1
|
Rodriguez-Larios J, Foong Wong K, Lim J. Assessing the effects of an 8-week mindfulness training program on neural oscillations and self-reports during meditation practice. PLoS One 2024; 19:e0299275. [PMID: 38843236 PMCID: PMC11156404 DOI: 10.1371/journal.pone.0299275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Previous literature suggests that mindfulness meditation can have positive effects on mental health, however, its mechanisms of action are still unclear. In this pre-registered study, we investigate the effects of mindfulness training on lapses of attention (and their associated neural correlates) during meditation practice. For this purpose, we recorded Electroencephalogram (EEG) during meditation practice before and after 8 weeks of mindfulness training (or waitlist) in 41 participants (21 treatment and 20 controls). In order to detect lapses of attention and characterize their EEG correlates, we interrupted participants during meditation to report their level of focus and drowsiness. First, we show that self-reported lapses of attention during meditation practice were associated to an increased occurrence of theta oscillations (3-6 Hz), which were slower in frequency and more spatially widespread than theta oscillations occurring during focused attention states. Then, we show that mindfulness training did not reduce the occurrence of lapses of attention nor their associated EEG correlate (i.e. theta oscillations) during meditation. Instead, we find that mindfulness training was associated with a significant slowing of alpha oscillations in frontal electrodes during meditation. Crucially, frontal alpha slowing during meditation practice has been reported in experienced meditators and is thought to reflect relative decreases in arousal levels. Together, our findings provide insights into the EEG correlates of mindfulness meditation, which could have important implications for the identification of its mechanisms of action and/or the development of neuromodulation protocols aimed at facilitating meditation practice.
Collapse
Affiliation(s)
| | - Kian Foong Wong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julian Lim
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Yang D, Ghafoor U, Eggebrecht AT, Hong KS. Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement. Health Inf Sci Syst 2023; 11:35. [PMID: 37545487 PMCID: PMC10397167 DOI: 10.1007/s13755-023-00233-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) exhibits the capability to interact with endogenous brain oscillations using an external low-intensity sinusoidal current and influences cerebral function. Despite its potential benefits, the physiological mechanisms and effectiveness of tACS are currently a subject of debate and disagreement. The aims of our study are to (i) evaluate the neurological and behavioral impact of tACS by conducting repetitive sham-controlled experiments and (ii) propose criteria to evaluate effectiveness, which can serve as a benchmark to determine optimal individual-based tACS protocols. In this study, 15 healthy adults participated in the experiment over two visiting: sham and tACS (i.e., 5 Hz, 1 mA). During each visit, we used multimodal recordings of the participants' brain, including simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), along with a working memory (WM) score to quantify neurological effects and cognitive changes immediately after each repetitive sham/tACS session. Our results indicate increased WM scores, hemodynamic response strength, and EEG power in theta and delta bands both during and after the tACS period. Additionally, the observed effects do not increase with prolonged stimulation time, as the effects plateau towards the end of the experiment. In conclusion, our proposed closed-loop scheme offers a promising advance for evaluating the effectiveness of tACS during the stimulation session. Specifically, the assessment criteria use participant-specific brain-based signals along with a behavioral output. Moreover, we propose a feedback efficacy score that can aid in determining the optimal stimulation duration based on a participant-specific brain state, thereby preventing the risk of overstimulation.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63100 USA
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Adam Thomas Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63100 USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao, 266071 Shandong China
| |
Collapse
|
4
|
Zhang S, Qin Y, Wang J, Yu Y, Wu L, Zhang T. Noninvasive Electrical Stimulation Neuromodulation and Digital Brain Technology: A Review. Biomedicines 2023; 11:1513. [PMID: 37371609 PMCID: PMC10295338 DOI: 10.3390/biomedicines11061513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
We review the research progress on noninvasive neural regulatory systems through system design and theoretical guidance. We provide an overview of the development history of noninvasive neuromodulation technology, focusing on system design. We also discuss typical cases of neuromodulation that use modern noninvasive electrical stimulation and the main limitations associated with this technology. In addition, we propose a closed-loop system design solution of the "time domain", "space domain", and "multi-electrode combination". For theoretical guidance, this paper provides an overview of the "digital brain" development process used for noninvasive electrical-stimulation-targeted modeling and the development of "digital human" programs in various countries. We also summarize the core problems of the existing "digital brain" used for noninvasive electrical-stimulation-targeted modeling according to the existing achievements and propose segmenting the tissue. For this, the tissue parameters of a multimodal image obtained from a fresh cadaver were considered as an index. The digital projection of the multimodal image of the brain of a living individual was implemented, following which the segmented tissues could be reconstructed to obtain a "digital twin brain" model with personalized tissue structure differences. The "closed-loop system" and "personalized digital twin brain" not only enable the noninvasive electrical stimulation of neuromodulation to achieve the visualization of the results and adaptive regulation of the stimulation parameters but also enable the system to have individual differences and more accurate stimulation.
Collapse
Affiliation(s)
- Shuang Zhang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Yuping Qin
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Jiujiang Wang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Yuanyu Yu
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Lin Wu
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Tao Zhang
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
- The Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 610056, China
| |
Collapse
|
5
|
Herrero Babiloni A, Brazeau D, De Koninck BP, Lavigne GJ, De Beaumont L. The Utility of Non-invasive Brain Stimulation in Relieving Insomnia Symptoms and Sleep Disturbances Across Different Sleep Disorders: a Topical Review. CURRENT SLEEP MEDICINE REPORTS 2023; 9:124-132. [DOI: 10.1007/s40675-023-00254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/03/2025]
|
6
|
Zheng W, Lan XJ, Qin ZJ, Ungvari GS, Xiang YT. Transcranial alternating current stimulation for chronic insomnia: A systematic review. Asian J Psychiatr 2023; 82:103477. [PMID: 36701924 DOI: 10.1016/j.ajp.2023.103477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xian-Jun Lan
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Zhen-Juan Qin
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Gabor S Ungvari
- University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia/Graylands Hospital, Perth, Australia
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
7
|
Alfonsi V, D'Atri A, Scarpelli S, Gorgoni M, Giacinti F, Annarumma L, Salfi F, Amicucci G, Corigliano D, De Gennaro L. The effects of bifrontal anodal transcranial direct current stimulation (tDCS) on sleepiness and vigilance in partially sleep-deprived subjects: A multidimensional study. J Sleep Res 2023:e13869. [PMID: 36871580 DOI: 10.1111/jsr.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
In recent years, transcranial electrical stimulation techniques have demonstrated their ability to modulate our levels of sleepiness and vigilance. However, the outcomes differ among the specific aspects considered (physiological, behavioural or subjective). This study aimed to observe the effects of bifrontal anodal transcranial direct current stimulation. Specifically, we tested the ability of this stimulation protocol to reduce sleepiness and increase vigilance in partially sleep-deprived healthy participants. Twenty-three subjects underwent a within-subject sham-controlled stimulation protocol. We compared sleepiness and vigilance levels before and after the two stimulation conditions (active versus sham) by using behavioural (reaction-time task), subjective (self-report scales) and physiological (sleep-onset latency and electroencephalogram power [n = 20] during the Maintenance of Wakefulness Test) measures. We showed the efficacy of the active stimulation in reducing physiological sleepiness and preventing vigilance drop compared with the sham stimulation. Consistently, we observed a reduction of perceived sleepiness following the active stimulation for both self-report scales. However, the stimulation effect on subjective measures was not statistically significant probably due to the underpowered sample size for these measures, and to the possible influence of motivational and environmental factors. Our findings confirm the ability of this technique to influence vigilance and sleepiness, pointing out the potential for new treatment developments based on transcranial electrical stimulation.
Collapse
Affiliation(s)
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome Sapienza, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome Sapienza, Rome, Italy.,Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Amicucci
- Department of Psychology, University of Rome Sapienza, Rome, Italy
| | | | - Luigi De Gennaro
- Department of Psychology, University of Rome Sapienza, Rome, Italy.,Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
80 Hz but not 40 Hz, transcranial alternating current stimulation of 80 Hz over right intraparietal sulcus increases visuospatial working memory capacity. Sci Rep 2022; 12:13762. [PMID: 35962011 PMCID: PMC9374770 DOI: 10.1038/s41598-022-17965-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Working memory (WM) is a complex cognitive function involved in the temporary storage and manipulation of information, which has been one of the target cognitive functions to be restored in neurorehabilitation. WM capacity is known to be proportional to the number of gamma cycles nested in a single theta cycle. Therefore, gamma-band transcranial alternating current stimulation (tACS) should be dependent of the stimulation frequency; however, the results of previous studies that employed 40 Hz tACS have not been consistent. The optimal locations and injection currents of multiple scalp electrodes were determined based on numerical simulations of electric field. Experiments were conducted with 20 healthy participants. The order of three stimulation conditions (40 Hz tACS, 80 Hz tACS, and sham stimulation) were randomized but counterbalanced. Visual hemifield-specific visual WM capacity was assessed using a delayed visual match to the sample task. High gamma tACS significantly increased WM capacity, while low gamma tACS had no significant effect. Notably, 80 Hz tACS increased WM capacity on both the left and right visual hemifields, while previous tACS studies only reported the effects of tACS on contralateral hemifields. This is the first study to investigate the frequency-dependent effect of gamma-band tACS on WM capacity. Our findings also suggest that high gamma tACS might influence not only WM capacity but also communication between interhemispheric cortical regions. It is expected that high gamma tACS could be a promising neurorehabilitation method to enhance higher-order cognitive functions with similar mechanisms.
Collapse
|
9
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
10
|
Transcranial alternating current stimulation (tACS) as a treatment for insomnia. Neurol Sci 2022; 50:446-449. [PMID: 35321778 DOI: 10.1017/cjn.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the effects of transcranial alternating stimulation (tACS) in patients with insomnia. Nine patients with chronic insomnia underwent two in-laboratory polysomnography, 2 weeks apart, and were randomized to receive tACS either during the first or second study. The stimulation was applied simultaneously and bilaterally at F3/M1 and F4/M2 electrodes (0.75 mA, 0.75 Hz, 5-minute). Sleep onset latency and wake after sleep onset dropped on the stimulation night but they did not reach statistical significance; however, there were significant improvements in spontaneous and total arousals, sleep quality, quality of life, recall memory, sleep duration, sleep efficiency, and daytime sleepiness.
Collapse
|
11
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
12
|
Xie J, Wang L, Xiao C, Ying S, Ren J, Chen Z, Yu Y, Xu D, Yao D, Wu B, Liu T. Low Frequency Transcranial Alternating Current Stimulation Accelerates Sleep Onset Process. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2540-2549. [PMID: 34851828 DOI: 10.1109/tnsre.2021.3131728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GOAL The aim of this study is to find a kind of low frequency oscillation transcranial alternating current stimulation, which is directly applied to the scalp epidermal, to stimulate the cerebral cortex with a large spatial range of electric field oscillation across the brain hemisphere, and then trigger the start of the Top-Down processing of sleep homeostasis, in the daytime nap. METHODS Thirty healthy subjects, to take naps, underwent an intervention of electrical stimulation at 5 Hz, applied to the dorsal lateral prefrontal cortex. The subjects in the experiments were strictly controlled, and opened their eyes when stimulation was transmitted. Subsequently, after 15 min transcranial alternating current stimulation, subjects entered the experimental procedure of sleep. Electroencephalograph was taken at baseline and during sleep. Behavioral indicators were also added to the experiment. RESULTS We found that the total power of Electroencephalograph activity in the theta band, as well as low-frequency power at 1-7 Hz, was significantly entrained and increased, and that alpha activity was attenuated faster and spindle activity active earlier. Even more, the transition from awake to Non-rapid eye movement stages occurs earlier. Alertness also decreased when the subjects woke up after brief sleep. CONCLUSION The intervention of low frequency brain rhythmic transcranial alternating current stimulation may induce accelerated effect on sleep onset process, thereby possibly alleviating the problems related to sleep disorders such as difficulty to reach the real sleep state quickly after lying down.
Collapse
|
13
|
No aftereffects of high current density 10 Hz and 20 Hz tACS on sensorimotor alpha and beta oscillations. Sci Rep 2021; 11:21416. [PMID: 34725379 PMCID: PMC8560917 DOI: 10.1038/s41598-021-00850-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Application of transcranial alternating current stimulation (tACS) is thought to modulate ongoing brain oscillations in a frequency-dependent manner. However, recent studies report various and sometimes inconsistent results regarding its capacity to induce changes in cortical activity beyond the stimulation period. Here, thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind study using EEG to measure the offline effects of tACS on alpha and beta power. Sham and high current density tACS (1 mA; 10 Hz and 20 Hz; 0.32 mA/cm2) were applied for 20 min over bilateral sensorimotor areas and EEG was recorded at rest before and after stimulation for 20 min. Bilateral tACS was not associated with significant changes in local alpha and beta power frequencies at stimulation sites (C3 and C4 electrodes). Overall, the present results fail to provide evidence that bilateral tACS with high current density applied over sensorimotor regions at 10 and 20 Hz reliably modulates offline brain oscillation power at the stimulation site. These results may have implications for the design and implementation of future protocols aiming to induce sustained changes in brain activity, including in clinical populations.
Collapse
|
14
|
Gebodh N, Esmaeilpour Z, Datta A, Bikson M. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 2021; 8:274. [PMID: 34707095 PMCID: PMC8551279 DOI: 10.1038/s41597-021-01046-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
We present a dataset combining human-participant high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data include within participant application of nine High-Definition tES (HD-tES) types, targeting three cortical regions (frontal, motor, parietal) with three stimulation waveforms (DC, 5 Hz, 30 Hz); more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics. Experiment 1 and 2 consisted of participants performing a continuous vigilance/alertness task over three 70-minute and two 70.5-minute sessions, respectively. Demographic data were collected, as well as self-reported wellness questionnaires before and after each session. Participants received all 9 stimulation types in Experiment 1, with each session including three stimulation types, with 4 trials per type. Participants received two stimulation types in Experiment 2, with 20 trials of a given stimulation type per session. Within-participant reliability was tested by repeating select sessions. This unique dataset supports a range of hypothesis testing including interactions of tDCS/tACS location and frequency, brain-state, physiology, fatigue, and cognitive performance.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA.
- Soterix Medical Inc., New York, USA.
| | - Zeinab Esmaeilpour
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| |
Collapse
|
15
|
Gorgoni M, Scarpelli S, Annarumma L, D’Atri A, Alfonsi V, Ferrara M, De Gennaro L. The Regional EEG Pattern of the Sleep Onset Process in Older Adults. Brain Sci 2021; 11:1261. [PMID: 34679326 PMCID: PMC8534130 DOI: 10.3390/brainsci11101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy aging is characterized by macrostructural sleep changes and alterations of regional electroencephalographic (EEG) sleep features. However, the spatiotemporal EEG pattern of the wake-sleep transition has never been described in the elderly. The present study aimed to assess the topographical and temporal features of the EEG during the sleep onset (SO) in a group of 36 older participants (59-81 years). The topography of the 1 Hz bins' EEG power and the time course of the EEG frequency bands were assessed. Moreover, we compared the delta activity and delta/beta ratio between the older participants and a group of young adults. The results point to several peculiarities in the elderly: (a) the generalized post-SO power increase in the slowest frequencies did not include the 7 Hz bin; (b) the alpha power revealed a frequency-specific pattern of post-SO modifications; (c) the sigma activity exhibited only a slight post-SO increase, and its highest bins showed a frontotemporal power decrease. Older adults showed a generalized reduction of delta power and delta/beta ratio in both pre- and post-SO intervals compared to young adults. From a clinical standpoint, the regional EEG activity may represent a target for brain stimulation techniques to reduce SO latency and sleep fragmentation.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | | | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
16
|
Scarpelli S, Alfonsi V, Gorgoni M, Giannini AM, De Gennaro L. Investigation on Neurobiological Mechanisms of Dreaming in the New Decade. Brain Sci 2021; 11:brainsci11020220. [PMID: 33670180 PMCID: PMC7916906 DOI: 10.3390/brainsci11020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dream research has advanced significantly over the last twenty years, thanks to the new applications of neuroimaging and electrophysiological techniques. Many findings pointed out that mental activity during sleep and wakefulness shared similar neural bases. On the other side, recent studies have highlighted that dream experience is promoted by significant brain activation, characterized by reduced low frequencies and increased rapid frequencies. Additionally, several studies confirmed that the posterior parietal area and prefrontal cortex are responsible for dream experience. Further, early results revealed that dreaming might be manipulated by sensory stimulations that would provoke the incorporation of specific cues into the dream scenario. Recently, transcranial stimulation techniques have been applied to modulate the level of consciousness during sleep, supporting previous findings and adding new information about neural correlates of dream recall. Overall, although multiple studies suggest that both the continuity and activation hypotheses provide a growing understanding of neural processes underlying dreaming, several issues are still unsolved. The impact of state-/trait-like variables, the influence of circadian and homeostatic factors, and the examination of parasomnia-like events to access dream contents are all opened issues deserving further deepening in future research.
Collapse
Affiliation(s)
- Serena Scarpelli
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
- Correspondence: ; Tel.: +39-06-4991-7508
| | - Valentina Alfonsi
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| |
Collapse
|
17
|
The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med Rev 2021; 55:101381. [PMID: 32992227 DOI: 10.1016/j.smrv.2020.101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
18
|
Wang HX, Wang L, Zhang WR, Xue Q, Peng M, Sun ZC, Li LP, Wang K, Yang XT, Jia Y, Zhou QL, Xu ZX, Li N, Dong K, Zhang Q, Song HQ, Zhan SQ, Min BQ, Fan CQ, Zhou AH, Guo XH, Li HB, Liang LR, Yin L, Si TM, Huang J, Yan TY, Cosci F, Kamiya A, Lu J, Wang YP. Effect of Transcranial Alternating Current Stimulation for the Treatment of Chronic Insomnia: A Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Clinical Trial. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 89:38-47. [PMID: 31846980 DOI: 10.1159/000504609] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not all adults with chronic insomnia respond to the recommended therapeutic options of cognitive behavioral therapy and approved hypnotic drugs. Transcranial alternating current stimulation (tACS) may offer a novel potential treatment modality for insomnia. OBJECTIVES This study aimed to examine the efficacy and safety of tACS for treating adult patients with chronic insomnia. METHODS Sixty-two participants with chronic primary insomnia received 20 daily 40-min, 77.5-Hz, 15-mA sessions of active or sham tACS targeting the forehead and both mastoid areas in the laboratory on weekdays for 4 consecutive weeks, followed by a 4-week follow-up period. The primary outcome was response rate measured by the Pittsburgh Sleep Quality Index (PSQI) at week 8. Secondary outcomes were remission rate, insomnia severity, sleep onset latency (SOL), total sleep time (TST), sleep efficiency, sleep quality, daily disturbances, and adverse events at the end of the 4-week intervention and at the 4-week follow-up. RESULTS Of 62 randomized patients, 60 completed the trial. During the 4-week intervention, 1 subject per group withdrew due to loss of interest and time restriction, respectively. Based on PSQI, at 4-week follow-up, the active group had a higher response rate compared to the sham group (53.4% [16/30] vs. 16.7% [5/30], p = 0.009), but remission rates were not different between groups. At the end of the 4-week intervention, the active group had higher response and remission rates than the sham group (p < 0.001 and p = 0.026, respectively). During the trial, compared with the sham group, the active group showed a statistically significant decrease in PSQI total score, a shortened SOL, an increased TST, improved sleep efficiency, and improved sleep quality (p < 0.05 or p < 0.001). Post hoc analysis revealed that, in comparison with the sham group, the active group had improved symptoms, except for daily disturbances, at the end of the 4-week intervention, and significant improvements in all symptoms at the 4-week follow-up. No adverse events or serious adverse responses occurred during the study. CONCLUSION The findings show that the tACS applied in the present study has potential as an effective and safe intervention for chronic insomnia within 8 weeks.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, .,Beijing Key Laboratory of Neuromodulation, Beijing, China, .,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,
| | - Li Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen-Rui Zhang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qing Xue
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mao Peng
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhi-Chao Sun
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Ping Li
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Neurology, Beijing Puren Hospital, Beijing, China
| | - Xiao-Tong Yang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Jia
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi-Lin Zhou
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe-Xue Xu
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Dong
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai-Qing Song
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Qin Zhan
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bao-Quan Min
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chun-Qiu Fan
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ai-Hong Zhou
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Hai-Bin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Department of Epidemiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lu Yin
- Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Beijing, China
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian-Yi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Ping Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Gorgoni M, D’Atri A, Scarpelli S, Ferrara M, De Gennaro L. The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols. Neurosci Biobehav Rev 2020; 114:25-37. [PMID: 32343983 DOI: 10.1016/j.neubiorev.2020.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
|
20
|
Frase L, Selhausen P, Krone L, Tsodor S, Jahn F, Feige B, Maier JG, Mainberger F, Piosczyk H, Kuhn M, Klöppel S, Sterr A, Baglioni C, Spiegelhalder K, Riemann D, Nitsche MA, Nissen C. Differential effects of bifrontal tDCS on arousal and sleep duration in insomnia patients and healthy controls. Brain Stimul 2019; 12:674-683. [DOI: 10.1016/j.brs.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
|
21
|
D'Atri A, Scarpelli S, Gorgoni M, Alfonsi V, Annarumma L, Giannini AM, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral Theta Transcranial Alternating Current Stimulation (tACS) Modulates EEG Activity: When tACS Works Awake It Also Works Asleep. Nat Sci Sleep 2019; 11:343-356. [PMID: 31819688 PMCID: PMC6875492 DOI: 10.2147/nss.s229925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Recent studies demonstrate that 5-Hz bilateral transcranial alternating current stimulation (θ-tACS) on fronto-temporal areas affects resting EEG enhancing cortical synchronization, but it does not affect subjective sleepiness. This dissociation raises questions on the resemblance of this effect to the physiological falling asleep process. The current study aimed to evaluate the ability of fronto-temporal θ-tACS to promote sleep. SUBJECTS AND METHODS Twenty subjects (10 F/10 M; mean age: 24.60 ± 2.9 y) participated in a single-blind study consisting of two within-subject sessions (active/sham), one week apart in counterbalanced order. Stimulation effects on EEG were assessed during wake and post-stimulation nap. The final sample included participants who fell asleep in both sessions (n=17). RESULTS Group analyses on the whole sample reported no θ-tACS effects on subjective sleepiness and sleep measures, while a different scenario came to light by analysing data of responders to the stimulation (ie, subjects actually showing the expected increase of theta activity in the wake EEG after the θ-tACS, n=7). Responders reported a significant increase in subjective sleepiness during wakefulness after the active stimulation as compared to the sham. Moreover, the sleep after the θ-tACS compared to sham in this sub-group showed: (1) greater slow-wave activity (SWA); (2) SWA time-course revealing increases much larger as closer to the sleep onset; (3) stimulation-induced changes in SWA during sleep topographically associated to those in theta activity during wake. CONCLUSION Subjects who show the expected changes during wake after the stimulation also had a consistent pattern of changes during sleep. The enhancement of cortical synchronization by θ-tACS during wakefulness actually corresponds to increased sleep pressure, but it occurs only in some individuals. Thus, θ-tACS can enhance sleep, although individual factors to be further investigated affect the actual responsiveness to this treatment.
Collapse
Affiliation(s)
- Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | | | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabio Ferlazzo
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy.,Department Geriatrics, Neuroscience & Orthopaedics, Policlinic A. Gemelli Foundation-IRCCS, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
22
|
Tonetti L, Conca A, Giupponi G, Filardi M, Natale V. Circadian activity rhythm in adult attention-deficit hyperactivity disorder. J Psychiatr Res 2018; 103:1-4. [PMID: 29753192 DOI: 10.1016/j.jpsychires.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
Abstract
The aim of the present study was to analyze the features of circadian motor activity rhythm of adult attention-deficit hyperactivity disorder (ADHD) patients, by means of functional linear modeling, within the theoretical framework of the two-process model of sleep regulation. Thirty-two ADHD patients and 32 healthy controls (HCs) participated the study. Actiwatch AW64 actigraph was used to quantify motor activity data in 1-min epochs. Participants wore the actigraph on the non-dominant wrist for seven consecutive days. Results show that ADHD patients had significantly higher motor activity than HCs from 4:00 to 7:00, with a peak around 5:00, and from 12:00 to 18:00, with another peak around 14:00. According to the two-process model of sleep regulation, the circadian activity rhythm of ADHD patients may indicate a lower homeostatic sleep pressure, as reflected by the absence of post-lunch dip, which could be considered a potential trait marker of adult ADHD.
Collapse
Affiliation(s)
- Lorenzo Tonetti
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127, Bologna, Italy.
| | - Andreas Conca
- Division of Psychiatry, San Maurizio Hospital, Via Böhler 5, 39100, Bolzano, Italy.
| | - Giancarlo Giupponi
- Division of Psychiatry, San Maurizio Hospital, Via Böhler 5, 39100, Bolzano, Italy.
| | - Marco Filardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Vincenzo Natale
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127, Bologna, Italy.
| |
Collapse
|
23
|
The Efficacy of Transcranial Current Stimulation Techniques to Modulate Resting-State EEG, to Affect Vigilance and to Promote Sleepiness. Brain Sci 2018; 8:brainsci8070137. [PMID: 30037023 PMCID: PMC6071002 DOI: 10.3390/brainsci8070137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se.
Collapse
|