1
|
Novinger LJ, Weinzierl NM, Bonetto A. Diversity in chemotherapy-induced cachexia. Am J Physiol Cell Physiol 2025; 328:C139-C147. [PMID: 39636147 DOI: 10.1152/ajpcell.00773.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Preclinical and clinical studies suggest that chronic administration of cytotoxic drugs (e.g., chemotherapy) may contribute to the occurrence of skeletal muscle wasting and weakness/fatigue (i.e., cachexia). Doxorubicin, folfiri, and cisplatin are known to promote cachexia by triggering common alterations such as skeletal muscle atrophy, protein breakdown, and mitochondrial dysfunction, whereas each also possesses distinguishing features in terms of the activated molecular pathways. Similarly, commonalities exist between different cancer types including the development of muscle wasting early in treatment that can persist for years. The impact of treatment for gastrointestinal, head and neck, and nonsmall cell lung cancers (NSCLCs) on the development of cachexia and survival outcomes is well documented. However, a disconnect occurs between preclinical studies on cachexia, which are often performed on younger mice, and clinical studies on cachexia, which are focused on patients over 60 yr old. Yet, several preclinical studies have examined the impact of age on chemotherapy-induced cachexia. Finally, sex differences have been identified in both preclinical and clinical studies focused on the onset of cachexia consequential to chemotherapy administration and raise the question of whether treatments for this condition should be based on sex specificities. In conclusion, although cancer cachexia has been widely studied for its impact on patients affected by various malignancies, the effects of chemotherapy on the development of cachexia are less explored. Here, we examine diversity in chemotherapy-induced cachexia with respect to specific types of chemotherapy regimens and cancer, and differences based on age and sex.
Collapse
Affiliation(s)
- Leah J Novinger
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Natalia M Weinzierl
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
3
|
VanderVeen BN, Cardaci TD, Bullard BM, Madden M, Li J, Velazquez KT, Kubinak JL, Fan D, Murphy EA. Involvement of the gut microbiota in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C661-C670. [PMID: 38981609 PMCID: PMC11427007 DOI: 10.1152/ajpcell.00327.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Kandy T Velazquez
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
4
|
Nakao S, Ngayama D, Nakaseko C, Shimizu N. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy decreases lean body mass and appendicular skeletal muscle mass index even until one year after the final treatment in patients with B-cell non-Hodgkin lymphoma. J Chemother 2024:1-7. [PMID: 38989820 DOI: 10.1080/1120009x.2024.2376454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Sarcopenia is an independent prognostic factor for several solid cancers, including B-cell non-Hodgkin lymphoma (B-NHL). However, previous reports have measured the parameters of loss of skeletal muscle as sarcopenia only once before chemotherapy and have predicted poor outcomes. In this study, changes in body composition were measured in patients who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy for B-NHL using the InBody 720 analyzer throughout the therapy. Twenty-seven patients who achieved complete remission and survived for one year after the last cycle were included in the study. Body composition was evaluated immediately before initiation and fourth cycle, and one month and one year after the last cycle. Throughout the follow-up period, the lean body mass index (LBMI) and appendicular skeletal muscle mass index (ASMI) showed significant transient decreases even one year following the last cycle (p < 0.001, p = 0.002, respectively). Body fat index (BFI) and body fat percentage (BF%) decreased until one month after the last cycle; however, they reached levels higher than the baseline levels, +22.1% and +15.9%, respectively, at 1 year from the last cycle. The loss of skeletal muscle mass did not recover even one year after the last cycle. Interventions in nutritional management are needed to prevent sarcopenia in patients treated with R-CHOP therapy.
Collapse
Affiliation(s)
- Sanshiro Nakao
- Department of Hematology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Daiji Ngayama
- Center for Diabetes, Metabolism and Endocrinology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Hematology, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Naomi Shimizu
- Department of Hematology, Toho University Medical Center Sakura Hospital, Chiba, Japan
| |
Collapse
|
5
|
Tang Y, Yao T, Tian X, Xia X, Huang X, Qin Z, Shen Z, Zhao L, Zhao Y, Diao B, Ping Y, Zheng X, Xu Y, Chen H, Qian T, Ma T, Zhou B, Xu S, Zhou Q, Liu Y, Shao M, Chen W, Shan B, Wu Y. Hepatic IRE1α-XBP1 signaling promotes GDF15-mediated anorexia and body weight loss in chemotherapy. J Exp Med 2024; 221:e20231395. [PMID: 38695876 PMCID: PMC11070642 DOI: 10.1084/jem.20231395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.
Collapse
Affiliation(s)
- Yuexiao Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tao Yao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xintong Xia
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingxiao Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhewen Qin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Shen
- Department of Coloproctology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Lin Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaping Zhao
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Bowen Diao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Ping
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Zheng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yonghao Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Qian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Zhu Y, Li Y, Cao Z, Xue J, Wang X, Hu T, Han B, Guo Y. Mechanically strained osteocyte-derived exosomes contained miR-3110-5p and miR-3058-3p and promoted osteoblastic differentiation. Biomed Eng Online 2024; 23:44. [PMID: 38705993 PMCID: PMC11070085 DOI: 10.1186/s12938-024-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS A mechanical tensile strain of 2500 με at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.
Collapse
Affiliation(s)
- Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Jindong Xue
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Xiaoyan Wang
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Tingting Hu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Huot JR, Livingston PD, Pin F, Thomas CR, Jamnick NA, Callaway CS, Bonetto A. Long-term Musculoskeletal Consequences of Chemotherapy in Pediatric Mice. FUNCTION 2024; 5:zqae011. [PMID: 38706958 PMCID: PMC11065107 DOI: 10.1093/function/zqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Thanks to recent progress in cancer research, most children treated for cancer survive into adulthood. Nevertheless, the long-term consequences of anticancer agents are understudied, especially in the pediatric population. We and others have shown that routinely administered chemotherapeutics drive musculoskeletal alterations, which contribute to increased treatment-related toxicity and long-term morbidity. Yet, the nature and scope of these enduring musculoskeletal defects following anticancer treatments and whether they can potentially impact growth and quality of life in young individuals remain to be elucidated. Here, we aimed at investigating the persistent musculoskeletal consequences of chemotherapy in young (pediatric) mice. Four-week-old male mice were administered a combination of 5-FU, leucovorin, irinotecan (a.k.a., Folfiri) or the vehicle for up to 5 wk. At time of sacrifice, skeletal muscle, bones, and other tissues were collected, processed, and stored for further analyses. In another set of experiments, chemotherapy-treated mice were monitored for up to 4 wk after cessation of treatment. Overall, the growth rate was significantly slower in the chemotherapy-treated animals, resulting in diminished lean and fat mass, as well as significantly smaller skeletal muscles. Interestingly, 4 wk after cessation of the treatment, the animals exposed to chemotherapy showed persistent musculoskeletal defects, including muscle innervation deficits and abnormal mitochondrial homeostasis. Altogether, our data support that anticancer treatments may lead to long-lasting musculoskeletal complications in actively growing pediatric mice and support the need for further studies to determine the mechanisms responsible for these complications, so that new therapies to prevent or diminish chemotherapy-related toxicities can be identified.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, IN, 46202 USA
| | - Patrick D Livingston
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, IN, 46202 USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Connor R Thomas
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Nicholas A Jamnick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045 USA
| | - Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045 USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045 USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045 USA
| |
Collapse
|
8
|
VanderVeen BN, Cardaci TD, Bullard BM, Huss AR, McDonald SJ, Muhammed AD, Kubinak JL, Fan D, Murphy EA. The complex heterogeneity of immune cell signatures across wasting tissues with C26 and 5-fluorouracil-induced cachexia. Am J Physiol Cell Physiol 2024; 326:C606-C621. [PMID: 38189130 PMCID: PMC11193456 DOI: 10.1152/ajpcell.00548.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Immune cell-driven pathways are linked to cancer cachexia. Tumor presence is associated with immune cell infiltration whereas cytotoxic chemotherapies reduce immune cell counts. Despite these paradoxical effects, both cancer and chemotherapy can cause cachexia; however, our understanding of immune responses in the cachexia condition with cancer and chemotherapy is largely unknown. We sought to advance our understanding of the immunology underlying cancer and cancer with chemotherapy-induced cachexia. CD2F1 mice were given 106 C26 cells, followed by five doses of 5-fluorouracil (5FU; 30 mg/kg LM, ip) or PBS. Indices of cachexia and tumor (TUM), skeletal muscle (SKM), and adipose tissue (AT) immune cell populations were examined using high-parameter flow cytometry. Although 5FU was able to stunt tumor growth, % body weight loss and muscle mass were not different between C26 and C26 + 5FU. C26 increased CD11b+Ly6g+ and CD11b+Ly6cInt inflammatory myeloid cells in SKM and AT; however, both populations were reduced with C26 + 5FU. tSNE analysis revealed 24 SKM macrophage subsets wherein 8 were changed with C26 or C26 + 5FU. C26 + 5FU increased SKM CD11b-CD11c+ dendritic cells, CD11b-NK1.1+ NK-cells, and CD11b-B220+ B-cells, and reduced Ly6cHiCX3CR1+CD206+CD163IntCD11c-MHCII- infiltrated macrophages and other CD11b+Ly6cHi myeloid cells compared with C26. Both C26 and C26 + 5FU had elevated CD11b+F480+CD206+MHCII- or more specifically Ly6cLoCX3CR1+CD206+CD163IntCD11c-MHCII- profibrotic macrophages. 5FU suppressed tumor growth and decreased SKM and AT inflammatory immune cells without protecting against cachexia suggesting that these cells are not required for wasting. However, profibrotic cells and muscle inflammatory/atrophic signaling appear consistent with cancer- and cancer with chemotherapy-induced wasting and remain potential therapeutic targets.NEW & NOTEWORTHY Despite being an immune-driven condition, our understanding of skeletal muscle and adipose tissue immune cells with cachexia is limited. Here, we identified immune cell populations in tumors, skeletal muscle, and adipose tissue in C26 tumor-bearing mice with/without 5-fluorouracil (5FU). C26 and C26 + 5FU had increased skeletal muscle profibrotic macrophages, but 5FU reduced inflammatory myeloid cells without sparing mass. Tumor presence and chemotherapy have contrasting effects on certain immune cells, which appeared not necessary for wasting.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Alexander R Huss
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Sierra J McDonald
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States
| | - Ahmed D Muhammed
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| |
Collapse
|
9
|
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology 2023; 165:bqad176. [PMID: 37980602 PMCID: PMC10699881 DOI: 10.1210/endocr/bqad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Cancer-associated cachexia occurs in 50% to 80% of cancer patients and is responsible for 20% to 30% of cancer-related deaths. Cachexia limits survival and treatment outcomes, and is a major contributor to morbidity and mortality during cancer. Ovarian cancer is one of the leading causes of cancer-related deaths in women, and recent studies have begun to highlight the prevalence and clinical impact of cachexia in this population. Here, we review the existing understanding of cachexia pathophysiology and summarize relevant studies assessing ovarian cancer-associated cachexia in clinical and preclinical studies. In clinical studies, there is increased evidence that reduced skeletal muscle mass and quality associate with worse outcomes in subjects with ovarian cancer. Mouse models of ovarian cancer display cachexia, often characterized by muscle and fat wasting alongside inflammation, although they remain underexplored relative to other cachexia-associated cancer types. Certain soluble factors have been identified and successfully targeted in these models, providing novel therapeutic targets for mitigating cachexia during ovarian cancer. However, given the relatively low number of studies, the translational relevance of these findings is yet to be determined and requires more research. Overall, our current understanding of ovarian cancer-associated cachexia is insufficient and this review highlights the need for future research specifically aimed at exploring mechanisms of ovarian cancer-associated cachexia by using unbiased approaches and animal models representative of the clinical landscape of ovarian cancer.
Collapse
Affiliation(s)
- Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lila M Mouchantat
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Diaz MJ, Fadil A, Tran JT, Batchu S, Root KT, Tran AX, Lucke-Wold B. Primary and Metastatic Cutaneous Melanomas Discriminately Enrich Several Ligand-Receptor Interactions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010180. [PMID: 36676129 PMCID: PMC9865490 DOI: 10.3390/life13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cutaneous melanoma remains a leading cancer with sobering post-metastasis mortality rates. To date, the ligand-receptor interactome of melanomas remains weakly studied despite applicability to anti-cancer drug discovery. Here we leverage established crosstalk methodologies to characterize important ligand-receptor pairs in primary and metastatic cutaneous melanoma. METHODS Bulk transcriptomic data, representing 470 cutaneous melanoma samples, was retrieved from the Broad Genome Data Analysis Center Firehose portal. Tumor and stroma compartments were computationally derived as a function of tumor purity estimates. Identification of preferential ligand-receptor interactions was achieved by relative crosstalk scoring of 1380 previously established pairs. RESULTS Metastatic cutaneous melanoma uniquely enriched PTH2-PTH1R for tumor-to-stroma signaling. The Human R-spondin ligand family was involved in 4 of the 15 top-scoring stroma-to-tumor interactions. Receptor ACVR2B was involved in 3 of the 15 top-scoring tumor-to-tumor interactions. CONCLUSIONS Numerous gene-level differences in ligand-receptor crosstalk between primary and metastatic cutaneous melanomas. Further investigation of notable pairings is warranted.
Collapse
Affiliation(s)
- Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Angela Fadil
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Kevin T. Root
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andrew X. Tran
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Hain BA, Waning DL. Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy. Curr Osteoporos Rep 2022; 20:433-441. [PMID: 36087213 DOI: 10.1007/s11914-022-00749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
13
|
Farhang-Sardroodi S, La Croix MA, Wilkie KP. Chemotherapy-induced cachexia and model-informed dosing to preserve lean mass in cancer treatment. PLoS Comput Biol 2022; 18:e1009505. [PMID: 35312676 PMCID: PMC8989307 DOI: 10.1371/journal.pcbi.1009505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/07/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Although chemotherapy is a standard treatment for cancer, it comes with significant side effects. In particular, certain agents can induce severe muscle loss, known as cachexia, worsening patient quality of life and treatment outcomes. 5-fluorouracil, an anti-cancer agent used to treat several cancers, has been shown to cause muscle loss. Experimental data indicates a non-linear dose-dependence for muscle loss in mice treated with daily or week-day schedules. We present a mathematical model of chemotherapy-induced muscle wasting that captures this non-linear dose-dependence. Area-under-the-curve metrics are proposed to quantify the treatment’s effects on lean mass and tumour control. Model simulations are used to explore alternate dosing schedules, aging effects, and morphine use in chemotherapy treatment with the aim of better protecting lean mass while actively targeting the tumour, ultimately leading to improved personalization of treatment planning and improved patient quality of life. In this paper we present a novel mathematical model for muscle loss due to cancer chemotherapy treatment. Loss of muscle mass relates to increased drug toxicity and side-effects, and to decreased patient quality of life and survival rates. With our model, we examine the therapeutic efficacy of various dosing schedules with the aim of controlling a growing tumour while also preserving lean mass. Preservation of body composition, in addition to consideration of inflammation and immune interactions, the gut microbiome, and other systemic health measures, may lead to improved patient-specific treatment plans that improve patient quality of life.
Collapse
Affiliation(s)
- Suzan Farhang-Sardroodi
- Modelling Infection, and Immunity Lab, Department of Mathematics and Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Department of Mathematics and Statistics, York University, Toronto, Canada
| | | | | |
Collapse
|
14
|
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF, Bonetto A. RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. J Bone Miner Res 2022; 37:381-396. [PMID: 34904285 PMCID: PMC8940654 DOI: 10.1002/jbmr.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander J Jones
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Periprosthetic Stress Shielding of the Humerus after Reconstruction with Modular Shoulder Megaprostheses in Patients with Sarcoma. J Clin Med 2021; 10:jcm10153424. [PMID: 34362209 PMCID: PMC8347309 DOI: 10.3390/jcm10153424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023] Open
Abstract
(1) Background: Modular megaprosthetic reconstruction using a proximal humerus replacement has emerged as a commonly chosen approach after bone tumor resection. However, the long-term risk for revision surgery is relatively high. One factor that might be associated with mechanical failures is periprosthetic osteolysis around the stem, also known as stress shielding. The frequency, potential risk factors, and the effect on implant survival are unknown. (2) Methods: A retrospective single-center study of 65 patients with sarcoma who underwent resection of the proximal humerus and subsequent reconstruction with a modular endoprosthesis. Stress shielding was defined as the development of bone resorption around the prosthesis stem beginning at the bone/prosthesis interface. The extent of stress shielding was measured with a new method quantifying bone resorption in relation to the intramedullary stem length. All patients had a minimum follow-up of 12 months with conventional radiographs available and the median follow-up amounted to 36 months. (3) Results: Stress shielding was observed in 92% of patients (60/65). The median longitudinal extent of stress shielding amounted to 14% at last follow-up. Fifteen percent (10/65) showed bone resorption of greater than 50%. The median time to the first radiographic signs of stress shielding was 6 months (IQR 3–9). Patients who underwent chemotherapy (43/65) showed a greater extent of stress shielding compared to those without chemotherapy. Three percent (2/65) of patients were revised for aseptic loosening, and one patient had a periprosthetic fracture (1/65, 1.5%). All these cases had >20% extent of stress shielding (23–57%). (4) Conclusions: Stress shielding of the proximal humerus after shoulder reconstruction with modular megaprosthesis is common. It occurs within the first year of follow-up and might be self-limiting in many patients; however, about one third of patients shows progression beyond the first year. Still, mechanical complications were rare, but stress shielding might be clinically relevant in individual cases. The extent of stress shielding was increased in patients who underwent perioperative chemotherapy. Stress shielding can be quantified with an easy method using the stem length as a reference.
Collapse
|
17
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
18
|
Pin F, Bonewald LF, Bonetto A. Role of myokines and osteokines in cancer cachexia. Exp Biol Med (Maywood) 2021; 246:2118-2127. [PMID: 33899538 DOI: 10.1177/15353702211009213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prognosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evidence has shed light on the presence of bone loss in cachectic patients, even in the absence of bone-metastatic disease. In particular, we and others have shown that muscle and bone communicate by exchanging paracrine and endocrine factors, known as myokines and osteokines. This review will focus on describing the role of the most studied myokines, such as myostatin, irisin, the muscle metabolite β-aminoisobutyric acid, BAIBA, and IL-6, and osteokines, including TGF-β, osteocalcin, sclerostin, RANKL, PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay of muscle and bone factors, together with tumor-derived soluble factors, characterizes a complex clinical scenario in which musculoskeletal alterations are amongst the most debilitating features. Understanding and targeting the "secretome" of cachectic patients will likely represent a promising strategy to preserve bone and muscle during cancer cachexia thereby enhancing recovery.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12:252-273. [PMID: 33783983 PMCID: PMC8061402 DOI: 10.1002/jcsm.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.
Collapse
Affiliation(s)
- Agnès Martin
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| | - Damien Freyssenet
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| |
Collapse
|
20
|
Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells 2021; 10:cells10030516. [PMID: 33671024 PMCID: PMC7997313 DOI: 10.3390/cells10030516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof that improved survival directly results from muscle preservation following blockade of ACVR2 signaling is still lacking, especially considering that concurrent beneficial effects in organs other than skeletal muscle have also been described in the presence of cancer or following chemotherapy treatments paired with counteraction of ACVR2 signaling. Hence, here, we aim to provide an up-to-date literature review on the multifaceted anti-cachectic effects of ACVR2 blockade in preclinical models of cancer, as well as in combination with anticancer treatments.
Collapse
|
21
|
MC38 Tumors Induce Musculoskeletal Defects in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031486. [PMID: 33540821 PMCID: PMC7867345 DOI: 10.3390/ijms22031486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death, and the prevalence of CRC in young adults is on the rise, making this a largescale clinical concern. Advanced CRC patients often present with liver metastases (LM) and an increased incidence of cachexia, i.e., musculoskeletal wasting. Despite its high incidence in CRC patients, cachexia remains an unresolved issue, and animal models for the study of CRC cachexia, in particular, metastatic CRC cachexia, remain limited; therefore, we aimed to establish a new model of metastatic CRC cachexia. C57BL/6 male mice (8 weeks old) were subcutaneously (MC38) or intrasplenically injected (mMC38) with MC38 murine CRC cells to disseminate LM, while experimental controls received saline (n = 5-8/group). The growth of subcutaneous MC38 tumors was accompanied by a reduction in skeletal muscle mass (-16%; quadriceps muscle), plantarflexion force (-22%) and extensor digitorum longus (EDL) contractility (-20%) compared to experimental controls. Meanwhile, the formation of MC38 LM (mMC38) led to heighted reductions in skeletal muscle mass (-30%; quadriceps), plantarflexion force (-28%) and EDL contractility (-35%) compared to sham-operated controls, suggesting exacerbated cachexia associated with LM. Moreover, both MC38 and mMC38 tumor hosts demonstrated a marked loss of bone indicated by reductions in trabecular (Tb.BV/TV: -49% in MC38, and -46% in mMC38) and cortical (C.BV/TV: -12% in MC38, and -8% in mMC38) bone. Cell culture experiments revealed that MC38 tumor-derived factors directly promote myotube wasting (-18%) and STAT3 phosphorylation (+5-fold), while the pharmacologic blockade of STAT3 signaling was sufficient to preserve myotube atrophy in the presence of MC38 cells (+21%). Overall, these results reinforce the notion that the formation of LM heightens cachexia in an experimental model of CRC.
Collapse
|
22
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
23
|
The Paradoxical Effect of PARP Inhibitor BGP-15 on Irinotecan-Induced Cachexia and Skeletal Muscle Dysfunction. Cancers (Basel) 2020; 12:cancers12123810. [PMID: 33348673 PMCID: PMC7766767 DOI: 10.3390/cancers12123810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Both cancer and the chemotherapy used to treat it are drivers of cachexia, a life-threatening body-wasting condition which complicates cancer treatment. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently being investigated as a treatment against cancer. Here, we present paradoxical evidence that they might also be useful for mitigating the skeletal muscle specific side-effects of anti-cancer chemotherapy or exacerbate them. BGP-15 is a small molecule PARP inhibitor which protected against irinotecan (IRI)-induced cachexia and loss of skeletal muscle mass and dysfunction in our study. However, peculiarly, BGP-15 adjuvant therapy reduced protein synthesis rates and the expression of key cytoskeletal proteins associated with the dystrophin-associated protein complex and increased matrix metalloproteinase activity, while it increased the propensity for fast-twitch muscles to tear during fatiguing contraction. Our data suggest that both IRI and BGP-15 cause structural remodeling involving proteins associated with the contractile apparatus, cytoskeleton and/or the extracellular matrix which may be only transient and ultimately beneficial or may paradoxically onset a muscular dystrophy phenotype and be detrimental if more permanent. Abstract Chemotherapy-induced muscle wasting and dysfunction is a contributing factor to cachexia alongside cancer and increases the risk of morbidity and mortality. Here, we investigate the effects of the chemotherapeutic agent irinotecan (IRI) on skeletal muscle mass and function and whether BGP-15 (a poly-(ADP-ribose) polymerase-1 (PARP-1) inhibitor and heat shock protein co-inducer) adjuvant therapy could protect against IRI-induced skeletal myopathy. Healthy 6-week-old male Balb/C mice (n = 24; 8/group) were treated with six intraperitoneal injections of either vehicle, IRI (30 mg/kg) or BGP-15 adjuvant therapy (IRI+BGP; 15 mg/kg) over two weeks. IRI reduced lean and tibialis anterior mass, which were attenuated by IRI+BGP treatment. Remarkably, IRI reduced muscle protein synthesis, while IRI+BGP reduced protein synthesis further. These changes occurred in the absence of a change in crude markers of mammalian/mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) signaling and protein degradation. Interestingly, the cytoskeletal protein dystrophin was reduced in both IRI- and IRI+BGP-treated mice, while IRI+BGP treatment also decreased β-dystroglycan, suggesting significant remodeling of the cytoskeleton. IRI reduced absolute force production of the soleus and extensor digitorum longus (EDL) muscles, while IRI+BGP rescued absolute force production of the soleus and strongly trended to rescue force output of the EDL (p = 0.06), which was associated with improvements in mass. During the fatiguing stimulation, IRI+BGP-treated EDL muscles were somewhat susceptible to rupture at the musculotendinous junction, likely due to BGP-15’s capacity to maintain the rate of force development within a weakened environment characterized by significant structural remodeling. Our paradoxical data highlight that BGP-15 has some therapeutic advantage by attenuating IRI-induced skeletal myopathy; however, its effects on the remodeling of the cytoskeleton and extracellular matrix, which appear to make fast-twitch muscles more prone to tearing during contraction, could suggest the induction of muscular dystrophy and, thus, require further characterization.
Collapse
|
24
|
VanderVeen BN, Sougiannis AT, Velazquez KT, Carson JA, Fan D, Murphy EA. The Acute Effects of 5 Fluorouracil on Skeletal Muscle Resident and Infiltrating Immune Cells in Mice. Front Physiol 2020; 11:593468. [PMID: 33364975 PMCID: PMC7750461 DOI: 10.3389/fphys.2020.593468] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
5 fluorouracil (5FU) has been a first-choice chemotherapy drug for several cancer types (e.g., colon, breast, head, and neck); however, its efficacy is diminished by patient acquired resistance and pervasive side effects. Leukopenia is a hallmark of 5FU; however, the impact of 5FU-induced leukopenia on healthy tissue is only becoming unearthed. Recently, skeletal muscle has been shown to be impacted by 5FU in clinical and preclinical settings and weakness and fatigue remain among the most consistent complaints in cancer patients undergoing chemotherapy. Monocytes, or more specifically macrophages, are the predominate immune cell in skeletal muscle which regulate turnover and homeostasis through removal of damaged or old materials as well as coordinate skeletal muscle repair and remodeling. Whether 5FU-induced leukopenia extends beyond circulation to impact resident and infiltrating skeletal muscle immune cells has not been examined. The purpose of the study was to examine the acute effects of 5FU on resident and infiltrating skeletal muscle monocytes and inflammatory mediators. Male C57BL/6 mice were given a physiologically translatable dose (35 mg/kg) of 5FU, or PBS, i.p. once daily for 5 days to recapitulate 1 dosing cycle. Our results demonstrate that 5FU reduced circulating leukocytes, erythrocytes, and thrombocytes while inducing significant body weight loss (>5%). Flow cytometry analysis of the skeletal muscle indicated a reduction in total CD45+ immune cells with a corresponding decrease in total CD45+CD11b+ monocytes. There was a strong relationship between circulating leukocytes and skeletal muscle CD45+ immune cells. Skeletal muscle Ly6cHigh activated monocytes and M1-like macrophages were reduced with 5FU treatment while total M2-like CD206+CD11c- macrophages were unchanged. Interestingly, 5FU reduced bone marrow CD45+ immune cells and CD45+CD11b+ monocytes. Our results demonstrate that 5FU induced body weight loss and decreased skeletal muscle CD45+ immune cells in association with a reduction in infiltrating Ly6cHigh monocytes. Interestingly, the loss of skeletal muscle immune cells occurred with bone marrow cell cycle arrest. Together our results highlight that skeletal muscle is sensitive to 5FU's off-target effects which disrupts both circulating and skeletal muscle immune cells.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - Alexander T. Sougiannis
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kandy T. Velazquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James A. Carson
- Department of Physical Therapy, College of Health Professionals, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daping Fan
- AcePre, LLC, Columbia, SC, United States
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| |
Collapse
|
25
|
Huot JR, Pin F, Narasimhan A, Novinger LJ, Keith AS, Zimmers TA, Willis MS, Bonetto A. ACVR2B antagonism as a countermeasure to multi-organ perturbations in metastatic colorectal cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1779-1798. [PMID: 33200567 PMCID: PMC7749603 DOI: 10.1002/jcsm.12642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. METHODS NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. RESULTS mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. CONCLUSIONS Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leah J Novinger
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metab 2020; 32:938-950.e6. [PMID: 33207247 DOI: 10.1016/j.cmet.2020.10.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Platinum-based cancer therapy is restricted by dose-limiting side effects and is associated with elevation of growth differentiation factor 15 (GDF-15). But whether this elevation contributes to such side effects has been unclear. Here, we explored the effects of GDF-15 blockade on platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and/or nonhuman primate models. We found that circulating GDF-15 is higher in subjects with cancer receiving platinum-based chemotherapy and is positively associated with weight loss in colorectal cancer (NCT00609622). Further, chemotherapy agents associated with high clinical emetic score induce circulating GDF-15 and weight loss in mice. Platinum-based treatment-induced anorexia and weight loss are attenuated in GDF-15 knockout mice, while GDF-15 neutralization with the monoclonal antibody mAB1 improves survival. In nonhuman primates, mAB1 treatment attenuates anorexia and emesis. These results suggest that GDF-15 neutralization is a potential therapeutic approach to alleviate chemotherapy-induced side effects and improve the quality of life.
Collapse
Affiliation(s)
- Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Donald Bennett
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Roberto A Calle
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susie Collins
- Biostatistics, Early Clinical Development, Pfizer R&D UK Limited, Ramsgate Road, Sandwich, Kent, UK
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Tao He
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Alison Joyce
- Biomedicine Design, Pfizer Inc., 1 Burtt Road, Andover, MA, USA
| | - Matthew Lambert
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Laura Lin
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Betty Pettersen
- Drug Safety Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Michelle Rossulek
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Gregory Weber
- Biomedicine Design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| |
Collapse
|
27
|
Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. Proc Natl Acad Sci U S A 2020; 117:30907-30917. [PMID: 33219121 PMCID: PMC7733802 DOI: 10.1073/pnas.2019263117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myostatin (MSTN) is a transforming growth factor-β (TGF-β) family member that normally acts to limit muscle growth. The function of MSTN is partially redundant with that of another TGF-β family member, activin A. MSTN and activin A are capable of signaling through a complex of type II and type I receptors. Here, we investigated the roles of two type II receptors (ACVR2 and ACVR2B) and two type I receptors (ALK4 and ALK5) in the regulation of muscle mass by these ligands by genetically targeting these receptors either alone or in combination specifically in myofibers in mice. We show that targeting signaling in myofibers is sufficient to cause significant increases in muscle mass, showing that myofibers are the direct target for signaling by these ligands in the regulation of muscle growth. Moreover, we show that there is functional redundancy between the two type II receptors as well as between the two type I receptors and that all four type II/type I receptor combinations are utilized in vivo. Targeting signaling specifically in myofibers also led to reductions in overall body fat content and improved glucose metabolism in mice fed either regular chow or a high-fat diet, demonstrating that these metabolic effects are the result of enhanced muscling. We observed no effect, however, on either bone density or muscle regeneration in mice in which signaling was targeted in myofibers. The latter finding implies that MSTN likely signals to other cells, such as satellite cells, in addition to myofibers to regulate muscle homeostasis.
Collapse
|
28
|
VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol 2020; 11:1037. [PMID: 32982782 PMCID: PMC7489038 DOI: 10.3389/fphys.2020.01037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Progressive weight loss combined with skeletal muscle atrophy, termed cachexia, is a common comorbidity associated with cancer that results in adverse consequences for the patient related to decreased chemotherapy responsiveness and increased mortality. Cachexia's complexity has provided a barrier for developing successful therapies to prevent or treat the condition, since a large number of systemic disruptions that can regulate muscle mass are often present. Furthermore, considerable effort has focused on investigating how tumor derived factors and inflammatory mediators directly signal skeletal muscle to disrupt protein turnover regulation. Currently, there is developing appreciation for understanding how cancer alters skeletal muscle's complex microenvironment and the tightly regulated interactions between multiple cell types. Skeletal muscle microenvironment interactions have established functions in muscle response to regeneration from injury, growth, aging, overload-induced hypertrophy, and exercise. This review explores the growing body of evidence for immune cell modulation of the skeletal muscle microenvironment during cancer-induced muscle wasting. Emphasis is placed on the regulatory network that integrates physiological responses between immune cells with other muscle cell types including satellite cells, fibroblast cells, and endothelial cells to regulate myofiber size and plasticity. The overall goal of this review is to provide an understanding of how different cell types that constitute the muscle microenvironment and their signaling mediators contribute to cancer and chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
29
|
Ries A, Schelch K, Falch D, Pany L, Hoda MA, Grusch M. Activin A: an emerging target for improving cancer treatment? Expert Opin Ther Targets 2020; 24:985-996. [PMID: 32700590 DOI: 10.1080/14728222.2020.1799350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Activin A is involved in the regulation of a surprisingly broad number of processes that are relevant for cancer development and treatment; it is implicated in cell autonomous functions and multiple regulatory functions in the tumor microenvironment. AREAS COVERED This article summarizes the current knowledge about activin A in cell growth and death, migration and metastasis, angiogenesis, stemness and drug resistance, regulation of antitumor immunity, and cancer cachexia. We explore the role of activin A as a biomarker and discuss strategies for using it as target for cancer therapy. Literature retrieved from Medline until 25 June 2020 was considered. EXPERT OPINION While many functions of activin A were investigated in preclinical models, there is currently limited experience from clinical trials. Activin A has growth- and migration-promoting effects, contributes to immune evasion and cachexia and is associated with shorter survival in several cancer types. Targeting activin A could offer the chance to simultaneously limit tumor growth and spreading, improve drug response, boost antitumor immune responses and improve cancer-associated or treatment-associated cachexia, bone loss, and anemia. Nevertheless, defining which patients have the highest likelihood of benefiting from these effects is challenging and will require further work.
Collapse
Affiliation(s)
- Alexander Ries
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - David Falch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Laura Pany
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna , Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
30
|
Huot JR, Novinger LJ, Pin F, Narasimhan A, Zimmers TA, O'Connell TM, Bonetto A. Formation of colorectal liver metastases induces musculoskeletal and metabolic abnormalities consistent with exacerbated cachexia. JCI Insight 2020; 5:136687. [PMID: 32298240 DOI: 10.1172/jci.insight.136687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Advanced colorectal cancer (CRC) is often accompanied by development of liver metastases (LMs) and skeletal muscle wasting (i.e., cachexia). Despite plaguing the majority of CRC patients, cachexia remains unresolved. By using mice injected with Colon-26 mouse tumors, either subcutaneously (s.c.; C26) or intrasplenically to mimic hepatic dissemination of cancer cells (mC26), here we aimed to further characterize functional, molecular, and metabolic effects on skeletal muscle and examine whether LMs exacerbate CRC-induced cachexia. C26-derived LMs were associated with progressive loss of body weight, as well as with significant reductions in skeletal muscle size and strength, in line with reduced phosphorylation of markers of protein anabolism and enhanced protein catabolism. mC26 hosts showed prevalence of fibers with glycolytic metabolism and enhanced lipid accumulation, consistent with abnormalities of mitochondrial homeostasis and energy metabolism. In a comparison with mice bearing s.c. C26, cachexia appeared exacerbated in the mC26 hosts, as also supported by differentially expressed pathways within skeletal muscle. Overall, our model recapitulates the cachectic phenotype of metastatic CRC and reveals that formation of LMs resulting from CRC exacerbate cancer-induced skeletal muscle wasting by promoting differential gene expression signatures.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery.,Department of Anatomy, Cell Biology and Physiology
| | | | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology
| | | | - Teresa A Zimmers
- Department of Surgery.,Department of Anatomy, Cell Biology and Physiology.,Simon Cancer Center, and.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas M O'Connell
- Department of Anatomy, Cell Biology and Physiology.,Department of Otolaryngology-Head & Neck Surgery.,Simon Cancer Center, and.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Bonetto
- Department of Surgery.,Department of Anatomy, Cell Biology and Physiology.,Department of Otolaryngology-Head & Neck Surgery.,Simon Cancer Center, and.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Hain BA, Jude B, Xu H, Smuin DM, Fox EJ, Elfar JC, Waning DL. Zoledronic Acid Improves Muscle Function in Healthy Mice Treated with Chemotherapy. J Bone Miner Res 2020; 35:368-381. [PMID: 31614017 DOI: 10.1002/jbmr.3890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
Carboplatin is a chemotherapy drug used to treat solid tumors but also causes bone loss and muscle atrophy and weakness. Bone loss contributes to muscle weakness through bone-muscle crosstalk, which is prevented with the bisphosphonate zoledronic acid (ZA). We treated mice with carboplatin in the presence or absence of ZA to assess the impact of bone resorption on muscle. Carboplatin caused loss of body weight, muscle mass, and bone mass, and also led to muscle weakness as early as 7 days after treatment. Mice treated with carboplatin and ZA lost body weight and muscle mass but did not lose bone mass. In addition, muscle function in mice treated with ZA was similar to control animals. We also used the anti-TGFβ antibody (1D11) to prevent carboplatin-induced bone loss and showed similar results to ZA-treated mice. We found that atrogin-1 mRNA expression was increased in muscle from mice treated with carboplatin, which explained muscle atrophy. In mice treated with carboplatin for 1 or 3 days, we did not observe any bone or muscle loss, or muscle weakness. In addition, reduced caloric intake in the carboplatin treated mice did not cause loss of bone or muscle mass, or muscle weakness. Our results show that blocking carboplatin-induced bone resorption is sufficient to prevent skeletal muscle weakness and suggests another benefit to bone therapy beyond bone in patients receiving chemotherapy. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Baptiste Jude
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Dallas M Smuin
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA
| | - Edward J Fox
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
32
|
Huot JR, Novinger LJ, Pin F, Bonetto A. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. Dis Model Mech 2020; 13:dmm043166. [PMID: 31915140 PMCID: PMC6994937 DOI: 10.1242/dmm.043166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is often accompanied by formation of liver metastases (LM) and skeletal muscle wasting, i.e. cachexia. Despite affecting the majority of CRC patients, cachexia remains underserved, understudied and uncured. Animal models for the study of CRC-induced cachexia, in particular models containing LM, are sparse; therefore, we aimed to characterize two new models of CRC cachexia. Male NSG mice were injected subcutaneously (HCT116) or intrasplenically (mHCT116) with human HCT116 CRC tumor cells to disseminate LM, whereas experimental controls received saline (n=5-8/group). Tumor growth was accompanied by loss of skeletal muscle mass (HCT116: -20%; mHCT116: -31%; quadriceps muscle) and strength (HCT116: -20%; mHCT116: -27%), with worsened loss of skeletal muscle mass in mHCT116 compared with HCT116 (gastrocnemius: -19%; tibialis anterior: -22%; quadriceps: -21%). Molecular analyses revealed elevated protein ubiquitination in HCT116, whereas mHCT116 also displayed elevated Murf1 and atrogin-1 expression, along with reduced mitochondrial proteins PGC1α, OPA1, mitofusin 2 and cytochrome C. Further, elevated IL6 levels were found in the blood of mHCT116 hosts, which was associated with higher phosphorylation of STAT3 in skeletal muscle. To clarify whether STAT3 was a main player in muscle wasting in this model, HCT116 cells were co-cultured with C2C12 myotubes. Marked myotube atrophy (-53%) was observed, along with elevated phospho-STAT3 levels (+149%). Conversely, inhibition of STAT3 signaling by means of a JAK/STAT3 inhibitor was sufficient to rescue myotube atrophy induced by HCT116 cells (+55%). Overall, our results indicate that the formation of LM exacerbates cachectic phenotype and associated skeletal muscle molecular alterations in HCT116 tumor hosts.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leah J Novinger
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Expression of miRNAs from the Imprinted DLK1/DIO3 Locus Signals the Osteogenic Potential of Human Pluripotent Stem Cells. Cells 2019; 8:cells8121523. [PMID: 31779280 PMCID: PMC6953034 DOI: 10.3390/cells8121523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Substantial variations in differentiation properties have been reported among human pluripotent cell lines (hPSC), which could affect their utility and clinical safety. We characterized the variable osteogenic capacity observed between different human pluripotent stem cell lines. By focusing on the miRNA expression profile, we demonstrated that the osteogenic differentiation propensity of human pluripotent stem cell lines could be associated with the methylation status and the expression of miRNAs from the imprinted DLK1/DIO3 locus. More specifically, quantitative analysis of the expression of six different miRNAs of that locus prospectively identified human embryonic stem cells and human-induced pluripotent stem cells with differential osteogenic differentiation capacities. At the molecular and functional levels, we showed that these miRNAs modulated the expression of the activin receptor type 2B and the downstream signal transduction, which impacted osteogenesis. In conclusion, miRNAs of the imprinted DLK1/DIO3 locus appear to have both a predictive value and a functional impact in determining the osteogenic fate of human pluripotent stem cells.
Collapse
|
34
|
Zhong X, Pons M, Poirier C, Jiang Y, Liu J, Sandusky GE, Shahda S, Nakeeb A, Schmidt CM, House MG, Ceppa EP, Zyromski NJ, Liu Y, Jiang G, Couch ME, Koniaris LG, Zimmers TA. The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. J Cachexia Sarcopenia Muscle 2019; 10:1083-1101. [PMID: 31286691 PMCID: PMC6818463 DOI: 10.1002/jcsm.12461] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal malignancy partly due to frequent, severe cachexia. Serum activin correlates with cachexia and mortality, while exogenous activin causes cachexia in mice. METHODS Isoform-specific activin expression and activities were queried in human and murine tumours and PDAC models. Activin inhibition was by administration of soluble activin type IIB receptor (ACVR2B/Fc) and by use of skeletal muscle specific dominant negative ACVR2B expressing transgenic mice. Feed-forward activin expression and muscle wasting activity were tested in vivo and in vitro on myotubes. RESULTS Murine PDAC tumour-derived cell lines expressed activin-βA but not activin-βB. Cachexia severity increased with activin expression. Orthotopic PDAC tumours expressed activins, induced activin expression by distant organs, and produced elevated serum activins. Soluble factors from PDAC elicited activin because conditioned medium from PDAC cells induced activin expression, activation of p38 MAP kinase, and atrophy of myotubes. The activin trap ACVR2B/Fc reduced tumour growth, prevented weight loss and muscle wasting, and prolonged survival in mice with orthotopic tumours made from activin-low cell lines. ACVR2B/Fc also reduced cachexia in mice with activin-high tumours. Activin inhibition did not affect activin expression in organs. Hypermuscular mice expressing dominant negative ACVR2B in muscle were protected for weight loss but not mortality when implanted with orthotopic tumours. Human tumours displayed staining for activin, and expression of the gene encoding activin-βA (INHBA) correlated with mortality in patients with PDAC, while INHBB and other related factors did not. CONCLUSIONS Pancreatic adenocarcinoma tumours are a source of activin and elicit a systemic activin response in hosts. Human tumours express activins and related factors, while mortality correlates with tumour activin A expression. PDAC tumours also choreograph a systemic activin response that induces organ-specific and gene-specific expression of activin isoforms and muscle wasting. Systemic blockade of activin signalling could preserve muscle and prolong survival, while skeletal muscle-specific activin blockade was only protective for weight loss. Our findings suggest the potential and need for gene-specific and organ-specific interventions. Finally, development of more effective cancer cachexia therapy might require identifying agents that effectively and/or selectively inhibit autocrine vs. paracrine activin signalling.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
| | - Marianne Pons
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Christophe Poirier
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Yanlin Jiang
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Jianguo Liu
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Safi Shahda
- IU Simon Cancer CenterIndianapolisINUSA
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Attila Nakeeb
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - C. Max Schmidt
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Michael G. House
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Eugene P. Ceppa
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Nicholas J. Zyromski
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Yunlong Liu
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Guanglong Jiang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Marion E. Couch
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
35
|
Anoveros-Barrera A, Bhullar AS, Stretch C, Dunichand-Hoedl AR, Martins KJB, Rieger A, Bigam D, McMullen T, Bathe OF, Putman CT, Field CJ, Baracos VE, Mazurak VC. Immunohistochemical phenotyping of T cells, granulocytes, and phagocytes in the muscle of cancer patients: association with radiologically defined muscle mass and gene expression. Skelet Muscle 2019; 9:24. [PMID: 31521204 PMCID: PMC6744687 DOI: 10.1186/s13395-019-0209-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is a recognized contributor to muscle wasting. Research in injury and myopathy suggests that interactions between the skeletal muscle and immune cells confer a pro-inflammatory environment that influences muscle loss through several mechanisms; however, this has not been explored in the cancer setting. This study investigated the local immune environment of the muscle by identifying the phenotype of immune cell populations in the muscle and their relationship to muscle mass in cancer patients. METHODS Intraoperative muscle biopsies were collected from cancer patients (n = 30, 91% gastrointestinal malignancies). Muscle mass was assessed histologically (muscle fiber cross-sectional area, CSA; μm2) and radiologically (lumbar skeletal muscle index, SMI; cm2/m2 by computed tomography, CT). T cells (CD4 and CD8) and granulocytes/phagocytes (CD11b, CD14, and CD15) were assessed by immunohistochemistry. Microarray analysis was conducted in the muscle of a second cancer patient cohort. RESULTS T cells (CD3+), granulocytes/phagocytes (CD11b+), and CD3-CD4+ cells were identified. Muscle fiber CSA (μm2) was positively correlated (Spearman's r = > 0.45; p = < 0.05) with the total number of T cells, CD4, and CD8 T cells and granulocytes/phagocytes. In addition, patients with the smallest SMI exhibited fewer CD8 T cells within their muscle. Consistent with this, further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively associated (Pearson's r = ≥ 0.5; p = <0.0001) with key genes within muscle catabolic pathways for signaling (ACVR2B), ubiquitin proteasome (FOXO4, TRIM63, FBXO32, MUL1, UBC, UBB, UBE2L3), and apoptosis/autophagy (CASP8, BECN1, ATG13, SIVA1). CONCLUSION The skeletal muscle immune environment of cancer patients is comprised of immune cell populations from the adaptive and innate immunity. Correlations of T cells, granulocyte/phagocytes, and CD3-CD4+ cells with muscle mass measurements indicate a positive relationship between immune cell numbers and muscle mass status in cancer patients. Further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively correlated with components of muscle catabolism.
Collapse
Affiliation(s)
- Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Cynthia Stretch
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Abha R Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Karen J B Martins
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Aja Rieger
- Flow Cytometry Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Bigam
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Todd McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Oliver F Bathe
- Department of Oncology and Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Vickie E Baracos
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
36
|
O'Connell TM, Pin F, Couch ME, Bonetto A. Treatment with Soluble Activin Receptor Type IIB Alters Metabolic Response in Chemotherapy-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091222. [PMID: 31438622 PMCID: PMC6770556 DOI: 10.3390/cancers11091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
Some chemotherapeutic agents have been shown to lead to the severe wasting syndrome known as cachexia resulting in dramatic losses of both skeletal muscle and adipose tissue. Previous studies have shown that chemotherapy-induced cachexia is characterized by unique metabolic alterations. Recent results from our laboratory and others have shown that the use of ACVR2B/Fc, a soluble form of the activin receptor 2B (ACVR2B), can mitigate muscle wasting induced by chemotherapy, although the underlying mechanisms responsible for such protective effects are unclear. In order to understand the biochemical mechanisms through which ACVR2B/Fc functions, we employed a comprehensive, multi-platform metabolomics approach. Using both nuclear magnetic resonance (NMR) and mass-spectrometry (MS), we profiled the metabolome of both serum and muscle tissue from four groups of mice including (1) vehicle, (2) the chemotherapeutic agent, Folfiri, (3) ACVR2B/Fc alone, and (4) combined treatment with both Folfiri and ACVR2B/Fc. The metabolic profiles demonstrated large effects with Folfiri treatment and much weaker effects with ACVR2B/Fc treatment. Interestingly, a number of significant effects were observed in the co-treatment group, with the addition of ACVR2B/Fc providing some level of rescue to the perturbations induced by Folfiri alone. The most prominent of these were a normalization of systemic glucose and lipid metabolism. Identification of these pathways provides important insights into the mechanism by which ACVR2B/Fc protects against chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E Couch
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Res 2019; 7:14. [PMID: 31098335 PMCID: PMC6513851 DOI: 10.1038/s41413-019-0054-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological bone loss is caused by an imbalance between bone formation and resorption. The bone microenvironments are hypoxic, and hypoxia-inducible factor (HIF) is known to play notable roles in bone remodeling. However, the relevant functions of HIF-2α are not well understood. Here, we have shown that HIF-2α deficiency in mice enhances bone mass through its effects on the differentiation of osteoblasts and osteoclasts. In vitro analyses revealed that HIF-2α inhibits osteoblast differentiation by targeting Twist2 and stimulates RANKL-induced osteoclastogenesis via regulation of Traf6. In addition, HIF-2α appears to contribute to the crosstalk between osteoblasts and osteoclasts by directly targeting RANKL in osteoprogenitor cells. Experiments performed with osteoblast- and osteoclast-specific conditional knockout mice supported a role of HIF-2α in this crosstalk. HIF-2α deficiency alleviated ovariectomy-induced bone loss in mice, and specific inhibition of HIF-2α with ZINC04179524 significantly blocked RANKL-mediated osteoclastogenesis. Collectively, our results suggest that HIF-2α functions as a catabolic regulator in bone remodeling, which is critical for the maintenance of bone homeostasis.
Collapse
|
38
|
Bonewald L. Use it or lose it to age: A review of bone and muscle communication. Bone 2019; 120:212-218. [PMID: 30408611 PMCID: PMC6360108 DOI: 10.1016/j.bone.2018.11.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
Until recently, it was assumed that the only interaction between muscle and bone is mechanical, that the muscle acts as a pulley and the bone as a lever to move the organism. A relatively new concept is that muscle, especially contracted muscle, acts as a secretory organ, regulating metabolism. An even newer concept is that bone, especially the osteocytes in bone, act as endocrine cells targeting other organs such as kidney and more recently, muscle. These two new concepts logically led to the third concept: that muscle and bone communicate via soluble factors. Crosstalk occurs through muscle factors such as myostatin, irisin, and a muscle metabolite, β-aminoisobutyric acid, BAIBA, and through bone factors such as osteocalcin, transforming growth factor beta, TGFβ, Prostaglandin E2, PGE2 and Wnts. Some of these factors have positive and some negative effects on the opposing tissue. One feature both bone and muscle have in common is that their tissues are mechanically loaded and many of their secreted factors are regulated by load. This mechanical loading, also known as exercise, has beneficial effects on many systems leading to the hypothesis that muscle and bone factors can be responsible for the beneficial effects of exercise. Many of the characteristics of aging and diseases associated with aging such as sarcopenia and osteoporosis and neurological conditions such as Alzheimer's disease and dementia, are delayed by exercise. This beneficial effect has been ascribed to increased blood flow increasing oxygen and nutrients, but could also be due to the secretome of the musculoskeletal system as outlined in this review.
Collapse
|
39
|
Sturgeon KM, Mathis KM, Rogers CJ, Schmitz KH, Waning DL. Cancer- and Chemotherapy-Induced Musculoskeletal Degradation. JBMR Plus 2019; 3:e10187. [PMID: 30918923 PMCID: PMC6419610 DOI: 10.1002/jbm4.10187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mobility in advanced cancer patients is a major health care concern and is often lost in advanced metastatic cancers. Erosion of mobility is a major component in determining quality of life but also starts a process of loss of muscle and bone mass that further devastates patients. In addition, treatment options become limited in these advanced cancer patients. Loss of bone and muscle occurs concomitantly. Advanced cancers that are metastatic to bone often lead to bone loss (osteolytic lesions) but may also lead to abnormal deposition of new bone (osteoblastic lesions). However, in both cases there is a disruption to normal bone remodeling and radiologic evidence of bone loss. Many antitumor therapies can also lead to loss of bone in cancer survivors. Bone loss releases cytokines (TGFβ) stored in the mineralized matrix that can act on skeletal muscle and lead to weakness. Likewise, loss of skeletal muscle mass leads to reduced bone mass and quality via mechanical and endocrine signals. Collectively these interactions are termed bone-muscle cross-talk, which has garnered much attention recently as a prime target for musculoskeletal health. Pharmacological approaches as well as nutrition and exercise can improve muscle and bone but have fallen short in the context of advanced cancers and cachexia. This review highlights our current knowledge of these interventions and discusses the difficulties in treating severe musculoskeletal deficits with the emphasis on improving not only bone mass and muscle size but also functional outcomes. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kathleen M Sturgeon
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Katlynn M Mathis
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
| | - Connie J Rogers
- Penn State Cancer InstituteHersheyPAUSA
- Department of Nutritional SciencesPenn State College of Health and Human DevelopmentUniversity ParkPAUSA
| | - Kathryn H Schmitz
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
- Department of Physical Medicine and RehabilitationPenn State College of MedicineHersheyPAUSA
| | - David L Waning
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| |
Collapse
|
40
|
Essex AL, Pin F, Huot JR, Bonewald LF, Plotkin LI, Bonetto A. Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice. Front Endocrinol (Lausanne) 2019; 10:809. [PMID: 31803146 PMCID: PMC6877551 DOI: 10.3389/fendo.2019.00809] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is frequently accompanied by several side effects, including nausea, diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that chemotherapy can also play a major role in causing not only cachexia, but also bone loss. This complicates prognosis and survival among cancer patients, affects quality of life, and can increase morbidity and mortality rates. Recent findings suggest that soluble factors released from resorbing bone directly contribute to loss of muscle mass and function secondary to metastatic cancer. However, it remains unknown whether similar mechanisms also take place following treatments with anticancer drugs. In this study, we found that young male CD2F1 mice (8-week old) treated with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of muscle and bone mass. Myotubes exposed to bone conditioned medium from cisplatin-treated mice showed severe atrophy (-33%) suggesting a bone to muscle crosstalk. To test this hypothesis, mice were administered cisplatin in combination with an antiresorptive drug to determine if preservation of bone mass has an effect on muscle mass and strength following chemotherapy treatment. Mice received cisplatin alone or combined with zoledronic acid (ZA; 5 μg/kg), a bisphosphonate routinely used for the treatment of osteoporosis. We found that cisplatin resulted in progressive loss of body weight (-25%), in line with reduced fat (-58%) and lean (-17%) mass. As expected, microCT bone histomorphometry analysis revealed significant reduction in bone mass following administration of chemotherapy, in line with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was protected when cisplatin was administered in combination with ZA. Interestingly, while the animals exposed to chemotherapy presented significant muscle wasting (~-20% vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted in preservation of muscle mass (+12%) and strength (+42%). Altogether, these observations support our hypothesis of bone factors targeting muscle and suggest that pharmacological preservation of bone mass can benefit muscle mass and function following chemotherapy.
Collapse
Affiliation(s)
- Alyson L. Essex
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology – Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Andrea Bonetto
| |
Collapse
|
41
|
Pin F, Bonetto A, Bonewald LF, Klein GL. Molecular Mechanisms Responsible for the Rescue Effects of Pamidronate on Muscle Atrophy in Pediatric Burn Patients. Front Endocrinol (Lausanne) 2019; 10:543. [PMID: 31447786 PMCID: PMC6692456 DOI: 10.3389/fendo.2019.00543] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
Not only has pamidronate been shown to prevent inflammation associated bone resorption following burn injury, it also reduces protein breakdown in muscle. The aim of this study was to identify the molecular mechanisms responsible for muscle mass rescue in pamidronate treated compared to placebo/standard of care-treated burn patients. Mature myotubes, generated by differentiating murine C2C12 myoblasts, were exposed for 48 h to 1 or 5% serum obtained from 3 groups of children: normal unburned, burned receiving standard of care, and burned receiving standard of care with pamidronate. Exposure to serum from burned patients caused dose-dependent myotube atrophy compared to normal serum as expected based on previous observations of muscle atrophy induced by burn injury in humans and animals. The size of C2C12 myotubes was partially protected upon exposure to the serum from patients treated with pamidronate correlating with the rescue of muscle size previously observed in these patients. At the molecular signaling level, serum from both pamidronate and non-pamidronate-treated burn patients increased pSTAT3/STAT3 and pERK1/2/ERK1/2 compared to normal serum with no significant differences between the two groups of burn patients indicating elevated production of inflammatory cytokines. However, serum from pamidronate-treated patients restored the phosphorylation of AKT and mTOR and reduced protein ubiquitination when compared to burn serum alone, suggesting a prevention of muscle catabolism and a restoration of muscle anabolism. Myotube atrophy induced by burn serum was partially rescued after exposure to a pan anti-TGFβ-1/2/3 antibody, suggesting that this signaling pathway is partially responsible for the atrophy and that bisphosphonate protection of bones from resorption during burn injury prevents the release of muscle pro-catabolic factors such as TGFβ into the circulation.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynda F. Bonewald
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gordon L. Klein
- Department of Orthopaedic Surgery, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Gordon L. Klein
| |
Collapse
|
42
|
Pin F, Couch ME, Bonetto A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr Opin Support Palliat Care 2018; 12:420-426. [PMID: 30124526 PMCID: PMC6221433 DOI: 10.1097/spc.0000000000000382] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Cancer patients undergoing chemotherapy often experience very debilitating side effects, including unintentional weight loss, nausea, and vomiting. Changes in body composition, specifically lean body mass (LBM), are known to have important implications for anticancer drug toxicity and cancer prognosis. Currently, chemotherapy dosing is based on calculation of body surface area, although this approximation does not take into consideration the variability in lean and adipose tissue mass. RECENT FINDINGS Patients with depletion of muscle mass present higher chemotherapy-related toxicity, whereas patients with larger amounts of LBM show fewer toxicities and better outcomes. Commonly used chemotherapy regimens promote changes in body composition, primarily by affecting skeletal muscle, as well as fat and bone mass. Experimental evidence has shown that pro-atrophy mechanisms, abnormal mitochondrial metabolism, and reduced protein anabolism are primarily implicated in muscle depletion. Muscle-targeted pro-anabolic strategies have proven successful in preserving lean tissue in the occurrence of cancer or following chemotherapy. SUMMARY Muscle wasting often occurs as a consequence of anticancer treatments and is indicative of worse outcomes and poor quality of life in cancer patients. Accurate assessment of body composition and preservation of muscle mass may reduce chemotherapy toxicity and improve the overall survival.
Collapse
Affiliation(s)
| | - Marion E. Couch
- Department of Otolaryngology – Head & Neck Surgery
- Center for Cachexia Research Innovation and Therapy
- Simon Cancer Center
| | - Andrea Bonetto
- Department of Anatomy and Cell Biology
- Department of Otolaryngology – Head & Neck Surgery
- Center for Cachexia Research Innovation and Therapy
- Simon Cancer Center
- Department of Surgery
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
43
|
Pin F, Barreto R, Kitase Y, Mitra S, Erne CE, Novinger LJ, Zimmers TA, Couch ME, Bonewald LF, Bonetto A. Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. J Cachexia Sarcopenia Muscle 2018; 9:685-700. [PMID: 30009406 PMCID: PMC6104117 DOI: 10.1002/jcsm.12311] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cachexia frequently occurs in women with advanced ovarian cancer (OC), along with enhanced inflammation. Despite being responsible for one third of all cancer deaths, cachexia is generally under-studied in OC due to a limited number of pre-clinical animal models. We aimed to address this gap by characterizing the cachectic phenotype in a mouse model of OC. METHODS Nod SCID gamma mice (n = 6-10) were injected intraperitoneally with 1 × 107 ES-2 human OC cells to mimic disseminated abdominal disease. Muscle size and strength, as well as bone morphometry, were assessed. Tumour-derived effects on muscle fibres were investigated in C2C12 myotube cultures. IL-6 levels were detected in serum and ascites from tumour hosts, as well as in tumour sections. RESULTS In about 2 weeks, ES-2 cells developed abdominal tumours infiltrating omentum, mesentery, and adjacent organs. The ES-2 tumours caused severe cachexia with marked loss of body weight (-12%, P < 0.01) and ascites accumulation in the peritoneal cavity (4.7 ± 1.5 mL). Skeletal muscles appeared markedly smaller in the tumour-bearing mice (approximately -35%, P < 0.001). Muscle loss was accompanied by fibre atrophy, consistent with reduced muscle cross-sectional area (-34%, P < 0.01) and muscle weakness (-50%, P < 0.001). Body composition assessment by dual-energy X-ray absorptiometry revealed decreased bone mineral density (-8%, P < 0.01) and bone mineral content (-19%, P < 0.01), also consistent with reduced trabecular bone in both femurs and vertebrae, as suggested by micro-CT imaging of bone morphometry. In the ES-2 mouse model, cachexia was also associated with high tumour-derived IL-6 levels in plasma and ascites (26.3 and 279.6 pg/mL, respectively) and with elevated phospho-STAT3 (+274%, P < 0.001), reduced phospho-AKT (-44%, P < 0.001) and decreased mitochondrial proteins, as well as with increased protein ubiquitination (+42%, P < 0.001) and expression of ubiquitin ligases in the skeletal muscle of tumour hosts. Similarly, ES-2 conditioned medium directly induced fibre atrophy in C2C12 mouse myotubes (-16%, P < 0.001), consistent with elevated phospho-STAT3 (+1.4-fold, P < 0.001) and altered mitochondrial homoeostasis and metabolism, while inhibition of the IL-6/STAT3 signalling by means of INCB018424 was sufficient to restore the myotubes size. CONCLUSIONS Our results suggest that the development of ES-2 OC promotes muscle atrophy in both in vivo and in vitro conditions, accompanied by loss of bone mass, enhanced muscle protein catabolism, abnormal mitochondrial homoeostasis, and elevated IL-6 levels. Therefore, this represents an appropriate model for the study of OC cachexia. Our model will aid in identifying molecular mediators that could be effectively targeted in order to improve muscle wasting associated with OC.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIN46202USA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
| | - Rafael Barreto
- Department of SurgeryIndiana University School of MedicineIndianapolisIN46202USA
| | - Yukiko Kitase
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIN46202USA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
| | - Sumegha Mitra
- Department of Biochemistry and Molecular BiologyIndiana UniversityBloomingtonIN47405USA
- Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Carlie E. Erne
- Department of SurgeryIndiana University School of MedicineIndianapolisIN46202USA
| | - Leah J. Novinger
- Department of Otolaryngology ‐ Head and Neck SurgeryIndiana University School of MedicineIndianapolisIN46202USA
| | - Teresa A. Zimmers
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIN46202USA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
- Department of SurgeryIndiana University School of MedicineIndianapolisIN46202USA
- Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Department of Otolaryngology ‐ Head and Neck SurgeryIndiana University School of MedicineIndianapolisIN46202USA
- IUPUI Center for Cachexia Research Innovation and TherapyIndiana University School of MedicineIndianapolisIN46202USA
| | - Marion E. Couch
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
- Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Department of Otolaryngology ‐ Head and Neck SurgeryIndiana University School of MedicineIndianapolisIN46202USA
- IUPUI Center for Cachexia Research Innovation and TherapyIndiana University School of MedicineIndianapolisIN46202USA
| | - Lynda F. Bonewald
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIN46202USA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
- Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- IUPUI Center for Cachexia Research Innovation and TherapyIndiana University School of MedicineIndianapolisIN46202USA
| | - Andrea Bonetto
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIN46202USA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIN46202USA
- Department of SurgeryIndiana University School of MedicineIndianapolisIN46202USA
- Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Department of Otolaryngology ‐ Head and Neck SurgeryIndiana University School of MedicineIndianapolisIN46202USA
- IUPUI Center for Cachexia Research Innovation and TherapyIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
44
|
Coletti D. Chemotherapy-induced muscle wasting: an update. Eur J Transl Myol 2018; 28:7587. [PMID: 29991991 PMCID: PMC6036312 DOI: 10.4081/ejtm.2018.7587] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
The majority of cancers are associated to cachexia, a severe form of weight loss mostly accounted for by skeletal muscle wasting. Cancer patients are often treated with chemotherapy, whose side effects are at times neglected or underestimated. Paradoxically, chemotherapy itself can induce muscle wasting with severe, cancer-independent effects on muscle homeostasis. Since muscle wasting is a primary marker of poor prognosis for cancer patients and negatively affects their quality of life, the systemic consequences of chemotherapy in this context must be fully characterized and taken into account. Ten years ago a precursor study in an animal cancer model was published in the European Journal of Translation Myology (back then, Basic and Applied Myology), highlighting that the side effects of chemotherapy include muscle wasting, possibly mediated by NF-κB activation. This paper, entitled «Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia», is now being reprinted for the inaugural issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances in the study of chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Dario Coletti
- (1) Biology of Adaptation and Aging, Sorbonne Université, Paris, France; (2) Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Italy
| |
Collapse
|
45
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|