1
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
2
|
Fisher DN, Bechsgaard J, Bilde T. Exploring changes in social spider DNA methylation profiles in all cytosine contexts following infection. Heredity (Edinb) 2024; 133:410-417. [PMID: 39266675 PMCID: PMC11589119 DOI: 10.1038/s41437-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Living at high density and with low genetic diversity are factors that should both increase the susceptibility of organisms to disease. Therefore, group living organisms, especially those that are inbred, should be especially vulnerable to infection and therefore have particular strategies to cope with infection. Phenotypic plasticity, underpinned by epigenetic changes, could allow group living organisms to rapidly respond to infection challenges. To explore the potential role of epigenetic modifications in the immune response to a group-living species with low genetic diversity, we compared the genome-wide DNA methylation profiles of five colonies of social spiders (Stegodyphus dumicola) in their natural habitat in Namibia at the point just before they succumbed to infection to a point at least six months previously where they were presumably healthier. We found increases in genome- and chromosome-wide methylation levels in the CpG, CHG, and CHH contexts, although the genome-wide changes were not clearly different from zero. These changes were most prominent in the CHG context, especially at a narrow region of chromosome 13, hinting at an as-of-yet unsuspected role of this DNA methylation context in phenotypic plasticity. However, there were few clear patterns of differential methylation at the base level, and genes with a known immune function in spiders had mean methylation changes close to zero. Our results suggest that DNA methylation may change with infection at large genomic scales, but that this type of epigenetic change is not necessarily integral to the immune response of social spiders.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
| | - Jesper Bechsgaard
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Tang Y, Zhang H, Zhu H, Bi S, Wang X, Ji S, Ji J, Ma D, Huang C, Zhang G, Yang N, Wan F, Lü Z, Liu W. DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta. INSECT MOLECULAR BIOLOGY 2024; 33:503-515. [PMID: 38808749 DOI: 10.1111/imb.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.
Collapse
Affiliation(s)
- Yanhong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Huifang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanqing Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Siyan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunxia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhang Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao M, Lin Z, Zheng Z, Yao D, Yang S, Zhao Y, Chen X, Aweya JJ, Zhang Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front Immunol 2023; 14:1241934. [PMID: 37744346 PMCID: PMC10513178 DOI: 10.3389/fimmu.2023.1241934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
5
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
6
|
Kausar S, Abbas MN, Gul I, Liu R, Li Q, Zhao E, Lv M, Cui H. Molecular Identification of Two DNA Methyltransferase Genes and Their Functional Characterization in the Anti-Bacterial Immunity of Antheraea pernyi. Front Immunol 2022; 13:855888. [PMID: 35651618 PMCID: PMC9149099 DOI: 10.3389/fimmu.2022.855888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
Under different physiological conditions, such as microbial infection, epigenetic mechanisms regulate genes at the transcription level in living organisms. DNA methylation is a type of epigenetic mechanism in which DNA methyltransferases modify the expression of target genes. Here, we identified a full-length sequence of DNMT-1 and DNMT-2 from the Chinese oak silkworm, A. pernyi, which was highly similar to the homologous sequences of Bombyx mori. ApDNMT-1 and ApDNMT-2 have unique domain architectures of insect DNMTs, highlighting their conserved functions in A. pernyi. ApDNMT-1 and ApDNMT-2 were found to be widely expressed in various tissues, with the highest levels of expression in hemocytes, the ovary, testis, and fat bodies. To understand the biological role of these genes in microbial resistance, we challenged the fifth instar larvae of A. pernyi by administrating Gram-positive and Gram-negative bacteria and fungi. The results revealed that transcript levels of ApDNMT-1 and ApDNMT-2 were increased compared to the control group. The inhibition of these genes by a DNMTs inhibitor [5-azacytidine (5-AZA)] significantly reduced bacterial replication and larvae mortality. In addition, 5-AZA treatment modified the expression patterns of antimicrobial peptides (AMPs) in the A. pernyi larvae. Our results suggest that ApDNMT-1 and ApDNMT-2 seem to have a crucial role in innate immunity, mediating antimicrobial peptide responses against bacterial infection in A. pernyi.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Muhan Lv
- Department of Gastroenterology, The Affliated Hospital of Southwest Medical University, Luzhao, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Kausar S, Liu R, Gul I, Abbas MN, Cui H. Transcriptome Sequencing Highlights the Regulatory Role of DNA Methylation in Immune-Related Genes' Expression of Chinese Oak Silkworm, Antheraea pernyi. INSECTS 2022; 13:296. [PMID: 35323594 PMCID: PMC8951095 DOI: 10.3390/insects13030296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Antheraea pernyi is an important lepidopteran used as a model insect species to investigate immune responses, development, and metabolism modulation. DNA methylation has recently been found to control various physiological processes throughout the life of animals; however, DNA methylation and its effect on the physiology of insects have been poorly investigated so far. In the present study, to better understand DNA methylation and its biological role in the immune system, we analyzed transcriptome profiles of A. pernyi pupae following DNA methylation inhibitor injection and Gram-positive bacteria stimulation. We then compared the profiles with a control group. We identified a total of 55,131 unigenes from the RNA sequence data. A comparison of unigene expression profiles showed that a total of 680 were up-regulated and 631 unigenes were down-regulated in the DNA-methylation-inhibition-bacteria-infected group compared to the control group (only bacteria-injected pupae), respectively. Here, we focused on the immune-related differentially expressed genes (DEGs) and screened 10 genes that contribute to immune responses with an up-regulation trend, suggesting that microbial pathogens evade host immunity by increasing DNA methylation of the host genome. Furthermore, several other unigenes related to other pathways were also changed, as shown in the KEGG analysis. Taken together, our data revealed that DNA methylation seems to play a crucial biological role in the regulation of gene expression in insects, and that infection may enhance the host genome DNA methylation by a yet-unknown mechanism.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
8
|
Kuang W, Yan C, Zhan Z, Guan L, Wang J, Chen J, Li J, Ma G, Zhou X, Jin L. Transcriptional responses of Daphnis nerii larval midgut to oral infection by Daphnis nerii cypovirus-23. Virol J 2021; 18:250. [PMID: 34906167 PMCID: PMC8670114 DOI: 10.1186/s12985-021-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus and has a lethal effect on the oleander hawk moth, Daphnis nerii which feeds on leave of Oleander and Catharanthus et al. After DnCPV-23 infection, the change of Daphnis nerii responses has not been reported. METHODS To better understand the pathogenic mechanism of DnCPV-23 infection, 3rd-instar Daphnis nerii larvae were orally infected with DnCPV-23 occlusion bodies and the transcriptional responses of the Daphnis nerii midgut were analyzed 72 h post-infection using RNA-seq. RESULTS The results showed that 1979 differentially expressed Daphnis nerii transcripts in the infected midgut had been identified. KEGG analysis showed that protein digestion and absorption, Toll and Imd signaling pathway were down-regulated. Based on the result, we speculated that food digestion and absorption in insect midgut might be impaired after virus infection. In addition, the down-regulation of the immune response may make D. nerii more susceptible to bacterial infections. Glycerophospholipid metabolism and xenobiotics metabolism were up-regulated. These two types of pathways may affect the viral replication and xenobiotic detoxification of insect, respectively. CONCLUSION These results may facilitate a better understanding of the changes in Daphnis nerii metabolism during cypovirus infection and serve as a basis for future research on the molecular mechanism of DnCPV-23 invasion.
Collapse
Affiliation(s)
- Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Chenghua Yan
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Limei Guan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jinchang Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Junhui Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jianghuai Li
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Guangqiang Ma
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xi Zhou
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071 China
| | - Liang Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| |
Collapse
|
9
|
Yin H, Zhang S, Shen M, Zhang Z, Huang H, Zhao Z, Guo X, Wu P. Integrative analysis of circRNA/miRNA/mRNA regulatory network reveals the potential immune function of circRNAs in the Bombyx mori fat body. J Invertebr Pathol 2021; 179:107537. [PMID: 33472087 DOI: 10.1016/j.jip.2021.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Bombyx mori nucleopolyhedrosis virus (BmNPV) is one of the greatest threats to sustainable development of the sericulture industry. Circular RNA (circRNA), a type of non-coding RNA, has been shown to play important roles in gene expression regulation, immune response, and diseases. The fat body is a tissue with both metabolic and immune functions. To explore the potential immune function of circRNAs, we analyzed differentially expressed (DE)circRNAs, microRNAs(miRNAs), and mRNAs in the B. mori fat body in response to BmNPV infection using high-throughput RNA sequencing. A total of 77 DEcircRNAs, 32 DEmiRNAs, and 730 DEmRNAs that are associated with BmNPV infection were identified. We constructed a DEcircRNA/DEmiRNA/DEmRNA and DEcircRNA/DEmiRNA/BmNPV gene regulatory network and validated the differential expression of circ_0001432 and its corresponding miRNA (miR-2774c and miR-3406-5p) and mRNA (778467 and 101745232) in the network. Tissue-specific expression of circ_0001432 and its expression at different time points were also examined. KEGG pathway analysis of DEmRNAs, target genes of DEmiRNAs, and host genes of DEcircRNAs in the network showed that these genes were enriched in several metabolic pathways and signaling pathways, which could play important roles in insect immune responses. Our results suggest that circRNA could be involved in immune responses of the B. mori fat body and help in understanding the molecular mechanisms underlying silkworm-pathogen interactions.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhengdong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Zhimeng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
10
|
Xu G, Lyu H, Yi Y, Peng Y, Feng Q, Song Q, Gong C, Peng X, Palli SR, Zheng S. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience 2021; 24:102040. [PMID: 33521602 PMCID: PMC7820559 DOI: 10.1016/j.isci.2021.102040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic modification. However, the regulations and functions of insect intragenic DNA methylation remain unknown. Here, we demonstrate that a regulatory mechanism involving intragenic DNA methylation controls ovarian and embryonic developmental processes in Bombyx mori. In B. mori, DNA methylation is found near the transcription start site (TSS) of ovarian genes. By promoter activity analysis, we observed that 5′ UTR methylation enhances gene expression. Moreover, methyl-DNA-binding domain protein 2/3 (MBD2/3) binds to the intragenic methyl-CpG fragment and recruits acetyltransferase Tip60 to promote histone H3K27 acetylation and gene expression. Additionally, genome-wide analyses showed that the peak of H3K27 acetylation appears near the TSS of methyl-modified genes, and DNA methylation is enriched in genes involved in protein synthesis in the B. mori ovary, with MBD2/3 knockdown resulting in decreased fecundity. These data uncover a mechanism of gene body methylation for regulating insect gene expression and reproduction. Insect intragenic 5mC enhances gene expression through histone H3K27 acetylation MBD2/3 binds the intragenic 5mC and recruits Tip60 to promote H3K27 acetylation Intragenic 5mCs modify protein synthesis-related genes in insect ovaries The intragenic 5mC plays a role in insect reproduction
Collapse
Affiliation(s)
- Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yangqin Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chengcheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuezhen Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Chen P, Xiao WF, Pan MH, Xiao JS, Feng YJ, Dong ZQ, Zou BX, Zhou L, Zhang YH, Lu C. Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori. Int J Biol Macromol 2020; 164:3771-3779. [PMID: 32891645 DOI: 10.1016/j.ijbiomac.2020.08.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022]
Abstract
DNA methylation is an important epigenetic modification and has been shown to be involved in the response to abiotic stress. However, there are few studies on DNA methylation in insect response to environmental signals. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles between two silkworm strains with significantly different resistance to heat and humidity by whole-genome bisulfite sequencing (WGBS). We identified, in total, 2934 differentially methylated regions (DMRs) between RT_48h (resistant strain with high-temperature/humidity treatment for 48 h) and ST_48h (sensitive strain with high-temperature/humidity treatment for 48 h) under cytosine context (CG), which corresponded to 1230 DMR-related genes (DMGs), and the DMRs were primarily located in the gene body (exon and intron) region. Gene ontology (GO) and KEGG analysis showed that these DMGs were most significantly enriched in binding, cellular metabolic process, and RNA transport pathways. Moreover, 10 DMGs have been revealed to be involved in the heat-humidity stress response in the silkworm. The results of this study indicated that DNA methylation plays crucial roles in silkworm response to environmental stressors and provides important clues to identify key resistance genes in silkworm under high-temperature/humidity stress response.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Jin-Shu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bang-Xing Zou
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Li Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - You-Hong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
12
|
Lewis SH, Ross L, Bain SA, Pahita E, Smith SA, Cordaux R, Miska EA, Lenhard B, Jiggins FM, Sarkies P. ------Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genet 2020; 16:e1008864. [PMID: 32584820 PMCID: PMC7343188 DOI: 10.1371/journal.pgen.1008864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.
Collapse
Affiliation(s)
- Samuel H. Lewis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Stevie A. Bain
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Eleni Pahita
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen A. Smith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions Universite de Poitiers, France
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Swevers L, Feng M, Ren F, Sun J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21616. [PMID: 31502703 DOI: 10.1002/arch.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Recent years have shown a large increase in studies of infection of the silkworm (Bombyx mori) with Cypovirus 1 (previously designated as B. mori cytoplasmic polyhedrosis virus), that causes serious damage in sericulture. Cypovirus 1 has a single-layered capsid that encapsulates a segmented double-strand RNA (dsRNA) genome which are attractive features for the establishment of a biotechnological platform for the production of specialized gene silencing agents, either as recombinant viruses or as viral-like particles with nonreplicative dsRNA cargo. For both combatting viral disease and application of Cypovirus-based pest control, however, a better understanding is needed of the innate immune response caused by Cypovirus infection of the midgut of lepidopteran larvae. Studies of deep sequencing of viral small RNAs have indicated the importance of the RNA interference pathway in the control of Cypovirus infection although many functional aspects still need to be elucidated and conclusive evidence is lacking. A considerable number of transcriptome studies were carried out that revealed a complex response that hitherto remains uncharacterized because of a dearth in functional studies. Also, the uptake mechanism of Cypovirus by the midgut cells remains unclarified because of contrasting mechanisms revealed by electron microscopy and functional studies. The field will benefit from an increase in functional studies that will depend on transgenic silkworm technology and reverse genetics systems for Cypovirus 1.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
| | - Min Feng
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Li B, Hu P, Zhu LB, You LL, Cao HH, Wang J, Zhang SZ, Liu MH, Toufeeq S, Huang SJ, Xu JP. DNA Methylation Is Correlated with Gene Expression during Diapause Termination of Early Embryonic Development in the Silkworm ( Bombyx mori). Int J Mol Sci 2020; 21:E671. [PMID: 31968548 PMCID: PMC7013401 DOI: 10.3390/ijms21020671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.
Collapse
Affiliation(s)
- Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ming-Hui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shou-Jun Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| |
Collapse
|
15
|
Huang H, Wu P, Zhang S, Shang Q, Yin H, Hou Q, Zhong J, Guo X. DNA methylomes and transcriptomes analysis reveal implication of host DNA methylation machinery in BmNPV proliferation in Bombyx mori. BMC Genomics 2019; 20:736. [PMID: 31615392 PMCID: PMC6792228 DOI: 10.1186/s12864-019-6146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the sustainability of the sericultural industry. DNA methylation is a widespread gene regulation mode in epigenetics, which plays an important role in host immune response. Until now, little has been known about epigenetic regulation on virus diseases in insects. This study aims to explore the role of DNA methylation in BmNPV proliferation. RESULTS Inhibiting DNA methyltransferase (DNMT) activity of silkworm can suppress BmNPV replication. The integrated analysis of transcriptomes and DNA methylomes in silkworm midguts infected with or without BmNPV showed that both the expression pattern of transcriptome and DNA methylation pattern are changed significantly upon BmNPV infection. A total of 241 differentially methylated regions (DMRs) were observed in BmNPV infected midguts, among which, 126 DMRs were hyper-methylated and 115 DMRs were hypo-methylated. Significant differences in both mRNA transcript level and DNA methylated levels were found in 26 genes. BS-PCR validated the hypermethylation of BGIBMGA014008, a structural maintenance of chromosomes protein gene in the BmNPV-infected midgut. In addition, DNMT inhibition reduced the expression of inhibitor of apoptosis family genes, iap1 from BmNPV, Bmiap2, BmSurvivin1 and BmSurvivin2. CONCLUSION Our results indicate that DNA methylation plays positive roles in BmNPV proliferation and loss of DNMT activity could induce the apoptosis of infected cells to suppress BmNPV proliferation. Our results may provide a new idea and research direction for the molecular mechanism on insect-virus interaction.
Collapse
Affiliation(s)
- Haoling Huang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China. .,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China. .,Quality inspection center for sericultural products, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, China.
| | - Shaolun Zhang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Haotong Yin
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Qirui Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China.,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.,Quality inspection center for sericultural products, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, China
| | - Jinbo Zhong
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China. .,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| |
Collapse
|
16
|
Baradaran E, Moharramipour S, Asgari S, Mehrabadi M. Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103939. [PMID: 31493391 DOI: 10.1016/j.jinsphys.2019.103939] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Following pathogen attack in a host, widespread changes are induced in the host's gene expression, in particular those involved in the immune system, growth and survival. Epigenetic mechanisms have been suggested to be involved in the regulation of these changes through a number of mechanisms. DNA methylation is one of the important epigenetic processes that is carried out by DNA (cytosine-5) methyltransferase (DNMT) and alters expression of target genes. Here, we identified two putative sequences of DNMT (i.e. DNMT1 and DNMT2) from the transcriptome dataset of Helicoverpa armigera that showed high similarity to the homologous sequences in Bombyx mori. Domain architectures of DNMT1 and DNMT2 exhibit the unique pattern of DNMTs that highlights conserved function of these genes in different insects. To see if these genes play any role in bacterial infection, we challenged the fifth instar larvae of H. armigera by injecting Bacillus thuringiensis and Serratia marcescens cells into the hemolymph. Transcript levels of the DNMTs were analyzed by RT-qPCR. The results showed that the expression levels of DNMT1 and DNMT2 increased in the bacteria-injected larvae. Injection of the heat-killed bacteria also induced the expression of the DNMTs, but lower than that of the live bacteria. To determine whether these genes function during bacterial infection, we injected the inhibitor of DNMTs, 5-azacytidine (5-AZA), into the larvae and 24 h later, the bacterial cells were also injected into the larvae. Bacterial replication and larval mortality were analyzed in the treated and control insects. We found that 5-AZA reduced bacterial replication and also mortality of the bacterial-injected larvae regardless of the pathogenic bacterial species. Interestingly, the expression levels of antimicrobial peptides (AMPs) were also modulated following 5-AZA treatment. In conclusion, we showed that upregulation of the DNMTs in H. armigera following bacterial infections modulates AMPs and thereby affects the insect-bacteria interactions.
Collapse
Affiliation(s)
- Ehsan Baradaran
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Mukherjee K, Dubovskiy I, Grizanova E, Lehmann R, Vilcinskas A. Epigenetic mechanisms mediate the experimental evolution of resistance against parasitic fungi in the greater wax moth Galleria mellonella. Sci Rep 2019; 9:1626. [PMID: 30733453 PMCID: PMC6367475 DOI: 10.1038/s41598-018-36829-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Recent concepts in evolutionary biology suggest that epigenetic mechanisms can translate environmental selection pressures into heritable changes in phenotype. To determine whether experimental selection for a complex trait in insects involves epigenetic modifications, we carried out a generation-spanning experiment using larvae of the greater wax moth Galleria mellonella as a model host to investigate the role of epigenetics in the heritability of resistance against the parasitic fungus Metarhizium robertsii. We investigated differences in DNA methylation, histone acetylation and microRNA (miRNA) expression between an experimentally resistant population and an unselected, susceptible line, revealing that the survival of G. mellonella larvae infected with M. robertsii correlates with tissue-specific changes in DNA methylation and histone modification and the modulation of genes encoding the corresponding enzymes. We also identified miRNAs differentially expressed between resistant and susceptible larvae and showed that these regulatory molecules target genes encoding proteinases and proteinase inhibitors, as well as genes related to cuticle composition, innate immunity and metabolism. These results support our hypothesis that epigenetic mechanisms facilitate, at least in part, the heritable manifestation of parasite resistance in insects. The reciprocal adaptations underlying host–parasite coevolution therefore extend beyond the genetic level to encompass epigenetic modifications.
Collapse
Affiliation(s)
- Krishnendu Mukherjee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany
| | - Ivan Dubovskiy
- Novosibirsk State Agrarian University, Dobrolubova 160, 630039, Novosibirsk, Russia
| | - Ekaterina Grizanova
- Novosibirsk State Agrarian University, Dobrolubova 160, 630039, Novosibirsk, Russia
| | - Rüdiger Lehmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany. .,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|