1
|
Molavinia S, Dayer D, Khodayar MJ, Goudarzi G, Salehcheh M. Suspended particulate matter promotes epithelial-to-mesenchymal transition in alveolar epithelial cells via TGF-β1-mediated ROS/IL-8/SMAD3 axis. J Environ Sci (China) 2024; 141:139-150. [PMID: 38408815 DOI: 10.1016/j.jes.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 02/28/2024]
Abstract
Epidemiological evidence presents that dust storms are related to respiratory diseases, such as pulmonary fibrosis (PF). However, the precise underlying mechanisms of SPM-elicited adverse effects still need to be investigated. Epithelial-mesenchymal transition (EMT) process is a characteristic of PF. We discussed whether suspended particulate matter (SPM) is involved in EMT induction via transforming growth factor-β1 (TGF-β1). In this study, a detailed elemental analysis (55 elements), particle size, and morphology were determined. To investigate the toxicity of SPM, an MTT test was performed to detect cell viability. Next, A549 cells were exposed to selected concentrations of SPM (20 and 40 µg/mL) for single and repeated exposures. The DCFH-DA assay showed that exposure to SPM could produce reactive oxygen species (ROS). The ELISA assay demonstrated increased levels of interleukin-8 (IL-8) and TGF-β1 in the supernatant. Western blot was used to detect the expression of proteins associated with EMT and the SMAD3-dependent pathway. Results of western blot demonstrated that E-cadherin was reduced, whereas p-SMAD3, vimentin, and α-smooth muscle actin were elevated. Our findings indicated that SPM triggered EMT by induction of oxidative stress, inflammation, and the TGF-β1/SMAD3 pathway activation.
Collapse
Affiliation(s)
- Shahrzad Molavinia
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Iranian Scientific Association of Clean Air, Tehran, Iran
| | - Maryam Salehcheh
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Qiu Y, Que Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. Drugs targeting CTGF in the treatment of pulmonary fibrosis. J Cell Mol Med 2024; 28:e18448. [PMID: 38774993 PMCID: PMC11109635 DOI: 10.1111/jcmm.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.
Collapse
Affiliation(s)
- Yudan Qiu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yueyue Que
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Zheyu Ding
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Shanshan Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Rong Wei
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jianing Xia
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yingying Lin
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
5
|
Dsouza NN, Alampady V, Baby K, Maity S, Byregowda BH, Nayak Y. Thalidomide interaction with inflammation in idiopathic pulmonary fibrosis. Inflammopharmacology 2023; 31:1167-1182. [PMID: 36966238 PMCID: PMC10039777 DOI: 10.1007/s10787-023-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-β (TGF-β) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-β, interleukins (IL-6 and IL-1β), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-β/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nikitha Naomi Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varun Alampady
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Pugnetti L, Curci D, Bidoli C, Gerdol M, Celsi F, Renzo S, Paci M, Lega S, Nonnis M, Maestro A, Brumatti LV, Lionetti P, Pallavicini A, Licastro D, Edomi P, Decorti G, Stocco G, Lucafò M, Bramuzzo M. Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease. Biomed Pharmacother 2023; 164:114927. [PMID: 37257228 DOI: 10.1016/j.biopha.2023.114927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.
Collapse
Affiliation(s)
- Letizia Pugnetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sara Renzo
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Monica Paci
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Sara Lega
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Martina Nonnis
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy; Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| | | | | | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
7
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. RSV infection does not induce EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532506. [PMID: 36993657 PMCID: PMC10055011 DOI: 10.1101/2023.03.13.532506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-β1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
8
|
Miao Y, Li X, Yang Y, Zhang J, Chen L, Zhang Q, Li W, Liu Y, Zhang X, Gu R, Yang C. Entrectinib ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β1 signaling pathway. Int Immunopharmacol 2022; 113:109427. [DOI: 10.1016/j.intimp.2022.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
|
9
|
Zou J, Zhou X, Chen X, Ma Y, Yu R. Shenkang Injection for Treating Renal Fibrosis-Metabonomics and Regulation of E3 Ubiquitin Ligase Smurfs on TGF-β/Smads Signal Transduction. Front Pharmacol 2022; 13:849832. [PMID: 35721120 PMCID: PMC9201572 DOI: 10.3389/fphar.2022.849832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
At present, TGF-β is the most critical fibrogenic factor known. Smad ubiquitin ligase Smurfs play an important role in the regulation of the TGF-/Smads signaling pathway, which is linked to metabolite changes in renal fibrosis. Previous studies have shown that Shenkang injection can prevent and treat chronic kidney disease through multiple channels of action. However, the precise relationship between Shenkang injection and the regulation of the TGF-/Smads signaling pathway in the treatment of chronic kidney disease is unknown. Here, we evaluated the pharmacological effects of Shenkang injection on ubiquitination and metabolic changes of the TGF-β/Smads signaling pathway in UUO mice using pathology-related indicators, immunoprecipitation, subcellular co-location, and metabonomics analysis. Our findings indicate that Shenkang injection can promote nuclear translocation of Smurf1 and Smurf2 to TGF- membrane receptors TR-I and Smad2 and ubiquitinated degradation of these proteins. Furthermore, the formation of TβR-I/TβR-II, TβR-I/Smad2, and TβR-I/Smad3 complexes was inhibited to negatively regulate the TGF-β/Smad signaling pathway induced renal tubular epithelial transdifferentiation (EMT). The EMT process is not very relevant in vivo, although it is clear that TGF-β induces EMT in cultured cells, which has been demonstrated by numerous teams around the world. However, this is not the case with the in vivo models of kidney fibrosis, especially UUO. In addition, Shenkang injection can improve amino acid metabolism, purine metabolism, and fatty acid metabolism disorders.
Collapse
Affiliation(s)
- Junju Zou
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotao Zhou
- School of Basic Medicine, Chengdu University of Chinese Medicine, Chengdu, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuerong Ma
- School of Basic Medicine, Chengdu University of Chinese Medicine, Chengdu, China
| | - Rong Yu
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Elhady SS, Goda MS, Mehanna ET, Elfaky MA, Koshak AE, Noor AO, Bogari HA, Malatani RT, Abdelhameed RFA, Wahba AS. Meleagrin Isolated from the Red Sea Fungus Penicillium chrysogenum Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice. Biomedicines 2022; 10:biomedicines10051164. [PMID: 35625905 PMCID: PMC9138525 DOI: 10.3390/biomedicines10051164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
The Red Sea marine fungus Penicillium chrysogenum (Family: Ascomycota) comprises a panel of chemically diverse natural metabolites. A meleagrin alkaloid was isolated from deep-sediment-derived P. chrysogenum Strain S003 and has been reported to exert antibacterial and cytotoxic activities. The present study aimed to explore the therapeutic potential of meleagrin on pulmonary fibrosis. Lung fibrosis was induced in mice by a single intratracheal instillation of 2.5 mg/kg bleomycin. Mice were given 5 mg/kg meleagrin daily either for 3 weeks after bleomycin administration in the treatment group or 2 weeks before and 3 weeks after bleomycin administration in the protection group. Bleomycin triggered excessive ROS production, inflammatory infiltration, collagen overproduction and fibrosis. Bleomycin-induced pulmonary fibrosis was attenuated by meleagrin. Meleagrin was noted to restore the oxidant–antioxidant balance, as evidenced by lower MDA contents and higher levels of SOD and catalase activities and GSH content compared to the bleomycin group. Meleagrin also activated the Nrf2/HO-1 antioxidant signaling pathway and inhibited TLR4 and NF-κB gene expression, with a subsequent decreased release of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Additionally, meleagrin inhibited bleomycin-induced apoptosis by abating the activities of pro-apoptotic proteins Bax and caspase-3 while elevating Bcl2. Furthermore, it suppressed the gene expression of α-SMA, TGF-β1, Smad-2, type I collagen and MMP-9, with a concomitant decrease in the protein levels of TGF-β1, α-SMA, phosphorylated Smad-2, MMP-9, elastin and fibronectin. This study revealed that meleagrin’s protective effects against bleomycin-induced pulmonary fibrosis are attributed to its antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties. Notably, the use of meleagrin as a protective agent against bleomycin-induced lung fibrosis was more efficient than its use as a treatment agent.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
11
|
Li C, Xia J, Yao W, Yang G, Tian Y, Qi Y, Hao C. Mechanism of LncRNA XIST/ miR-101-3p/ZEB1 axis in EMT associated with silicosis. Toxicol Lett 2022; 360:11-19. [DOI: 10.1016/j.toxlet.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
12
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
13
|
Phosphate Toxicity and Epithelial to Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:73-84. [DOI: 10.1007/978-3-030-91623-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Cheng WH, Kao SY, Chen CL, Yuliani FS, Lin LY, Lin CH, Chen BC. Amphiregulin induces CCN2 and fibronectin expression by TGF-β through EGFR-dependent pathway in lung epithelial cells. Respir Res 2022; 23:381. [PMID: 36578010 PMCID: PMC9797108 DOI: 10.1186/s12931-022-02285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Airway fibrosis is one of the pathological characteristics of severe asthma. Transforming growth factor (TGF)-β has been known to promote epithelial-mesenchymal transition formation and to play a role in the progression of tissue fibrosis. Cellular communication network factor 2 (CCN2) and fibronectin (FN) are well-known markers of EMT and fibrosis. However, whether AREG is involved in TGF-β-induced CCN2 and FN expression in human lung epithelial cells is unknown. METHODS AREG and FN were analyzed by immunofluorescence staining on ovalbumin-challenged mice. CCN2 and FN expression were evaluated in human lung epithelial (A459) cells following TGF or AREG treatment for the indicated times. Secreted AREG from A549 cells was detected by ELISA. Cell migration was observed by a wound healing assay. Chromatin immunoprecipitation was used to detect the c-Jun binding to the CCN2 promoter. RESULTS AREG and FN expression colocalized in lung tissues from mice with ovalbumin-induced asthma by immunofluorescence staining. Moreover, TGF-β caused the release of AREG from A549 cells into the medium. Smad3 siRNA down-regulated AREG expression. AREG also stimulated CCN2 and FN expression, JNK and c-Jun phosphorylation, and cell migration in A549 cells. AREG small interfering (si) RNA inhibited TGF-β-induced expression of CCN2, FN, and cell migration. Furthermore, AREG-induced CCN2 and FN expression were inhibited by EGFR siRNA, a JNK inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). EGFR siRNA attenuated AREG-induced JNK and c-Jun phosphorylation. Moreover, SP600125 downregulated AREG-induced c-Jun phosphorylation. CONCLUSION These results suggested that AREG mediates the TGF-β-induced EMT in human lung epithelial cells through EGFR/JNK/AP-1 activation. Understanding the role of AREG in the EMT could foster the development of therapeutic strategies for airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Wun-Hao Cheng
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ya Kao
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Chia-Ling Chen
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Fara Silvia Yuliani
- grid.412896.00000 0000 9337 0481International Graduate Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.8570.a0000 0001 2152 4506Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lee-Yuan Lin
- grid.412896.00000 0000 9337 0481School of Medicine, Collage of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- grid.412896.00000 0000 9337 0481Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Bing-Chang Chen
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Isotretinoin and Thalidomide Down-Regulate c-MYC Gene Expression and Modify Proteins Associated with Cancer in Hepatic Cells. Molecules 2021; 26:molecules26195742. [PMID: 34641286 PMCID: PMC8510077 DOI: 10.3390/molecules26195742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. The number of cases is increasing and the trend for the next few years is not encouraging. HCC is usually detected in the advanced stages of the disease, and pharmacological therapies are not entirely effective. For this reason, it is necessary to search for new therapeutic options. The objective of this work was to evaluate the effect of the drugs isotretinoin and thalidomide on c-MYC expression and cancer-related proteins in an HCC cellular model. The expression of c-MYC was measured using RT-qPCR and western blot assays. In addition, luciferase activity assays were performed for the c-MYC promoters P1 and P2 using recombinant plasmids. Dose-response-time analyses were performed for isotretinoin or thalidomide in cells transfected with the c-MYC promoters. Finally, a proteome profile analysis of cells exposed to these two drugs was performed and the results were validated by western blot. We demonstrated that in HepG2 cells, isotretinoin and thalidomide reduced c-MYC mRNA expression levels, but this decrease in expression was linked to the regulation of P1 and P1-P2 c-MYC promoter activity in isotretinoin only. Thalidomide did not exert any effect on c-MYC promoters. Also, isotretinoin and thalidomide were capable of inducing and repressing proteins associated with cancer. In conclusion, isotretinoin and thalidomide down-regulate c-MYC mRNA expression and this is partially due to P1 or P2 promoter activity, suggesting that these drugs could be promising options for modulating the expression of oncogenes and tumor suppressor genes in HCC.
Collapse
|
16
|
Aydinlik S, Uvez A, Kiyan HT, Gurel-Gurevin E, Yilmaz VT, Ulukaya E, Armutak EI. Palladium (II) complex and thalidomide intercept angiogenic signaling via targeting FAK/Src and Erk/Akt/PLCγ dependent autophagy pathways in human umbilical vein endothelial cells. Microvasc Res 2021; 138:104229. [PMID: 34339726 DOI: 10.1016/j.mvr.2021.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 μM) and thalidomide (0.1-400 μM) alone by using ATP assay for 48 h. Palladium (II) complex was found to inhibit growth statistically significant in a dose-dependent manner in HUVECs and promoted PARP-1 cleavage through the production of ROS. On the other hand, thalidomide did not cause any significant change in cell viability. Moreover, cell death was observed to be manifested as late apoptosis due to Annexin V/SYTOX staining after palladium (II) complex treatment however, thalidomide did not demonstrate similar results. Thalidomide and palladium (II) complex also suppressed HUVEC migration and capillary-like structure tube formation in vitro in a time-dependent manner. Palladium (II) complex (5 mg/ml) treatment showed a strong antiangiogenic effect similar to positive control thalidomide (5 mg/ml) and successfully disrupted the vasculature and reduced the thickness of the vessels compared to control (agar). Furthermore, suppression of autophagy enhanced the cell death and anti-angiogenic effect of thalidomide and palladium (II) complex. We also showed that being treated with thalidomide and palladium (II) complex inhibited phosphorylation of the signaling regulators downstream of the VEGFR2. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the FAK/Src/Akt/ERK1/2 signaling pathway. Our results also indicate that PLC-γ1 phosphorylation leads to activation of p-Akt and p-Erk1/2 which cause stimulation on cell proliferation at lower doses. Hence, we demonstrated that palladium (II) and thalidomide can induce cell death via the Erk/Akt/PLCγ signaling pathway and that this pathway might be a novel mechanism.
Collapse
Affiliation(s)
- Seyma Aydinlik
- Department of Biology, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Ayca Uvez
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey
| | - Hulya Tuba Kiyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Ebru Gurel-Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Veysel Turan Yilmaz
- Department of Chemistry, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey.
| |
Collapse
|
17
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Astragaloside IV attenuates high glucose-induced EMT by inhibiting the TGF-β/Smad pathway in renal proximal tubular epithelial cells. Biosci Rep 2021; 40:225214. [PMID: 32515466 PMCID: PMC7313447 DOI: 10.1042/bsr20190987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, we examined the molecular mechanism of astragaloside IV (AS-IV) in high glucose (HG)-induced epithelial-to-mesenchymal transition (EMT) in renal proximal tubular epithelial cells (PTCs). NRK-52E cell viability and apoptosis were determined by the cell counting kit-8 (CCK-8) assay and flow cytometric analysis, respectively. Expressions of E-cadherin, N-cadherin, vimentin, and occludin were measured by Western blot, and those of E-cadherin and N-cadherin were additionally measured by immunofluorescence analysis. Transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The expressions of Smad2, Smad3, phosphorylated-Smad2 (p-Smad2), and p-Smad3 were measured using Western blot. We found that AS-IV could recover NRK-52E cell viability and inhibit HG-induced cell apoptosis. TGF-β1, α-SMA, Smad2, Smad3, p-Smad2, and p-Smad3 expressions were decreased in the AS-IV-treated groups compared with the HG group. Moreover, the expressions of E-cadherin and occludin were remarkably up-regulated and those of N-cadherin and vimentin were down-regulated in the AS-IV-treated groups compared with the HG group. Interestingly, the TGF-β1 activator SRI-011381 hydrochloride had an antagonistic effect to AS-IV on HG-induced EMT behavior. In conclusion, AS-IV attenuates HG-induced EMT by inhibiting the TGF-β/Smad pathway in renal PTCs.
Collapse
|
19
|
Tang KW, Hsu WL, Chen CR, Tsai MH, Yen CJ, Tseng CH. Discovery of triazolyl thalidomide derivatives as anti-fibrosis agents. NEW J CHEM 2021. [DOI: 10.1039/d0nj03139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triazolyl thalidomide derivative 10e inhibits fibrogenesis by SOCE and TGF-β1/SMAD2/3 signaling pathways.
Collapse
Affiliation(s)
- Kai-Wei Tang
- School of Pharmacy
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Wen-Li Hsu
- Department of Dermatology
- Kaohsiung Municipal Ta-Tung Hospital
- Kaohsiung Medical University
- Kaohsiung 801
- Taiwan
| | - Cheng-Ru Chen
- Department of Fragrance & Cosmetic Science
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care
- College of Humanities and Social Sciences
- National Pingtung University of Science and Technology
- Pingtung 91201
- Taiwan
| | - Chia-Jung Yen
- Regenerative Medicine and Cell Therapy Research Center
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy
- College of Pharmacy
- Kaohsiung Medical University
- Kaohsiung 807
- Taiwan
| |
Collapse
|
20
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
21
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
22
|
He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, Cai F, Tang Y. Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:810-820. [PMID: 32638014 DOI: 10.1093/abbs/gmaa067] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid derived from the root of liquorice, has been reported to possess anti-inflammatory and antioxidant activities. Previous studies have found that ISL plays a crucial role in anti-fibrosis of adipose tissue and renal tissue; however, its effect on pulmonary fibrogenesis has not been demonstrated. In this study, we aimed to explore the roles and the underlying mechanisms of ISL in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell proliferation and migration were determined by MTT and wound healing assay, respectively. The expression levels of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (COLIA1) and fibronectin (FN), microtubule-associated protein light chain 3 (LC3) and related signaling molecules were detected by quantitative real-time PCR, western blot and immunofluorescence assay, correspondingly. EGFP-LC3 transfection was used for autophagy analysis. The results showed that ISL inhibited the TGF-β1-induced proliferation and migration, and down-regulated the expressions of α-SMA, COLIA1 and FN. ISL treatment led to up-regulation of LC3 in TGF-β1-treated MRC-5 cells, accompanied by significant decrease in the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In addition, the inhibitory effects of ISL on TGF-β1-induced fibrogenic features in MRC-5 cells were enhanced by pretreatment with autophagy activator Rapmycin and PI3K/AKT inhibitor LY294002 and reversed by autophagy inhibitor 3-methyladenine and PI3K/AKT activator IGF-1. Taken together, our results demonstrated that ISL could attenuate the fibrogenesis of TGF-β1-treated MRC-5 cells by activating autophagy via suppressing the PI3K/AKT/mTOR pathway. Therefore, ISL holds a great potential to be developed as a novel therapeutic agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xueqin Cheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Leyong Yuan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Fenglin Cai
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
23
|
Nie L, Liu Y, Zhang B, Zhao J. Application of Histone Deacetylase Inhibitors in Renal Interstitial Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:226-235. [PMID: 32903948 DOI: 10.1159/000505295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal interstitial fibrosis is characterized by the accumulation of extracellular matrix proteins, which is a common feature of chronic kidney diseases. SUMMARY Increasing evidence has shown the aberrant expression of histone deacetylases (HDACs) in the development and progression of renal fibrosis, suggesting the possibility of utilizing HDAC inhibitor (HDACi) as therapeutics for renal fibrosis. Recent studies have successfully demonstrated the antifibrotic effects of HDACis in various animal models, which are associated with multiple signaling pathways including TGF-β signaling, EGRF signaling, signal transducer and activator of transcription 3 pathway, and JNK/Notch2 signaling. This review will focus on the utilization of HDACi as antifibrotic agents and its relative molecular mechanisms. KEY MESSAGES HDACis have shown promising results in antifibrotic therapy, and it is rational to anticipate that HDACis will improve clinical outcomes of renal fibrosis in the future.
Collapse
Affiliation(s)
- Ling Nie
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
24
|
Pu Y, Liu YQ, Zhou Y, Qi YF, Liao SP, Miao SK, Zhou LM, Wan LH. Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis. J Cell Mol Med 2020; 24:3656-3668. [PMID: 32064783 PMCID: PMC7131927 DOI: 10.1111/jcmm.15061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/04/2020] [Accepted: 01/21/2020] [Indexed: 02/05/2023] Open
Abstract
Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.
Collapse
Affiliation(s)
- Yue Pu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Qi Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi-Fan Qi
- Grade 2015, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Ping Liao
- Functional Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Kun Miao
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
25
|
Zou M, Zhang G, Zou J, Liu Y, Liu B, Hu X, Cheng Z. Inhibition of the ERK1/2-ubiquitous calpains pathway attenuates experimental pulmonary fibrosis in vivo and in vitro. Exp Cell Res 2020; 391:111886. [PMID: 32017927 DOI: 10.1016/j.yexcr.2020.111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/18/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease with poor prognosis. Epithelial-mesenchymal transition (EMT) has been reported to play an important role in IPF. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, which regulates EMT and oncogenesis, has been implicated in the pathogenesis of IPF. Calpains, Ca2+-dependent cysteine proteinases that mediate controlled proteolysis of many specific substrates including epithelial cell marker E-cadherin, participate in organ fibrosis. Calpain-1 and calpain-2 of calpain family are ubiquitous calpains. ERK1/2 signaling stimulates the ubiquitous calpains activity in cancer development, but whether ERK1/2 signaling mediates the ubiquitous calpains activity in pulmonary fibrosis is unknown. Here we investigated whether inhibition of ERK1/2 signaling and the ubiquitous calpains attenuated experimental pulmonary fibrosis and examined the potential mechanism. Our results showed that inhibition of ERK1/2 signaling and the ubiquitous calpains both attenuated bleomycin (BLM)-induced lung fibrosis in mice. Inhibition of ERK1/2 signaling downregulated the expression of calpain-1 and calpain-2 in vivo and in vitro. We detected decreased E-cadherin expression and increased calpain-1 expression in IPF patients. Inhibition of ERK1/2 signaling and the ubiquitous calpains both suppressed the development of EMT in vivo and in vitro. Our study indicated that inhibition of the ERK1/2-ubiquitous calpains pathway protected pulmonary fibrosis from BLM, possibly via inhibition of EMT. Therefore, targeting ubiquitous calpains may be a potential strategy to attenuate IPF.
Collapse
Affiliation(s)
- Menglin Zou
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guqin Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingfeng Zou
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingxing Hu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhenshun Cheng
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Ruan H, Lv Z, Liu S, Zhang L, Huang K, Gao S, Gan W, Liu X, Zhang S, Helian K, Li X, Zhou H, Yang C. Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-β1 signalling pathway. J Pharm Pharmacol 2019; 72:44-55. [PMID: 31659758 DOI: 10.1111/jphp.13183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Anlotinib hydrochloride (AL3818) is a novel multitarget tyrosine kinase inhibitor which has the same targets as nintedanib, an effective drug has been approved for the treatment of idiopathic pulmonary fibrosis. Here, we examined whether anlotinib could also attenuate bleomycin-induced pulmonary fibrosis in mice and explored the antifibrosis mechanism. METHODS We have evaluated the effect of anlotinib on bleomycin-induced pulmonary fibrosis in mice. Inflammatory cytokines in alveolar lavage fluid including IL-1β, IL-4, IL-6 and TNF-α were determined by ELISA. Biomarkers of oxidative stress were measured by corresponding kit. Histopathologic examination was analysed by H&E staining and immunohistochemistry. In vitro, we investigated whether anlotinib inhibited TGFβ/Smad3 and non-Smad pathways by luciferase assay or Western blotting. We also evaluated whether anlotinib inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) and promoted myofibroblast apoptosis in order to explore the possible molecular mechanism. KEY FINDINGS The results indicated that anlotinib treatment remarkably attenuated inflammation, oxidative stress and pulmonary fibrosis in mouse lungs. Anlotinib could inhibit the TGF-β1 signalling pathway. Additionally, anlotinib not only profoundly inhibited TGF-β1-induced EMT in alveolar epithelial cells, but also simultaneously reduced the proliferation and promoted the apoptosis in fibroblasts. CONCLUSIONS In summary, the results suggest that anlotinib-mediated suppression of pulmonary fibrosis is related to the inhibition of TGF-β1 signalling pathway.
Collapse
Affiliation(s)
- Hao Ruan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ziwei Lv
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuaishuai Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Kai Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shaoyan Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenhua Gan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaowei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shanshan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kaiyue Helian
- College of Health and Medicine and College of Science, Australian National University, Canberra, ACT, Australia
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
27
|
Sun Q, Hu J, Yu P, Zhu Z, Yu R, Ge C, Li C, Wu G, Lin B, Liu G, Liu M, Bian H, Xu H, Jia S. Peptide PD29 treats bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway. Exp Lung Res 2019; 45:123-134. [PMID: 31210057 DOI: 10.1080/01902148.2019.1614696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pulmonary fibrosis (PF) is an end-stage change in lung disease characterized by fibroblast proliferation, massive extracellular matrix (ECM) aggregation with inflammatory damage, and severe structural deterioration. PD29 is a 29-amino acid peptide which has the potential to alleviate PF pathogenesis via three mechanisms: anti-angiogenesis, inhibition of matrix metalloproteinase activities, and inhibition of integrins. In this study, fibrotic lung injuries were induced in SD rats by a single intratracheal instillation of 5 mg/kg bleomycin (BLM). Then, these rats were administered 7.5, 5, or 2.5 mg/kg PD29 daily for 30 days. BLM induced-syndromes including structure distortion, excessive deposition of ECM, excessive inflammatory infiltration, and pro-inflammatory cytokine release were used to evaluate the protective effect of PD-29. Oxidative stress damage in lung tissues was attenuated by PD29 in a dose-dependent manner. The expression of TGF-β1 and the phosphorylation of Smad-2/-3-its downstream targets-were enhanced by BLM and weakened by PD29. In vitro, PD29 inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) and transformation in A549 cells and mouse primary fibroblasts into myofibroblasts. In summary, PD29 reversed EMT and transformation of fibroblasts into myofibroblasts in vitro and prevented PF in vivo possibly by suppressing the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Qingbo Sun
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Jialiang Hu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Pengcheng Yu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Zhaohao Zhu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Ruihe Yu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Chuang Ge
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Chencheng Li
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Guiyue Wu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Bingjing Lin
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Guangpan Liu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Meng Liu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Huan Bian
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Hanmei Xu
- a Jiangsu Provincial Research Center for Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China.,b State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University , Nanjing , Jiangsu , People's Republic of China
| | - Shaochang Jia
- c Department of Bio-Treatment Jinling Hospital , Nanjing , Jiangsu , People's Republic of China
| |
Collapse
|
28
|
Zhang Y, Yang Y, Li X, Chen D, Tang G, Men T. Thalidomide ameliorate graft chronic rejection in an allogenic kidney transplant model. Int Immunopharmacol 2019; 71:32-39. [PMID: 30877871 DOI: 10.1016/j.intimp.2018.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023]
Abstract
Chronic T cell mediated rejection (TCMR), which is characterized by infiltration of the interstitium by T cells and macrophages, still remains a major barrier to the long-term survival of kidney transplantation. Our recent report indicated that thalidomide can attenuate graft arteriosclerosis in an aortic transplant model. In this study, we investigated the effect of thalidomide on chronic TCMR in a rat model of kidney transplantation. Fischer or Lewis kidney allografts were transplanted into Lewis recipient rats. After kidney transplantation, recipient rats were divided into 3 groups: the isograft (Iso) group, allograft (Allo) group, and thalidomide (Tha) group. Rats were sacrificed at 8 weeks after kidney transplantation, and blood and kidney samples were collected. Serum concentrations of creatinine (SCr),interleukin (IL)-2, IL-6, IL-17, and TNF-α in recipients were determined, and flow cytometry was used to detect the percentages of CD4+CD25+, CD4+ Foxp3+and CD4+Th17+ cell subsets in the peripheral blood. Grafts were procured for histopathological examination, and the expressions of α-SMA, transforming growth-β1 (TGF-β1), and VEGF in kidney grafts were investigated using Western blot. Thalidomide treatment significantly ameliorated chronic rejection, reduced renal allograft tissue damage, and decreased serum creatinine levels. Attenuation of chronic TCMR was due to the prohibited production of inflammatory cytokines, altered distribution of the CD4+ CD25+ FoxP3+ regulatory T (Treg) and CD4+ Th17+ cells in the peripheral blood, and decreased expression of TGF-β1, α-SMA, and VEGF in the kidney graft. These results demonstrated that thalidomide could effectively ameliorate chronic TCMR in a rat kidney transplant model.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China; Transplantation Center, The First Affiliate Hospital of Wenzhou Medical University, China
| | - Yu Yang
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China; Department of Urology, The First Affiliate Hospital of Wenzhou Medical University, China
| | - Xianduo Li
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China
| | - Dongdong Chen
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China
| | - Guanbao Tang
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China
| | - Tongyi Men
- Department of Urology, Qianfoshan Hospital Affiliated to Shandong University, China.
| |
Collapse
|
29
|
Yang Y, Hu L, Xia H, Chen L, Cui S, Wang Y, Zhou T, Xiong W, Song L, Li S, Pan S, Xu J, Liu M, Xiao H, Qin L, Shang Y, Yao S. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1013-L1024. [PMID: 30724098 DOI: 10.1152/ajplung.00415.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanical ventilation-induced pulmonary fibrosis plays an important role in the high mortality rate of acute respiratory distress syndrome (ARDS). Resolvin D1 (RvD1) displays potent proresolving activities. Epithelial-mesenchymal transition (EMT) has been proved to be an important pathological feature of lung fibrosis. This study aimed to investigate whether RvD1 can attenuate mechanical ventilation-induced lung fibrosis. Human lung epithelial (BEAS-2B) cells were pretreated with RvD1 for 30 min and exposed to acid for 10 min before being subjected to mechanical stretch for 48 h. C57BL/6 mice were subjected to intratracheal acid aspiration followed by mechanical ventilation 24 h later (peak inspiratory pressure 22 cmH2O, positive end-expiratory pressure 2 cmH2O, and respiratory rate 120 breaths/min for 2 h). RvD1 was injected into mice for 5 consecutive days after mechanical ventilation. Treatment with RvD1 significantly inhibited mechanical stretch-induced mesenchymal markers (vimentin and α-smooth muscle actin) and stimulated epithelial markers (E-cadherin). Tert-butyloxycarbonyl 2 (BOC-2), a lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) antagonist, is known to inhibit ALX/FPR2 function. BOC-2 could reverse the beneficial effects of RvD1. The antifibrotic effect of RvD1 was associated with the suppression of Smad2/3 phosphorylation. This study demonstrated that mechanical stretch could induce EMT and pulmonary fibrosis and that treatment with RvD1 could attenuate mechanical ventilation-induced lung fibrosis, thus highlighting RvD1 as an effective therapeutic agent against pulmonary fibrosis associated with mechanical ventilation.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shunan Cui
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Wei Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Jiqian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Hairong Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| |
Collapse
|
30
|
Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res 2018; 19:136. [PMID: 30021582 PMCID: PMC6052671 DOI: 10.1186/s12931-018-0834-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.
| | - Nigel Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia
| |
Collapse
|
31
|
Fan Y, Wang X, Li Y, Zhao X, Zhou J, Ma X, An D, Jiang H. PAK4 enhances TGF-β1-induced epithelial-mesenchymal transition through activating β-catenin signaling pathway in renal tubular epithelial cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3026-3035. [PMID: 31938428 PMCID: PMC6958077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/25/2018] [Indexed: 06/10/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells contributes to development and progression of renal interstitial fibrosis in CKD. p21-activated kinase 4 (PAK4) is a member of serine/threonine protein kinases but the role of PAK4 in renal fibrosis remains unknown. In this study, we investigated the effects of PAK4 on transforming growth factor-β1 (TGF-β1)-treated human renal tubular epithelial cells (HK-2 cells) and aimed to elucidate probable mechanisms for its fibrogenic effects. Our results revealed that PAK4 was highly expressed in TGF-β1-treated HK-2 cells. Overexpressing PAK4 could further decrease TGF-β1-induced E-cadherin expression and increase TGF-β1-induced fibronectin and vimentin expression in HK-2 cells. In addition, overexpressing PAK4 could promote the translocation of β-catenin from cell membranes into the nucleus in TGF-β1-treated HK-2 cells. These results indicate that PAK4 could enhance TGF-β1-induced EMT in renal tubular epithelial cells. Our findings indicate that PAK4 may promote renal interstitial fibrosis by activating β-catenin signaling pathway. Thus, we suggest that PAK4 might be a potential therapeutic target for ameliorating renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Xv Wang
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Hospital of China Medical UniversityShenyang, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical UniversityShenyang, Liaoning, China
| | - Xing Zhao
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Jieqing Zhou
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Dong An
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Hong Jiang
- Department of Pediatrics, The First Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| |
Collapse
|
32
|
MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018; 9:15252-15265. [PMID: 29632641 PMCID: PMC5880601 DOI: 10.18632/oncotarget.24165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients who received RFA treatment were measured. The protein level of MEIS-1 in tumor specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in vivo growth nude mouse model was examined via PET/CT imaging. Higher level of MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median TTP was 9.0 (95% confidence interval [CI]: 6.8–11.3) months in patients with high MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6–7.4) months in patients with low MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high level of MEIS-1 expression predicts better RFA treatment outcome in HCC.
Collapse
|