1
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Kost V, Sukhov D, Ivanov I, Kasheverov I, Ojomoko L, Shelukhina I, Mozhaeva V, Kudryavtsev D, Feofanov A, Ignatova A, Utkin Y, Tsetlin V. Comparison of Conformations and Interactions with Nicotinic Acetylcholine Receptors for E. coli-Produced and Synthetic Three-Finger Protein SLURP-1. Int J Mol Sci 2023; 24:16950. [PMID: 38069271 PMCID: PMC10707033 DOI: 10.3390/ijms242316950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.
Collapse
Affiliation(s)
- Vladimir Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Dmitry Sukhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Igor Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Igor Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Lucy Ojomoko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Irina Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Vera Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Denis Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya Str., 119048 Moscow, Russia
| | - Alexey Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Anastasia Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| |
Collapse
|
3
|
Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. Int J Mol Sci 2023; 24:ijms24076524. [PMID: 37047495 PMCID: PMC10095066 DOI: 10.3390/ijms24076524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Utkin
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
4
|
He X, Wang L, Liu L, Gao J, Long B, Chi F, Hu T, Wan Y, Gong Z, Li L, Zhen P, Zhang T, Cao H, Huang SH. Endogenous α7 nAChR Agonist SLURP1 Facilitates Escherichia coli K1 Crossing the Blood-Brain Barrier. Front Immunol 2021; 12:745854. [PMID: 34721415 PMCID: PMC8552013 DOI: 10.3389/fimmu.2021.745854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) is critical for the pathogenesis of Escherichia coli (E. coli) K1 meningitis, a severe central nervous system infection of the neonates. However, little is known about how E. coli K1 manipulates α7 nAChR signaling. Here, through employing immortalized cell lines, animal models, and human transcriptional analysis, we showed that E. coli K1 infection triggers releasing of secreted Ly6/Plaur domain containing 1 (SLURP1), an endogenous α7 nAChR ligand. Exogenous supplement of SLURP1, combined with SLURP1 knockdown or overexpression cell lines, showed that SLURP1 is required for E. coli K1 invasion and neutrophils migrating across the blood-brain barrier (BBB). Furthermore, we found that SLURP1 is required for E. coli K1-induced α7 nAChR activation. Finally, the promoting effects of SLURP1 on the pathogenesis of E. coli K1 meningitis was significantly abolished in the α7 nAChR knockout mice. These results reveal that E. coli K1 exploits SLURP1 to activate α7 nAChR and facilitate its pathogenesis, and blocking SLURP1-α7 nAChR interaction might represent a novel therapeutic strategy for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Lei Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liqun Liu
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Chi
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Li
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Peilin Zhen
- Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| |
Collapse
|
5
|
Ertle CM, Rommel FR, Tumala S, Moriwaki Y, Klein J, Kruse J, Gieler U, Peters EMJ. New Pathways for the Skin's Stress Response: The Cholinergic Neuropeptide SLURP-1 Can Activate Mast Cells and Alter Cytokine Production in Mice. Front Immunol 2021; 12:631881. [PMID: 33815383 PMCID: PMC8012551 DOI: 10.3389/fimmu.2021.631881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The alpha7 nicotinic acetylcholine receptor (Chrna7) plays an essential anti-inflammatory role in immune homeostasis and was recently found on mast cells (MC). Psychosocial stress can trigger MC hyperactivation and increases pro-inflammatory cytokines in target tissues such as the skin. If the cholinergic system (CS) and Chrna7 ligands play a role in these cascades is largely unknown. Objective: To elucidate the role of the CS in the response to psychosocial stress using a mouse-model for stress-triggered cutaneous inflammatory circuits. Methods: Key CS markers (ACh, Ch, SLURP-1, SLURP-2, Lynx1, Chrm3, Chrna7, Chrna9, ChAT, VAChT, Oct3, AChE, and BChE) in skin and its MC (sMC), MC activation, immune parameters (TNFα, IL1β, IL10, TGFβ, HIF1α, and STAT3) and oxidative stress were analyzed in skin from 24 h noise-stressed mice and in cultured MC (cMC) from C57BL/6 or Chrna7-Knockout mice. Results: First, Chrna7 and SLURP-1 mRNA were exclusively upregulated in stressed skin. Second, histomorphometry located Chrna7 and SLURP-1 in nerves and sMC and demonstrated upregulated contacts and increased Chrna7+ sMC in stressed skin, while 5 ng/mL SLURP-1 degranulated cMC. Third, IL1β+ sMC were high in stressed skin, and while SLURP-1 alone had no significant effect on cMC cytokines, it upregulated IL1β in cMC from Chrna7-KO and in IL1β-treated wildtype cMC. In addition, HIF1α+ sMC were high in stressed skin and Chrna7-agonist AR-R 17779 induced ROS in cMC while SLURP-1 upregulated TNFα and IL1β in cMC when HIF1α was blocked. Conclusions: These data infer that the CS plays a role in the regulation of stress-sensitive inflammatory responses but may have a surprising pro-inflammatory effect in healthy skin, driving IL1β expression if SLURP-1 is involved.
Collapse
Affiliation(s)
- Christoph M Ertle
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank R Rommel
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Jochen Klein
- Department of Pharmacology, Biocenter N260, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kruse
- Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Clinic for Psychosomatic Medicine and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Charité Center 12 for Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Awad M, Kizaki K, Ishiguro-Oonuma T, Takahashi T, Hashizume K. Secreted protein of Ly6 domain 1 enhanced bovine trophoblastic cell migration activity. In Vitro Cell Dev Biol Anim 2020; 56:827-831. [PMID: 33140328 DOI: 10.1007/s11626-020-00521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Mahmoud Awad
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.,Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Toshina Ishiguro-Oonuma
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Toru Takahashi
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
7
|
Kulbatskii DS, Shulepko MA, Sluchanko NN, Yablokov EO, Kamyshinsky RA, Chesnokov YM, Kirpichnikov MP, Lyukmanova EN. Efficient screening of ligand-receptor complex formation using fluorescence labeling and size-exclusion chromatography. Biochem Biophys Res Commun 2020; 532:127-133. [PMID: 32828540 DOI: 10.1016/j.bbrc.2020.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/19/2022]
Abstract
Evidence of a complex formation is a crucial step in the structural studies of ligand-receptor interactions. Here we presented a simple and fast approach for qualitative screening of the complex formation between the chimeric extracellular domain of the nicotinic acetylcholine receptor (α7-ECD) and three-finger proteins. Complex formation of snake toxins α-Bgtx and WTX, as well as of recombinant analogs of human proteins Lynx1 and SLURP-1, with α7-ECD was confirmed using fluorescently labeled ligands and size-exclusion chromatography with simultaneous absorbance and fluorescence detection. WTX/α7-ECD complex formation also was confirmed by cryo-EM. The proposed approach could easily be adopted to study the interaction of other receptors with their ligands.
Collapse
Affiliation(s)
- D S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - M A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - N N Sluchanko
- A. N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect 33, Building 1, Moscow, 119071, Russia
| | - E O Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Pogodinskaya 10k8, Moscow, 119121, Russia
| | - R A Kamyshinsky
- National Research Center "Kurchatov Institute", Academic Kurchatov Sq. 1, Moscow, 123182, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - Y M Chesnokov
- National Research Center "Kurchatov Institute", Academic Kurchatov Sq. 1, Moscow, 123182, Russia; Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninskiy Prospect 59, Moscow, 119333, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie gory, 1k12, Moscow, 119192, Russia
| | - E N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie gory, 1k12, Moscow, 119192, Russia.
| |
Collapse
|
8
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
9
|
Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem 2020; 158:1223-1235. [PMID: 32648941 DOI: 10.1111/jnc.15123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.
Collapse
Affiliation(s)
- Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,PhysBio of MePhi, Moscow, Russian Federation
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russian Federation
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
10
|
Lebedev DS, Kryukova EV, Ivanov IA, Egorova NS, Timofeev ND, Spirova EN, Tufanova EY, Siniavin AE, Kudryavtsev DS, Kasheverov IE, Zouridakis M, Katsarava R, Zavradashvili N, Iagorshvili I, Tzartos SJ, Tsetlin VI. Oligoarginine Peptides, a New Family of Nicotinic Acetylcholine Receptor Inhibitors. Mol Pharmacol 2019; 96:664-673. [PMID: 31492697 DOI: 10.1124/mol.119.117713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Many peptide ligands of nicotinic acetylcholine receptors (nAChRs) contain a large number of positively charged amino acid residues, a striking example being conotoxins RgIA and GeXIVA from marine mollusk venom, with an arginine content of >30%. To determine whether peptides built exclusively from arginine residues will interact with different nAChR subtypes or with their structural homologs such as the acetylcholine-binding protein and ligand-binding domain of the nAChR α9 subunit, we synthesized a series of R3, R6, R8, and R16 oligoarginines and investigated their activity by competition with radioiodinated α-bungarotoxin, two-electrode voltage-clamp electrophysiology, and calcium imaging. R6 and longer peptides inhibited muscle-type nAChRs, α7 nAChRs, and α3β2 nAChRs in the micromolar range. The most efficient inhibition of ion currents was detected for muscle nAChR by R16 (IC50 = 157 nM) and for the α9α10 subtype by R8 and R16 (IC50 = 44 and 120 nM, respectively). Since the R8 affinity for other tested nAChRs was 100-fold lower, R8 appears to be a selective antagonist of α9α10 nAChR. For R8, the electrophysiological and competition experiments indicated the existence of two distinct binding sites on α9α10 nAChR. Since modified oligoarginines and other cationic molecules are widely used as cell-penetrating peptides, we studied several cationic polymers and demonstrated their nAChR inhibitory activity. SIGNIFICANT STATEMENT: By using radioligand analysis, electrophysiology, and calcium imaging, we found that oligoarginine peptides are a new group of inhibitors for muscle nicotinic acetylcholine receptors (nAChRs) and some neuronal nAChRs, the most active being those with 16 and 8 Arg residues. Such compounds and other cationic polymers are cell-penetrating tools for drug delivery, and we also demonstrated the inhibition of nAChRs for several of the latter. Possible positive and negative consequences of such an action should be taken into account.
Collapse
Affiliation(s)
- Dmitry S Lebedev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor A Ivanov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nikita D Timofeev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elizaveta Yu Tufanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Andrei E Siniavin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Marios Zouridakis
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ramaz Katsarava
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nino Zavradashvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ia Iagorshvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Socrates J Tzartos
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| |
Collapse
|
11
|
Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019; 8:cells8080771. [PMID: 31349637 PMCID: PMC6721525 DOI: 10.3390/cells8080771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cholinergic dysfunction in Alzheimer’s disease (AD) can be mediated by the neuronal α7 nicotinic acetylcholine receptor (α7nAChR). Beta-amyloid peptide (Aβ) binds to the α7nAChR, disrupting the receptor’s function and causing neurotoxicity. In vivo not only Aβ but also its modified forms can drive AD pathogenesis. One of these forms, iso-Aβ (containing an isomerized Asp7 residue), shows an increased neurotoxicity in vitro and stimulates amyloidogenesis in vivo. We suggested that such effects of iso-Aβ are α7nAChR-dependent. Here, using calcium imaging and electrophysiology, we found that iso-Aβ is a more potent inhibitor of the α7nAChR-mediated calcium current than unmodified Aβ. However, Asp7 isomerization eliminated the ability of Aβ to decrease the α7nAChR levels. These data indicate differences in the interaction of the peptides with the α7nAChR, which we demonstrated using computer modeling. Neither Aβ nor iso-Aβ competed with 125I-α-bungarotoxin for binding to the orthosteric site of the receptor, suggesting the allosteric binging mode of the peptides. Further we found that increased neurotoxicity of iso-Aβ was mediated by the α7nAChR. Thus, the isomerization of Asp7 enhances the inhibitory effect of Aβ on the functional activity of the α7nAChR, which may be an important factor in the disruption of the cholinergic system in AD.
Collapse
|
12
|
Kryukova EV, Egorova NS, Kudryavtsev DS, Lebedev DS, Spirova EN, Zhmak MN, Garifulina AI, Kasheverov IE, Utkin YN, Tsetlin VI. From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs. Front Pharmacol 2019; 10:748. [PMID: 31333465 PMCID: PMC6616073 DOI: 10.3389/fphar.2019.00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.
Collapse
Affiliation(s)
- Elena V Kryukova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Lebedev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim N Zhmak
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandra I Garifulina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| |
Collapse
|
13
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
14
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
15
|
Kunisada M, Yamanishi K, Nishigori C. Japanese case of Mal de Meleda with a novel missense mutation of p.Thr52Ala in the second protruding finger of secreted Ly‐6/uPAR‐related protein 1. J Dermatol 2019; 46:e235-e237. [DOI: 10.1111/1346-8138.14781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Makoto Kunisada
- Division of Dermatology Department of Internal Related, Graduate School of Medicine Kobe University Kobe Japan
| | | | - Chikako Nishigori
- Division of Dermatology Department of Internal Related, Graduate School of Medicine Kobe University Kobe Japan
| |
Collapse
|
16
|
Kryukova EV, Ivanov IA, Lebedev DS, Spirova EN, Egorova NS, Zouridakis M, Kasheverov IE, Tzartos SJ, Tsetlin VI. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Mar Drugs 2018; 16:md16120460. [PMID: 30469507 PMCID: PMC6315749 DOI: 10.3390/md16120460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.
Collapse
Affiliation(s)
- Elena V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Dmitry S Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Natalia S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Street 8, bld. 2, 119991 Moscow, Russia.
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- PhysBio of MEPhI, Kashirskoye Ave., 31, 115409 Moscow, Russia.
| |
Collapse
|
17
|
Kudryavtsev DS, Spirova EN, Shelukhina IV, Son LV, Makarova YV, Utkina NK, Kasheverov IE, Tsetlin VI. Makaluvamine G from the Marine Sponge Zyzzia fuliginosa Inhibits Muscle nAChR by Binding at the Orthosteric and Allosteric Sites. Mar Drugs 2018; 16:md16040109. [PMID: 29597332 PMCID: PMC5923396 DOI: 10.3390/md16040109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Diverse ligands of the muscle nicotinic acetylcholine receptor (nAChR) are used as muscle relaxants during surgery. Although a plethora of such molecules exists in the market, there is still a need for new drugs with rapid on/off-set, increased selectivity, and so forth. We found that pyrroloiminoquinone alkaloid Makaluvamine G (MG) inhibits several subtypes of nicotinic receptors and ionotropic γ-aminobutiric acid receptors, showing a higher affinity and moderate selectivity toward muscle nAChR. The action of MG on the latter was studied by a combination of electrophysiology, radioligand assay, fluorescent microscopy, and computer modeling. MG reveals a combination of competitive and un-competitive inhibition and caused an increase in the apparent desensitization rate of the murine muscle nAChR. Modeling ion channel kinetics provided evidence for MG binding in both orthosteric and allosteric sites. We also demonstrated that theα1 (G153S) mutant of the receptor, associated with the myasthenic syndrome, is more prone to inhibition by MG. Thus, MG appears to be a perspective hit molecule for the design of allosteric drugs targeting muscle nAChR, especially for treating slow-channel congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Lina V Son
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- Moscow Institute of Physics and Technology, Institutsky Per. 9, Dolgoprudny, 141700 Moscow Region, Russia.
| | - Yana V Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Natalia K Utkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| |
Collapse
|