1
|
Cao L, Pan X, Li Y, Jia W, Huang J, Liu J. Predictive value of circulating miR-409-3p for major adverse cardiovascular events in patients with type 2 diabetes mellitus and coronary heart disease. ENDOCRINOL DIAB NUTR 2024; 71:372-379. [PMID: 39608964 DOI: 10.1016/j.endien.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVES To investigate the serum levels of miR-409-3p in patients with type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD) and its effect on high glucose (HG)-induced myocardial cell injury. METHODS A total of 250 patients with T2DM admitted to our hospital from April 2020 through April 2022 were enrolled as the study subjects, and then grouped into T2DM+CHD (group #1) and T2DM (group #2). Real-time quantitative PCR (RT-qPCR) was used to measure the levels of serum miR-409-3p. The clinical performance of miR-409-3p was evaluated. The human cardiomyocyte AC16 cells were cultured in vitro and treated with HG. MTT assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. Bioinformatic analyses were performed to explore the potential mechanism of miR-409-3p in T2DM complicated with CHD. RESULTS The expression level of miR-409-3p was increased in the T2DM+CHD group and had a relative high diagnostic value for distinguishing patients with T2DM+CHD from patients with T2DM alone. Correlation analysis showed that serum miR-409-3p was positively associated with the Gensini score and adverse cardiovascular events; miR-409-3p knockdown alleviated HG-induced AC16 cell damage and reduced cell apoptosis. CREB1, BCL2, and SMAD2 were the top 3 hub genes of miR-409-3p. CONCLUSION Serum miR-409-3p may serve as a potential diagnostic and prognostic biomarker for predicting T2DM complicated with CHD and forecast adverse events. Targeting miR-409-3p may be a novel therapeutic strategy to intervene in the development of T2DM+CHD.
Collapse
Affiliation(s)
- Liang Cao
- Department of Endocrinology, Beijing University of Chinese Medicine East Hospital, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China
| | - Xiangrong Pan
- Department Four of Recuperation, Second Sanatorium of Qingdao Special Recuperation Center of PLA Navy, Qingdao, China
| | - Ying Li
- Department of Pediatrics, The People's Hospital of Suzhou National New&high-tech Development Zone, Suzhou, China
| | - Wei Jia
- Department of Pediatrics, BenQ Medical Center, Suzhou, China
| | - Jiayang Huang
- Department of Pediatrics, The People's Hospital of Suzhou National New&high-tech Development Zone, Suzhou, China
| | - Jian Liu
- Department of Pediatrics, The People's Hospital of Suzhou National New&high-tech Development Zone, Suzhou, China.
| |
Collapse
|
2
|
Chernova I. Lupus Nephritis: Immune Cells and the Kidney Microenvironment. KIDNEY360 2024; 5:1394-1401. [PMID: 39120952 PMCID: PMC11441818 DOI: 10.34067/kid.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
Lupus nephritis (LN) is the most common major organ manifestation of the autoimmune disease SLE (lupus), with 10% of those afflicted progressing to ESKD. The kidney in LN is characterized by a significant immune infiltrate and proinflammatory cytokine milieu that affects intrinsic renal cells and is, in part, responsible for the tissue damage observed in LN. It is now increasingly appreciated that LN is not due to unidirectional immune cell activation with subsequent kidney damage. Rather, the kidney microenvironment influences the recruitment, survival, differentiation, and activation of immune cells, which, in turn, modify kidney cell function. This review covers how the biochemical environment of the kidney ( i.e ., low oxygen tension and hypertonicity) and unique kidney cell types affect the intrarenal immune cells in LN. The pathways used by intrinsic renal cells to interact with immune cells, such as antigen presentation and cytokine production, are discussed in detail. An understanding of these mechanisms can lead to the design of more kidney-targeted treatments and the avoidance of systemic immunosuppressive effects and may represent the next frontier of LN therapies.
Collapse
Affiliation(s)
- Irene Chernova
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Fenton KA, Pedersen HL. Advanced methods and novel biomarkers in autoimmune diseases ‑ a review of the recent years progress in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1183535. [PMID: 37425332 PMCID: PMC10326284 DOI: 10.3389/fmed.2023.1183535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
There are several autoimmune and rheumatic diseases affecting different organs of the human body. Multiple sclerosis (MS) mainly affects brain, rheumatoid arthritis (RA) mainly affects joints, Type 1 diabetes (T1D) mainly affects pancreas, Sjogren's syndrome (SS) mainly affects salivary glands, while systemic lupus erythematosus (SLE) affects almost every organ of the body. Autoimmune diseases are characterized by production of autoantibodies, activation of immune cells, increased expression of pro-inflammatory cytokines, and activation of type I interferons. Despite improvements in treatments and diagnostic tools, the time it takes for the patients to be diagnosed is too long, and the main treatment for these diseases is still non-specific anti-inflammatory drugs. Thus, there is an urgent need for better biomarkers, as well as tailored, personalized treatment. This review focus on SLE and the organs affected in this disease. We have used the results from various rheumatic and autoimmune diseases and the organs involved with an aim to identify advanced methods and possible biomarkers to be utilized in the diagnosis of SLE, disease monitoring, and response to treatment.
Collapse
Affiliation(s)
- Kristin Andreassen Fenton
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
4
|
Liu M, Zhang L, Wang Y, Hu W, Wang C, Wen Z. Mesangial cell: A hub in lupus nephritis. Front Immunol 2022; 13:1063497. [PMID: 36591251 PMCID: PMC9795068 DOI: 10.3389/fimmu.2022.1063497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lupus nephritis (LN) is a severe renal disease caused by the massive deposition of the immune complexes (ICs) in renal tissue, acting as one of the significant organ manifestations of systemic lupus erythematosus (SLE) and a substantial cause of death in clinical patients. As mesangium is one of the primary sites for IC deposition, mesangial cells (MCs) constantly undergo severe damage, resulting in excessive proliferation and increased extracellular matrix (ECM) production. In addition to playing a role in organizational structure, MCs are closely related to in situ immunomodulation by phagocytosis, antigen-presenting function, and inflammatory effects, aberrantly participating in the tissue-resident immune responses and leading to immune-mediated renal lesions. Notably, such renal-resident immune responses drive a second wave of MC damage, accelerating the development of LN. This review summarized the damage mechanisms and the in situ immune regulation of MCs in LN, facilitating the current drug research for exploring clinical treatment strategies.
Collapse
Affiliation(s)
- Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yixin Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Weijie Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunhong Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China,*Correspondence: Zhenke Wen, ; Chunhong Wang,
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China,*Correspondence: Zhenke Wen, ; Chunhong Wang,
| |
Collapse
|
5
|
New insights for regulatory T cell in lupus nephritis. Clin Exp Rheumatol 2022; 21:103134. [PMID: 35690245 DOI: 10.1016/j.autrev.2022.103134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Lupus nephritis (LN) is a complicated autoimmune disease marked by out-of-balance of immunological reactivity and immune tolerance. With the advance of immunotherapy in human disease, regulatory T (Treg) cells serve a crucial function in immune tolerance regulation and are characterized with suppression function as one of the most important research hotspots for autoimmunity diseases. In recent years, Treg cells have shown the robust potential for treatment to autoimmunity diseases like type I diabetic mellitus and rheumatoid arthritis. However, Treg cell therapy is poorly understood for LN patients. This review aims to summarize new insights for Treg-targeting techniques in LN patients. The current data regarding the biology features of Treg cells in LN patients is discussed. The propotion of Treg cells in LN patients have contradictory results regarding the use of different molecular markers. Forkhead box protein 3 (FOXP3) are hallmarks for control function of Treg cells. Treg cells can directly or indirectly target T cells and B cells by playing supressive role. The molecular targets for Treg cells in LN patients includes gene variants, miRNAs, and inflammatory related factors. Based on the current knowledge of Treg cell biology, several therapeutic strategies could be used to treat LN: cell transplantation, low dose IL-2 treatment, drugs target the balance of Treg and type 17 T helper (Th17) cells, and Chinese medicine.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Mesangial cells are critical for the proper function of the glomerulus, playing roles in structural support and injury repair. However, they are also early responders to glomerular immune complex deposition and contribute to inflammation and fibrosis in lupus nephritis. This review highlights recent studies identifying signaling pathways and mediators in mesangial cell response to lupus-relevant stimuli. RECENT FINDINGS Anti-dsDNA antibodies, serum, or plasma from individuals with lupus nephritis, or specific pathologic factors activated multiple signaling pathways. These pathways largely included JAK/STAT/SOCS, PI3K/AKT, and MAPK and led to induction of proliferation and expression of multiple proinflammatory cytokines, growth factors, and profibrotic factors. NFκB activation was a common mediator of response. Mesangial cells proliferate and express a wide array of proinflammatory/profibrotic factors in response to a variety of lupus-relevant pathologic stimuli. While some of the responses are similar, the mechanisms involved appear to be diverse depending on the stimulus. Future studies are needed to fully elucidate these mechanisms with respect to the diverse milieu of stimuli.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas St. CSB 822 MSC 637, Charleston, SC, 29425-6370, USA.
| |
Collapse
|
7
|
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by diverse serological autoantibodies. Anti-dsDNA antibodies are involved in multiple organ damage, especially the kidney, skin, and central nervous system. Anti-dsDNA antibodies play a pivotal role in SLE, and researchers have developed therapeutic strategies targeting these antibodies. Approaches to reduce anti-dsDNA antibodies via B cell targeted biologics against B cell surface antigens, B cell survival factors, or Bruton's tyrosine kinase have effectively eliminated B cells. However, their non-specific depletion hampers normal immune system functioning and limits the therapeutic benefits. Thus, scientists have attempted anti-dsDNA antibodies or lupus-specific strategies, such as the immature dendritic cell vaccine and immunoadsorption. Recently, synthetic mimic peptides (hCDR1, pCONs, DWEYS, FISLE-412, and ALW) that directly block anti-dsDNA autoantibodies have attracted attention, which could ameliorate lupus, decrease the serological autoantibody titer, reduce the deposition of renal autoantibodies, and improve pathological performance. These potent small peptide molecules are well tolerated, non-toxic, and non-immunogenic, which have demonstrated a benign safety profile and are expected to be hopeful candidates for SLE management. In this review, we clarify the role of anti-dsDNA antibodies in SLE, mainly focus on the current strategies targeting anti-dsDNA antibodies, and discuss their potential clinical value.
Collapse
|
8
|
Wang W, Yue C, Gao S, Li S, Zhou J, Chen J, Fu J, Sun W, Hua C. Promising Roles of Exosomal microRNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:757096. [PMID: 34966383 PMCID: PMC8710456 DOI: 10.3389/fimmu.2021.757096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianan Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Chen
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiahong Fu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Sundararaj K, Rodgers J, Angel P, Wolf B, Nowling TK. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021; 162:418-433. [PMID: 33314123 DOI: 10.1111/imm.13294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, we demonstrated neuraminidase (NEU) activity or NEU1 expression, specifically, is increased in the kidneys of lupus mice and urine of human patients with nephritis. Additionally, NEU activity mediates IL-6 secretion from lupus-prone MRL/lpr primary mouse mesangial cells (MCs) in response to an IgG mimic. IL-6 mediates glomerular inflammation and promotes tissue damage in patients and mouse strains with lupus nephritis. This study further elucidates the mechanisms by which NEU activity and NEU1 specifically mediates the release of IL-6 and other cytokines from lupus-prone MCs. We demonstrate significantly increased release of multiple cytokines and NEU activity in MRL/lpr MCs in response to serum from MRL/lpr mice (lupus serum). Inhibiting NEU activity significantly reduced secretion of three of those cytokines: IL-6, GM-CSF and MIP1α. Message levels of Il-6 and Gm-csf were also increased in response to lupus serum and reduced when NEU activity was inhibited. Neutralizing antibodies to cell-surface receptors and MAPK inhibitors in lupus serum- or LPS-stimulated MCs indicate TLR4 and p38 or ERK MAP kinase signalling play key roles in the NEU-mediated secretion of IL-6. Significantly reduced IL-6 release was observed in C57BL/6 (B6) Neu1+/+ primary MCs compared with wild-type (Neu1+/+) B6 MCs in response to lupus serum. Additional results show inhibiting NEU activity significantly increases sialic acid-containing N-glycan levels. Together, our novel observations support a role for NEU activity, and specifically NEU1, in mediating release of IL-6 from lupus-prone MCs in response to lupus serum through a TLR4-p38/ERK MAPK signalling pathway that likely includes desialylation of glycoproteins.
Collapse
Affiliation(s)
- Kamala Sundararaj
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Jessalyn Rodgers
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
You G, Cao H, Yan L, He P, Wang Y, Liu B, Shao F. MicroRNA-10a-3p mediates Th17/Treg cell balance and improves renal injury by inhibiting REG3A in lupus nephritis. Int Immunopharmacol 2020; 88:106891. [PMID: 32853927 DOI: 10.1016/j.intimp.2020.106891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The therapeutic approaches guided toward microRNAs (miRNAs) have been extensively explored in lupus nephritis (LN), but the precise position of miR-10a-3p posted in disease is not translated thoroughly. Therein, this work pivoting on miR-10a-3p was launched with the involvement of regenerating islet-derived 3 α (REG3A). METHODS Peripheral blood samples from LN patients and healthy controls (n = 132) were collected. miR-10a-3p and REG3A expression in peripheral blood mononuclear cells were tested. Mice were injected with miR-10a-3p agomir, miR-10a-3p antagomir and/or REG3A low expression vector for presentation of their roles in renal function, T helper cell 17 (Th17)/regulatory cell (Treg) balance, renal pathological damage, JAK2/STAT3 pathway activation and renal injury in LN. The relation between miR-10a-3p and REG3A was tested. RESULTS MiR-10a-3p was down-regulated while REG3A was up-regulated in LN. Restoring miR-10a-3p or silencing REG3A decreased Th17/Treg ratio in CD4+ T cells, inhibited JAK2/STAT3 pathway activation, ameliorated renal function, improved renal pathological damage and alleviated renal injury in LN. REG3A depletion negated the effects of down-regulated miR-10a-3p on LN. MiR-10a-3p targeted REG3A. CONCLUSION The work elucidates that miR-10a-3p restoration decreases Th17/Treg ratio and attenuates renal injury in LN via inhibiting REG3A and the activation of JAK2/STAT3 pathway, which renews the therapeutic reference for LN management.
Collapse
Affiliation(s)
- Guanqiao You
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Pan He
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Bing Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou 450003, Henan, PR China.
| |
Collapse
|
11
|
Dang CP, Leelahavanichkul A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One 2020; 15:e0236038. [PMID: 32658933 PMCID: PMC7357756 DOI: 10.1371/journal.pone.0236038] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
The attenuation of hyper-inflammation in sepsis with the administration of anti-inflammatory macrophages is an interesting adjuvant therapy for sepsis. Because the induction of anti-inflammatory macrophages by microRNA (miR), a regulator of mRNA, has been mentioned, the exploration on miR-induced anti-inflammatory macrophages was performed. The over-expression of miR-223 and miR-146a in RAW264.7 induced M2 macrophage-polarization (anti-inflammatory macrophages) as evaluated by the enhanced expression of Arginase-1 and Fizz. However, miR-223 over-expressed cells demonstrated the more potent anti-inflammatory property against LPS stimulation as lesser iNOS expression, lower supernatant IL-6 and higher supernatant IL-10 compared with miR-146a over-expressed cells. Interestingly, LPS stimulation in miR-223 over-expressed cells, compared with LPS-stimulated control cells, demonstrated lower activity of glycolysis pathway and higher mitochondrial respiration, as evaluated by the extracellular flux analysis, and also down-regulated HIF-1α, an important enzyme of glycolysis pathway. In addition, the administration of miR-223 over-expressed macrophages with IL-4 pre-conditioning, but not IL-4 stimulated control cells, attenuated sepsis severity in LPS injected mice as evaluated by serum creatinine, liver enzymes, lung histology and serum cytokines. In conclusion, miR-223 interfered with the glycolysis pathway through the down-regulation of HIF-1α, resulting in the anti-inflammatory status. The over-expression of miR-223 in macrophages prevented the conversion into M1 macrophage polarization after LPS stimulation. The administration of miR-223 over-expressed macrophages, with IL-4 preconditioning, attenuated sepsis severity in LPS model. Hence, a proof of concept in the induction of anti-inflammatory macrophages through the cell-energy interference for sepsis treatment was proposed as a basis of cell-based therapy in sepsis.
Collapse
Affiliation(s)
- Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
12
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
13
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
14
|
Vaher H, Runnel T, Urgard E, Aab A, Carreras Badosa G, Maslovskaja J, Abram K, Raam L, Kaldvee B, Annilo T, Tkaczyk ER, Maimets T, Akdis CA, Kingo K, Rebane A. miR-10a-5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation. Allergy 2019; 74:2146-2156. [PMID: 31049964 PMCID: PMC6817370 DOI: 10.1111/all.13849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND miR-10a-5p has been shown to regulate cancer cell proliferation and invasiveness and endothelial cell inflammatory responses. The function of miR-10a-5p in the skin has not been previously studied. The aim of the current study was to examine miR-10a-5p expression, regulation, and function in keratinocytes (KCs) in association with atopic dermatitis (AD). METHODS The expression of miR-10a-5p and its target genes was analyzed using RT-qPCR, mRNA array analysis, in situ hybridization, and immunofluorescence. The transfection of miRNA mimics, cell cycle distribution analysis, and luciferase assays was used to study miR-10a-5p functions in human primary KCs. RESULTS miR-10a-5p was found to be upregulated in lesional skin from patients with AD and in proliferating KCs. Array and pathway analysis of IL-1β-stimulated KCs revealed that miR-10a-5p inhibited many genes that affect cell cycle progression and only a few inflammation-related genes. Accordingly, fewer cells in S-phase and reduced proliferation were detected as characteristics of miR-10a-5p-transfected KCs. The influence of miR-10a-5p on cell proliferation was also evident in KCs induced by AD-related cytokines, including IL-4, IL-17, and IL-1β, as measured by the capacity to strongly suppress the expression of the proliferation marker Ki-67. Among AD-related putative direct target genes, we verified hyaluronan synthase 3, a damage-associated positive regulator of KC migration and proliferation, as a direct target of miR-10a-5p. CONCLUSIONS miR-10a-5p inhibits KC proliferation and directly targets hyaluronan synthase 3 and thereby may modulate AD-associated processes in the skin.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
- Institute of Molecular and Cellular Biology, University of
Tartu, Tartu, Estonia
| | - Egon Urgard
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| | - Alar Aab
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| | - Gemma Carreras Badosa
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Department of Dermatology and Venereology, University of
Tartu, Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, University of
Tartu, Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bret Kaldvee
- Department of Dermatology and Venereology, University of
Tartu, Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Center, Institute of Genomics, University
of Tartu, Tartu, Estonia
| | - Eric R. Tkaczyk
- Department of Veterans Affairs, Nashville TN and Vanderbilt Dermatology Translational Research Clinic, Nashville TN
| | - Toivo Maimets
- Institute of Molecular and Cellular Biology, University of
Tartu, Tartu, Estonia
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF),
University of Zürich, Davos, Switzerland
| | - Külli Kingo
- Department of Dermatology and Venereology, University of
Tartu, Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine,
University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies. Front Immunol 2019; 10:1667. [PMID: 31379858 PMCID: PMC6650533 DOI: 10.3389/fimmu.2019.01667] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-titer serological autoantibodies, including antibodies that bind to double-stranded DNA (dsDNA). The origin, specificity, and pathogenicity of anti-dsDNA antibodies have been studied from a wider perspective. These autoantibodies have been suggested to contribute to multiple end-organ injuries, especially to lupus nephritis, in patients with SLE. Moreover, serum levels of anti-DNA antibodies fluctuate with disease activity in patients with SLE. By directly binding to self-antigens or indirectly forming immune complexes, anti-dsDNA antibodies can accumulate in the glomerular and tubular basement membrane. These autoantibodies can also trigger the complement cascade, penetrate into living cells, modulate gene expression, and even induce profibrotic phenotypes of renal cells. In addition, the expression of suppressor of cytokine signaling 1 is reduced by anti-DNA antibodies simultaneously with upregulation of profibrotic genes. Anti-dsDNA antibodies may even participate in the pathogenesis of SLE by catalyzing hydrolysis of certain DNA molecules or peptides in cells. Recently, anti-dsDNA antibodies have been explored in greater depth as a therapeutic target in the management of SLE. A substantial amount of data indicates that blockade of pathogenic anti-dsDNA antibodies can prevent or even reverse organ damage in murine models of SLE. This review focuses on the recent research advances regarding the origin, specificity, classification, and pathogenicity of anti-dsDNA antibodies and highlights the emerging therapies associated with them.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W. microRNAs in chronic kidney disease. Clin Chim Acta 2019; 491:59-65. [PMID: 30639583 DOI: 10.1016/j.cca.2019.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) results in high morbidity and mortality worldwide causing a huge socioeconomic burden. MicroRNA (miRNA) exert critical regulatory functions by targeting downstream genes and have been associated with many pathophysiologic processes including CKD. In fact, many studies have shown that the expression of various miRNAs was significantly changed in CKD. Current investigations have focused on revealing the relationship between miRNAs and CKD states including diabetic nephropathy, lupus nephritis, focal segmental glomerulosclerosis and IgA nephropathy. In this review, we summarize the latest advances elucidating miRNA involvement in the progression of CKD and demonstrate that miRNAs have the potential to be effective biomarkers and therapeutic targets for subsequent treatment.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China.
| |
Collapse
|
17
|
Gao L, Yang X, Zhang H, Yu M, Long J, Yang T. Inhibition of miR-10a-5p suppresses cholangiocarcinoma cell growth through downregulation of Akt pathway. Onco Targets Ther 2018; 11:6981-6994. [PMID: 30410355 PMCID: PMC6199228 DOI: 10.2147/ott.s182225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Backgrounds Cholangiocarcinoma (CCA) is epithelial cell malignancy with very poor prognosis. A lot of patients were diagnosed at advanced stage of CCA and no risk factors were identified. There are limited treatment options available for the management of CCA patients. It is urgent to develop effective targeted therapies for the treatment of CCA. miRNAs are small noncoding RNAs that negatively regulate the target genes. In this study, we investigated the role and mechanism of miR-10a-5p in CCA. Methods Human CCA cell lines (CCLP1 and SG-231) were transfected with miR-10a-5p mimic or miR-10a-5p inhibitor. qRT-PCR was performed to detect the miR-10a-5p level. Proliferation, colony formation, and apoptosis were analyzed. Luciferase reporter assay was used to explore the targeting of miR-10a-5p on PTEN. For in vivo tumorigenesis assay, CCLP1 cells with stable knockdown of miR-10a-5p or control CCLP1 cells were injected subcutaneously into the flank of the SCID mice and animals were monitored for tumor growth. Results miR-10a-5p expression was significantly upregulated in human CCA cell lines (CCLP1 and SG-231). Inhibition of miR-10a-5p significantly suppressed the proliferation and induced apoptosis in CCLP1 and SG-231. PTEN is a direct target of miR-10a-5p in CCA cells. Conclusion Inhibition of miR-10a-5p can decrease CCA cells growth by downregulation of Akt pathway. These results indicate that miR-10a-5p may serve as a potential target for the treatment of CCA and help to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Lili Gao
- Center for Medical Research and Innovation,
| | | | | | - Minghua Yu
- Department of Medical Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Jianting Long
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China,
| | - Tao Yang
- Center for Medical Research and Innovation,
| |
Collapse
|
18
|
An Y, Gao S, Zhao WC, Qiu BA, Xia NX, Zhang PJ, Fan ZP. Novel serum microRNAs panel on the diagnostic and prognostic implications of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2596-2604. [PMID: 29962816 PMCID: PMC6021775 DOI: 10.3748/wjg.v24.i24.2596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine a panel of serum microRNAs (miRNAs) that could be used as novel biomarkers for diagnosis of hepatocellular carcinoma (HCC).
METHODS We initially screened 9 out of 754 serum miRNAs by TaqMan Low Density Array in two pooled samples respectively from 35 HCC and 35 normal controls, and then validated individually by RT-qPCR in another 114 patients and 114 controls arranged in two phases. The changes of the selected miRNAs after operation and their prognostic value were examined.
RESULTS miR-375, miR-10a, miR-122 and miR-423 were found to be significantly higher in HCC than in controls (P < 0.0001), and the area under the receiver-operating-characteristic curve for the 4-miRNA panel was 0.995 (95%CI: 0.985-1). All the four miRNAs were significantly reduced after surgical removal of the tumors (P < 0.0001), while still higher than normal controls (at least P < 0.05)
CONCLUSION The four serum miRNAs (miR-375, miR-10a, miR-122 and miR-423) could potentially serve as novel biomarkers for the diagnostic and prognostic of HCC.
Collapse
Affiliation(s)
- Yang An
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Song Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wen-Chao Zhao
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Bao-An Qiu
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Nian-Xin Xia
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhen-Ping Fan
- The Liver Disease Center for Cadre Medical Care, Beijing 302 Military Hospital, Beijing 100039, China
| |
Collapse
|