivariate analysis. Aberrant peritumoral vessels and prominent intra-tumoral flow voids were predictive of gliomas, specifically GBM. These vascular characteristics, evaluated on routine clinical preoperative MRI imaging, may aid in distinguishinggliomafrom brainmetastases andmay predict intraoperative blood loss.
Collapse
Affiliation(s)
| | - Benjamin Cordy
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Sharon Durfy
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jalal B Andre
- Radiology, University of Washington, Seattle, WA, USA
| | - Michael R Levitt
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA; Radiology, University of Washington, Seattle, WA, USA; Mechanical Engineering, University of Washington, Seattle, WA, USA; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Richard G Ellenbogen
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Departments of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Cai H, Liu W, Liu X, Li Z, Feng T, Xue Y, Liu Y. Advances and Prospects of Vasculogenic Mimicry in Glioma: A Potential New Therapeutic Target? Onco Targets Ther 2020; 13:4473-4483. [PMID: 32547078 PMCID: PMC7247597 DOI: 10.2147/ott.s247855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of a “vessel-like” structure without endothelial cells. VM exists in vascular-dependent solid tumors and is a special blood supply source involved in the highly invasive tumor progression. VM is observed in a variety of human malignant tumors and is closely related to tumor proliferation, invasion, and recurrence. Here, we review the mechanism, related signaling pathways, and molecular regulation of VM in glioma and discuss current research problems and the potential future applications of VM in glioma treatment. This review may provide a new viewpoint for glioma therapy.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Wenjing Liu
- Department of Geriatrics, First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Zhiqing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, People's Republic of China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| |
Collapse
|
25
|
Brighi C, Reid L, Genovesi LA, Kojic M, Millar A, Bruce Z, White AL, Day BW, Rose S, Whittaker AK, Puttick S. Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity. Theranostics 2020; 10:6361-6371. [PMID: 32483457 PMCID: PMC7255036 DOI: 10.7150/thno.46468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The clinical translation of new nanoparticle-based therapies for high-grade glioma (HGG) remains extremely poor. This has partly been due to the lack of suitable preclinical mouse models capable of replicating the complex characteristics of recurrent HGG (rHGG), namely the heterogeneous structural and functional characteristics of the blood-brain barrier (BBB). The goal of this study is to compare the characteristics of the tumor BBB of rHGG with two different mouse models of HGG, the ubiquitously used U87 cell line xenograft model and a patient-derived cell line WK1 xenograft model, in order to assess their suitability for nanomedicine research. Method: Structural MRI was used to assess the extent of BBB opening in mouse models with a fully developed tumor, and dynamic contrast enhanced MRI was used to obtain values of BBB permeability in contrast enhancing tumor. H&E and immunofluorescence staining were used to validate results obtained from the in vivo imaging studies. Results: The extent of BBB disruption and permeability in the contrast enhancing tumor was significantly higher in the U87 model than in rHGG. These values in the WK1 model are similar to those of rHGG. The U87 model is not infiltrative, has an entirely abnormal and leaky vasculature and it is not of glial origin. The WK1 model infiltrates into the non-neoplastic brain parenchyma, it has both regions with intact BBB and regions with leaky BBB and remains of glial origin. Conclusion: The WK1 mouse model more accurately reproduces the extent of BBB disruption, the level of BBB permeability and the histopathological characteristics found in rHGG patients than the U87 mouse model, and is therefore a more clinically relevant model for preclinical evaluations of emerging nanoparticle-based therapies for HGG.
Collapse
|
26
|
Xue W, Zhang J, Tong H, Xie T, Chen X, Zhou B, Wu P, Zhong P, Du X, Guo Y, Yang Y, Liu H, Fang J, Wang S, Wu H, Xu K, Zhang W. Effects of BMPER, CXCL10, and HOXA9 on Neovascularization During Early-Growth Stage of Primary High-Grade Glioma and Their Corresponding MRI Biomarkers. Front Oncol 2020; 10:711. [PMID: 32432046 PMCID: PMC7214627 DOI: 10.3389/fonc.2020.00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 02/02/2023] Open
Abstract
Neovascularization is required in high-grade glioma (HGG). The objective of this study was to explore neovascularization-related genes and their corresponding MRI biomarkers during the early-growth stage of HGG. Tumor tissues from 30 HGG patients underwent perfusion MRI scanning prior to surgery were used to establish orthotopic xenograft models, pathologically analyze the tumor vasculature and perform transcriptome sequencing. The cases were divided into two groups based on whether the xenograft was successfully established. Microvascular density and BMPER, CXCL10, and HOXA9 expression of surgical specimens in the xenograft-forming group was significantly elevated and the microvascular diameter was significantly reduced, in vitro inhibition of BMPER, CXCL10, or HOXA9 in the glioma stem cell significantly suppressed its tube formation abilities. The in vivo experiment showed that BMPER was highly expressed in the early tumor growth phase (20 days), CXCL10 and HOXA9 expression was elevated with tumor progress, and spatially associated with tumor vasculature. Perfusion weighted MRI (PWI-MRI) derived parameters, rCBV, rCBF, Ktrans, and Vp, were also increased in the xenograft-forming group. In conclusion BMPER, CXCL10, and HOXA9 promote early tumor growth and progression by stimulating neovascularization of primary HGG. The rCBV, rCBF, Ktrans, and Vp can be used as imaging biomarkers to predict the expression statuses of these genes.
Collapse
Affiliation(s)
- Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuesong Du
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Youyuan Yang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Heng Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Kai Xu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
27
|
Xue W, Ton H, Zhang J, Xie T, Chen X, Zhou B, Guo Y, Fang J, Wang S, Zhang W. Patient‑derived orthotopic xenograft glioma models fail to replicate the magnetic resonance imaging features of the original patient tumor. Oncol Rep 2020; 43:1619-1629. [PMID: 32323818 PMCID: PMC7107810 DOI: 10.3892/or.2020.7538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Patient-derived orthotopic glioma xenograft models are important platforms used for pre-clinical research of glioma. In the present study, the diagnostic ability of magnetic resonance imaging (MRI) was examined with regard to the identification of biomarkers obtained from patient-derived glioma xenografts and human tumors. Conventional MRI, diffusion weighted imaging and dynamic contrast-enhanced (DCE)-MRI were used to analyze seven pairs of high grade gliomas with their corresponding xenografts obtained from non-obese diabetic-severe-combined immunodeficiency nude mice. Tumor samples were collected for transcriptome sequencing and histopathological staining, and differentially expressed genes were screened between the original tumors and the corresponding xenografts. Gene Ontology (GO) analysis was performed to predict the functions of these genes. In 6 cases of xenografts with diffuse growth, the degree of enhancement was significantly lower compared with the original tumors. Histopathological staining indicated that the microvascular area and microvascular diameter of the xenografts were significantly lower compared with the original tumors (P=0.009 and P=0.007, respectively). In one case, there was evidence of nodular tumor growth in the mouse. Both MRI and histopathological staining showed a clear demarcation between the transplanted tumors and the normal brain tissues. The relative apparent diffusion coefficient values of the 7 cases examined were significantly higher compared with the corresponding original tumors (P=0.001) and transfer coefficient values derived from DCE-MRI of the tumor area was significantly lower compared with the original tumors (P=0.016). GO analysis indicated that the expression levels of extracellular matrix-associated genes, angiogenesis-associated genes and immune function-associated genes in the original tumors were higher compared with the corresponding xenografts. In conclusion, the data demonstrated that the MRI features of patient-derived xenograft glioma models in mice were different compared with those of the original patient tumors. Differential gene expression may underlie the differences noted in the MRI features between original tumors and corresponding xenografts. The results of the present study highlight the precautions that should be taken when extrapolating data from patient-derived xenograft studies, and their applicability to humans.
Collapse
Affiliation(s)
- Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Haipeng Ton
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiao Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
28
|
Provost C, Rozenblum-Beddok L, Nataf V, Merabtene F, Prignon A, Talbot JN. [ 68Ga]RGD Versus [ 18F]FDG PET Imaging in Monitoring Treatment Response of a Mouse Model of Human Glioblastoma Tumor with Bevacizumab and/or Temozolomide. Mol Imaging Biol 2019; 21:297-305. [PMID: 29948641 DOI: 10.1007/s11307-018-1224-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate positron emission tomography (PET) imaging with [68Ga]NODAGA-c(RGDfK) ([68Ga]RGD), in comparison with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), for early monitoring of the efficacy of an antiangiogenic agent associated or not with chemotherapy, in a mouse model of glioblastoma (GB). PROCEDURES Mice bearing U87MG human GB cells line were parted into five groups of five mice each. One group was imaged at baseline before the treatment phase; another group was treated with bevacizumab (BVZ), another group with temozolomide (TMZ), another group with both agents, and the last one was the control group. Tumors growth and biological properties were evaluated by caliper measurements and PET imaging at three time points (baseline, during treatment t1 = 4-6 days and t2 = 10-12 days). At the end of the study, tumors were counted and analyzed by immunohistochemistry (CD31 to evaluate microvessel density). RESULTS The tumor volume assessed by caliper measurements was significantly greater at t1 in the control group than in the TMZ + BVZ-treated group or in the BVZ-treated group. At t2, tumor volume of all treated groups was significantly smaller than that of the control group. [18F]FDG PET failed to reflect this efficacy of treatment. In contrast, at t1, the [68Ga]RGD tumor uptake was concordant with tumor growth in controls and in treated groups. At t2, a significant increase in tumor uptake of [68Ga]RGD vs. t1 was only observed in the TMZ-treated group, reflecting a lack of angiogenesis inhibition, whereas TMZ + BVZ resulted in a dramatic tumor arrest, reduction in microvessel density and stable tumor [68Ga]RGD uptake. CONCLUSIONS [68Ga]RGD is a useful PET agent for in vivo angiogenesis imaging and can be useful for monitoring antiangiogenic treatment associated or not with chemotherapy.
Collapse
Affiliation(s)
- Claire Provost
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS 28, UPMC - Sorbonne Universités, Paris, France.
| | - Laura Rozenblum-Beddok
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS 28, UPMC - Sorbonne Universités, Paris, France.,Service de Médecine Nucléaire et Radiopharmacie, Hôpital Tenon, AP-HP, Paris, France
| | - Valérie Nataf
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS 28, UPMC - Sorbonne Universités, Paris, France.,Service de Médecine Nucléaire et Radiopharmacie, Hôpital Tenon, AP-HP, Paris, France
| | - Fatiha Merabtene
- Plateforme d'Histomorphologie Service d'Anatomie Pathologique, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Aurélie Prignon
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS 28, UPMC - Sorbonne Universités, Paris, France
| | - Jean-Noël Talbot
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS 28, UPMC - Sorbonne Universités, Paris, France.,Service de Médecine Nucléaire et Radiopharmacie, Hôpital Tenon, AP-HP, Paris, France
| |
Collapse
|
29
|
Wang S, Yao F, Lu X, Li Q, Su Z, Lee JH, Wang C, Du L. Temozolomide promotes immune escape of GBM cells via upregulating PD-L1. Am J Cancer Res 2019; 9:1161-1171. [PMID: 31285949 PMCID: PMC6610056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor with poor prognosis, and currently effective therapeutic strategies are still limited. Although temozolomide (TMZ) is commonly used for GBM therapy and its mechanism was well characterized, while its side effects were required comprehensive investigation. In the present study, we revealed that TMZ-challenged GBM cells strongly suppressed pro-inflammatory cytokines expression in activated periphery blood mononuclear cells (PBMC), which depended on enhanced transcription of CD274 (encoding PD-L1), but not other immune checkpoints, such as CD276, HVEM and galectin-9. Moreover, abundance of membranous PD-L1 was also increased in TMZ-treated GBM cells. When PD-L1 expression was knocked down by short hairpin RNA (shRNA), inhibitory effect of TMZ-treated GBM cells on PBMC became weakened, suggesting that PD-L1 was crucial for immune inhibition capacity of TMZ-treated GBM cells. Additionally, actinomycin D reduced PD-L1 expression in GBM cells after TMZ challenge, indicating that PD-L1 induction occurred at transcriptional level. The immunoblotting results demonstrated that STAT3 signaling was involved in TMZ-mediated PD-L1 induction, and attenuated expression of PD-L1 was observed using STAT3 inhibitor VI or STAT3 shRNA. Finally, the animal study showed that combination of TMZ and PD-1 antibody therapy strongly inhibited tumor growth and achieved the improved survival rate of GBM mice. Accordingly, this study revealed the classical chemotherapy drug TMZ promoted GBM cells immune escape, even TMZ combine with PD-1 antibody treatment not further improve survival ratio of recurrent GBM patients compared with traditional therapy methods, while our animal study provided evidence that combination of TMZ and PD-1 antibody was a promising way to treat GBM, these contradictory results indicate improving the PD-1 antibody delivery efficiency can exert strong combinational therapy outcomes.
Collapse
Affiliation(s)
- Silu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Fuli Yao
- Department of Biochemistry and Molecular Biology, College of Preclinical Medicine, Southwest Medical UniversityLuzhou, P. R. China
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Jong-Ho Lee
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, P. R. China
| | - Linyong Du
- School of Laboratory Medicine and Life Science, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
30
|
Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett 2019; 17:3055-3065. [PMID: 30867734 PMCID: PMC6396119 DOI: 10.3892/ol.2019.9973] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Adequate blood supply is essential for tumor survival, growth and metastasis. The tumor microenvironment (TME) is dynamic and complex, comprising cancer cells, cancer-associated stromal cells and their extracellular products. The TME serves an important role in tumor progression. Cancer-associated fibroblasts (CAFs) are the principal component of stromal cells within the TME, and contribute to tumor neo-angiogenesis by altering the proteome and degradome. The present paper reviews previous studies of the molecular signaling pathways by which CAFs promote tumor neo-angiogenesis and highlights therapeutic response targets. Also discussed are potential strategies for antitumor neo-angiogenesis to improve tumor treatment efficacy.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
31
|
Bi SX, Li XH, Wei CS, Xiang HH, Shen YX, Yu YQ. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging. Phytother Res 2018; 33:149-158. [PMID: 30346082 DOI: 10.1002/ptr.6207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
To investigate the suppressive effects of xanthatin on glioma growth in a nude mouse xenograft model and rat orthotopic implantation model using magnetic resonance imaging (MRI) to dynamically monitor the antitumour growth and antiangiogenesis effects of xanthatin. The nude mouse xenograft tumour model and rat orthotopic implantation model were established to observe the antitumour effects of xanthatin in vivo. In the rat orthotopic implanted tumour model, MRI scanning was used to dynamically monitor the antitumour growth effect and evaluate the antiangiogenesis effect of xanthatin. We found that xanthatin at a dose of 0.4 mg/10 g dramatically decreased the growth of xenograft tumours in nude mice. The antiangiogenesis effect of xanthatin C6 glioma was evaluated by dynamic contrast-enhanced (DCE) MRI via comparison of the volume transfer constant (Ktrans ) value, a parameter that reflects vessel permeability. We found that xanthatin at the doses of 8 and 16 mg/kg significantly decreased the Ktrans value, which suggests that xanthatin has antiangiogenesis effects. These data demonstrate the suppressive effects of xanthatin on C6 glioma occur via antiangiogenesis. Meanwhile, this study also provides evidence for the application of quantitative parameters of DCE-MRI for dynamically evaluating the growth and angiogenesis of intracranial tumours and for experimental and clinical research.
Collapse
Affiliation(s)
- Si-Xing Bi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xiao-Hu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chuan-Sheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Hui-Hui Xiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yong-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|