1
|
Tang W, Ni R, Wang X, Song L. Different effects of seasonal impoundment and land use change on microbiome in a tributary sediment of the three gorgers reservoir. ENVIRONMENTAL RESEARCH 2024; 259:119559. [PMID: 38969316 DOI: 10.1016/j.envres.2024.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liyan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Grettenberger CL, Sumner DY. Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis. GEOBIOLOGY 2024; 22:e12622. [PMID: 39324846 DOI: 10.1111/gbi.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
The evolution of oxygenic photosynthesis in Cyanobacteria was a transformative event in Earth's history. However, the scientific community disagrees over the duration of the delay between the origin of oxygenic photosynthesis and oxygenation of Earth's atmosphere, with estimates ranging from less than a hundred thousand to more than a billion years, depending on assumptions about rates of oxygen production and fluxes of reductants. Here, we propose a novel ecological hypothesis that a geologically significant delay could have been caused by biomolecular inefficiencies within proto-Cyanobacteria-ancestors of modern Cyanobacteria-that limited their maximum rates of oxygen production. Consideration of evolutionary processes and genomic data suggest to us that proto-cyanobacterial primary productivity was initially limited by photosystem instability, oxidative damage, and photoinhibition rather than nutrients or ecological competition. We propose that during the Archean era, cyanobacterial photosystems experienced protracted evolution, with biomolecular inefficiencies initially limiting primary productivity and oxygen production. Natural selection led to increases in efficiency and thus primary productivity through time. Eventually, evolutionary advances produced sufficient biomolecular efficiency that environmental factors, such as nutrient availability, limited primary productivity and shifted controls on oxygen production from physiological to environmental limitations. If correct, our novel hypothesis predicts a geologically significant interval of time between the first local oxygen production and sufficient production for oxygenation of environments. It also predicts that evolutionary rates were likely highly variable due to strong environmental selection pressures and potentially high mutation rates but low competitive interactions.
Collapse
Affiliation(s)
- Christen L Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Campbell MA, Bauersachs T, Schwark L, Proemse BC, Eberhard RS, Coolen MJL, Grice K. Salinity-driven ecology and diversity changes of heterocytous cyanobacteria in Australian freshwater and coastal-marine microbial mats. Environ Microbiol 2022; 24:6493-6509. [PMID: 36156347 PMCID: PMC10092834 DOI: 10.1111/1462-2920.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
N2 -fixing heterocytous cyanobacteria are considered to play a minor role in sustaining coastal microbial mat communities developing under normal marine to hypersaline conditions. Here, we investigated microbial mats growing under different salinities from freshwater mats of Giblin River (Tasmania) to metahaline and hypersaline mats of Shark Bay (Western Australia). Analyses of genetic (rRNA and mRNA) and biological markers (heterocyte glycolipids) revealed an unexpectedly large diversity of heterocytous cyanobacteria in all the studied microbial mat communities. It was observed that the taxonomic distribution as well as abundance of cyanobacteria is strongly affected by salinity. Low salinity favoured the presence of heterocytous cyanobacteria in freshwater mats, while mats thriving in higher salinities mainly supported the growth unicellular and filamentous non-heterocytous genera. However, even though mRNA transcripts derived from heterocytous cyanobacteria were lower in Shark Bay (<6%) microbial mats, functional analyses revealed that these diazotrophs were transcribing a substantial proportion of the genes involved in biofilm formation and nitrogen fixation. Overall, our data reveal an unexpectedly high diversity of heterocytous cyanobacteria (e.g. Calothrix, Scytonema, Nodularia, Gloeotrichia, Stigonema, Fischerella and Chlorogloeopsis) that had yet to be described in metahaline and hypersaline microbial mats from Shark Bay and that they play a vital role in sustaining the ecosystem functioning of coastal-marine microbial mat systems.
Collapse
Affiliation(s)
- Matthew A Campbell
- Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Thorsten Bauersachs
- Institute of Geosciences, Organic Geochemistry Group, Christian-Albrechts-University, Kiel, Germany
| | - Lorenz Schwark
- Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia.,Institute of Geosciences, Organic Geochemistry Group, Christian-Albrechts-University, Kiel, Germany
| | - Bernadette C Proemse
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia
| | - Rolan S Eberhard
- Natural and Cultural Heritage Division, Department of Primary Industries Parks, Water and Environment, Hobart, Tasmania, Australia
| | - Marco J L Coolen
- Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Kindler GS, Wong HL, Larkum AWD, Johnson M, MacLeod FI, Burns BP. Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiol Ecol 2021; 98:6448473. [PMID: 34865013 DOI: 10.1093/femsec/fiab158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The present study describes for the first time the community composition and functional potential of the microbial mats found in the supratidal, gypsum-rich, and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput metagenomic sequencing of total mat community DNA and complementary analyses using hyperspectral confocal microscopy. Mat communities were dominated by Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group (11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of potentially novel microorganisms including members from the DPANN, Asgard archaea, and Candidate Phyla Radiation, with highest diversity found in the lower regions (∼14-20 mm depth) of the mat. In addition to pathways for major metabolic cycles, a range of putative rhodopsins with previously uncharacterized motifs and functions were identified along with heliorhodopsins and putative schizorhodopsins. Critical microbial interactions were also inferred, and from 117 medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms (CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV resistance were also detected. These analyses have provided a greater understanding of these distinct mat systems in Shark Bay, including key insights into adaptive responses and proposing that photoheterotrophy may be an important lifestyle in Blue Holes.
Collapse
Affiliation(s)
- Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Abstract
Photosynthetic Cyanobacteria and their descendants are the only known organisms capable of oxygenic photosynthesis. Their metabolism permanently changed the Earth’s surface and the evolutionary trajectory of life, but little is known about their evolutionary history. Genomes of the Gloeobacterales, an order of deeply divergent photosynthetic Cyanobacteria, may hold clues about the evolutionary process. However, there are only three published genomes within this order, and it is difficult to make broad inferences based on such little data. Here, I describe five species within the Gloeobacterales retrieved from publicly available databases and examine their photosynthetic gene content and the environments in which Gloeobacterales genomes and 16S rRNA gene sequences are found. The Gloeobacterales contain reduced photosystems and inhabit cold, wet-rock, and low-light environments. They are likely present in low abundances due to their low growth rate. Future searches for Gloeobacterales should target these environments, and samples should be deeply sequenced to capture the low-abundance taxa. Publicly available databases contain undescribed taxa within the Gloeobacterales. However, searching through all available data with current methods is computationally expensive. Therefore, new methods must be developed to search for these and other evolutionarily important taxa. Once identified, these novel photosynthetic Cyanobacteria will help illuminate the origin and evolution of oxygenic photosynthesis. IMPORTANCE Early branching photosynthetic Cyanobacteria such as the Gloeobacterales may provide clues into the evolutionary history of oxygenic photosynthesis, but there are few genomes or cultured taxa from this order. Five new metagenome-assembled genomes suggest that members of the Gloeobacterales all contain reduced photosystems and lack genes associated with thylakoids and circadian rhythms. Their distribution suggests that they may thrive in environments that are marginal for other species, including wet-rock and cold environments. These traits may aid in the discovery and cultivation of novel species in this clade.
Collapse
|
6
|
Precambrian and early Cambrian palaeobiology of India: Quo Vadis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, Burns BP, Coolen MJL. Functional Gene Expression in Shark Bay Hypersaline Microbial Mats: Adaptive Responses. Front Microbiol 2020; 11:560336. [PMID: 33312167 PMCID: PMC7702295 DOI: 10.3389/fmicb.2020.560336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Microbial mat communities possess extensive taxonomic and functional diversity, which drive high metabolic rates and rapid cycling of major elements. Modern microbial mats occurring in hypersaline environments are considered as analogs to extinct geobiological formations dating back to ∼ 3.5 Gyr ago. Despite efforts to understand the diversity and metabolic potential of hypersaline microbial mats in Shark Bay, Western Australia, there has yet to be molecular analyses at the transcriptional level in these microbial communities. In this study, we generated metatranscriptomes for the first time from actively growing mats comparing the type of mat, as well as the influence of diel and seasonal cycles. We observed that the overall gene transcription is strongly influenced by microbial community structure and seasonality. The most transcribed genes were associated with tackling the low nutrient conditions by the uptake of fatty acids, phosphorus, iron, and nickel from the environment as well as with protective mechanisms against elevated salinity conditions and to prevent build-up of ammonium produced by nitrate reducing microorganisms. A range of pathways involved in carbon, nitrogen, and sulfur cycles were identified in mat metatranscriptomes, with anoxygenic photosynthesis and chemoautotrophy using the Arnon–Buchanan cycle inferred as major pathways involved in the carbon cycle. Furthermore, enrichment of active anaerobic pathways (e.g., sulfate reduction, methanogenesis, Wood–Ljungdahl) in smooth mats corroborates previous metagenomic studies and further advocates the potential of these communities as modern analogs of ancient microbialites.
Collapse
Affiliation(s)
- Matthew A Campbell
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Pieter T Visscher
- Departments of Marine Sciences and Geoscience, University of Connecticut, Storrs, CT, United States.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Therese Morris
- Applied Geology, Curtin University, Perth, WA, Australia
| | - Hon Lun Wong
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,Plant Pathology, Washington State University, Pullman, WA, United States.,RAW Molecular Systems (RMS) LLC, Spokane, WA, United States
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Marco J L Coolen
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
8
|
Nitschke MR, Fidalgo C, Simões J, Brandão C, Alves A, Serôdio J, Frommlet JC. Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites. THE ISME JOURNAL 2020; 14:1533-1546. [PMID: 32203119 PMCID: PMC7242451 DOI: 10.1038/s41396-020-0629-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial-algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Cátia Fidalgo
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Simões
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cláudio Brandão
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jörg C Frommlet
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME JOURNAL 2020; 14:2142-2152. [PMID: 32424249 PMCID: PMC7368068 DOI: 10.1038/s41396-020-0668-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Clues to the evolutionary steps producing innovations in oxygenic photosynthesis may be preserved in the genomes of organisms phylogenetically placed between non-photosynthetic Vampirovibrionia (formerly Melainabacteria) and the thylakoid-containing Cyanobacteria. However, only two species with published genomes are known to occupy this phylogenetic space, both within the genus Gloeobacter. Here, we describe nearly complete, metagenome-assembled genomes (MAGs) of an uncultured organism phylogenetically placed near Gloeobacter, for which we propose the name Candidatus Aurora vandensis {Au’ro.ra. L. fem. n. aurora, the goddess of the dawn in Roman mythology; van.de’nsis. N.L. fem. adj. vandensis of Lake Vanda, Antarctica}. The MAG of A. vandensis contains homologs of most genes necessary for oxygenic photosynthesis including key reaction center proteins. Many accessory subunits associated with the photosystems in other species either are missing from the MAG or are poorly conserved. The MAG also lacks homologs of genes associated with the pigments phycocyanoerethrin, phycoeretherin and several structural parts of the phycobilisome. Additional characterization of this organism is expected to inform models of the evolution of oxygenic photosynthesis.
Collapse
|
10
|
Mao Y, Liu Y, Li H, He Q, Ai H, Gu W, Yang G. Distinct responses of planktonic and sedimentary bacterial communities to anthropogenic activities: Case study of a tributary of the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:324-332. [PMID: 31125745 DOI: 10.1016/j.scitotenv.2019.05.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Anthropogenic activities can cause serious negative effects on ecosystems. Despite the ecological significance of bacterial communities, the integrated biogeography of planktonic and sedimentary bacterial communities in response to anthropogenic activities is not adequately understood. Here, we examined environmental parameters and the composition of planktonic and sedimentary bacteria in the Yulin River, a tributary of Three Gorges Reservoir, in response to changes in land use and dam construction. The results revealed that human-induced land use changes enhanced the nutrient concentrations in surface water and dam construction reduced the content of carbon and nitrogen in immediately downstream sediments. Intensified human-dominated land use showed a slight impact on sedimentary bacterial communities but largely reduced the diversity of planktonic bacterial communities. Moreover, human-induced land use changes increased the abundance of genes associated with denitrification, nitrification, and anammox in planktonic bacterial communities by 19.04%, 32.40% and 30.45%, respectively. In dam construction regions, the diversity and nutrient-related metabolic activity of sedimentary bacterial communities immediately downstream of the dam were decreased, whereas these changes were not observed in planktonic bacterial communities. Additionally, bacterial community composition was significantly related to nutrient concentrations variability and followed a distance-decay pattern. Furthermore, environmental effects explained more of the variation in planktonic bacterial community composition as compared with spatial effects did, whereas, sedimentary bacterial communities were more closely related to spatial effects. Our results demonstrated the distinct responses of planktonic and sedimentary bacterial communities to anthropogenic activities, and offered new insight for understanding their potential ecological influence on rivers.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Weikang Gu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guofeng Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Charlesworth JC, Watters C, Wong HL, Visscher PT, Burns BP. Isolation of novel quorum-sensing active bacteria from microbial mats in Shark Bay Australia. FEMS Microbiol Ecol 2019; 95:5382036. [PMID: 30877766 DOI: 10.1093/femsec/fiz035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing is a potent system of genetic control allowing phenotypes to be coordinated across localized communities. In this study, quorum sensing systems in Shark Bay microbial mats were delineated using a targeted approach analyzing whole mat extractions as well as the creation of an isolate library. A library of 165 isolates from different mat types were screened using the AHL biosensor E. coli MT102. Based on sequence identity 30 unique isolates belonging to Proteobacteria, Actinobacteria and Firmicutes were found to activate the AHL biosensor, suggesting AHLs or analogous compounds were potentially present. Several of the isolates have not been shown previously to produce signal molecules, particularly the members of the Actinobacteria and Firmicutes phyla including Virgibacillus, Halobacillius, Microbacterium and Brevibacterium. These active isolates were further screened using thin-layer chromatography (TLC) providing putative identities of AHL molecules present within the mat communities. Nine isolates were capable of producing several spots of varying sizes after TLC separation, suggesting the presence of multiple signalling molecules. This study is the first to delineate AHL-based signalling in the microbial mats of Shark Bay, and suggests quorum sensing may play a role in the ecosphysiological coordination of complex phenotypes across microbial mat communities.
Collapse
Affiliation(s)
- James C Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Cara Watters
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia.,Department of Marine Sciences, University of Connecticut, Storrs, 06269, CT, USA
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
12
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Babilonia J, Conesa A, Casaburi G, Pereira C, Louyakis AS, Reid RP, Foster JS. Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia. Front Microbiol 2018; 9:1359. [PMID: 29988640 PMCID: PMC6027182 DOI: 10.3389/fmicb.2018.01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Stromatolites are organosedimentary build-ups that have formed as a result of the sediment trapping, binding and precipitating activities of microbes. Today, extant systems provide an ideal platform for understanding the structure, composition, and interactions between stromatolite-forming microbial communities and their respective environments. In this study, we compared the metagenomes of three prevalent stromatolite-forming microbial mat types in the Spaven Province of Hamelin Pool, Shark Bay located in Western Australia. These stromatolite-forming mat types included an intertidal pustular mat as well as a smooth and colloform mat types located in the subtidal zone. Additionally, the metagenomes of an adjacent, non-lithifying mat located in the upper intertidal zone were also sequenced for comparative purposes. Taxonomic and functional gene analyses revealed distinctive differences between the lithifying and non-lithifying mat types, which strongly correlated with water depth. Three distinct populations emerged including the upper intertidal non-lithifying mats, the intertidal pustular mats associated with unlaminated carbonate build-ups, and the subtidal colloform and smooth mat types associated with laminated structures. Functional analysis of metagenomes revealed that amongst stromatolite-forming mats there was an enrichment of photosynthesis pathways in the pustular stromatolite-forming mats. In the colloform and smooth stromatolite-forming mats, however, there was an increase in the abundance of genes associated with those heterotrophic metabolisms typically associated with carbonate mineralization, such as sulfate reduction. The comparative metagenomic analyses suggest that stromatolites of Hamelin Pool may form by two distinctive processes that are highly dependent on water depth. These results provide key insight into the potential adaptive strategies and synergistic interactions between microbes and their environments that may lead to stromatolite formation and accretion.
Collapse
Affiliation(s)
- Joany Babilonia
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Ana Conesa
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Cecile Pereira
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,EURA NOVA, Marseille, France
| | - Artemis S Louyakis
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - R Pamela Reid
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Plant Cuttings: news in Botany. ANNALS OF BOTANY 2018; 121:v-viii. [PMID: 29444262 PMCID: PMC5808781 DOI: 10.1093/aob/mcy020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|