1
|
Poddar NK, Wijayasinghe YS, Viola RE. Identification of potential pharmacological chaperones that selectively stabilize mutated Aspartoacylases in Canavan disease. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141043. [PMID: 39128657 DOI: 10.1016/j.bbapap.2024.141043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Canavan disease is caused by mutations in the ASPA gene, leading to diminished catalytic activity of aspartoacylase in the brain. Clinical missense mutations are found throughout the enzyme structure, with many of these mutated enzymes having not only decreased activity but also compromised stability. High-throughput screening of a small molecule library has identified several compounds that significantly increase the thermal stability of the E285A mutant enzyme, the most predominant clinical mutation in Canavan disease, while having a negligible effect on the native enzyme. Based on the initial successes, some structural analogs of these initial hits were selected for further examination. Glutathione, NAAG and patulin were each confirmed to be competitive inhibitors, indicating the binding of these compounds at the dimer interface or near the active site of the E285A enzyme. The experimental results were theoretically examined with the help of the docking analysis method. The structure activity-guided optimization of these compounds can potentially lead to potential pharmacological chaperones that could alleviate the detrimental effect of ASPA mutations in Canavan patients.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| | - Yasanandana S Wijayasinghe
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
2
|
Izuo N, Ikejima D, Uno K, Asano T, Muramatsu SI, Nitta A. Hippocampus-specific knockdown of Shati/Nat8l impairs cognitive function and electrophysiological response in mice. Biochem Biophys Res Commun 2024; 736:150435. [PMID: 39116682 DOI: 10.1016/j.bbrc.2024.150435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Shati/Nat8l was identified as an upregulated molecule in the nucleus accumbens (NAc) of mice following repeated methamphetamine administration. Region-specific roles of this molecule are associated with psychiatric disorders. In the present study, we examined the importance of Shati/Nat8l in the hippocampus because of its high expression in this region. Mice with a hippocampus-specific knockdown of Shati/Nat8l (hippocampal Shati-cKD) were prepared by the microinjection of adeno-associated virus (AAV) vectors carrying Cre into the hippocampus of Shati/Nat8lflox/flox mice, and their phenotypes were investigated. Drastic reduction in the expression and function of Shati/Nat8l in the hippocampus was observed in Shati-cKD mice. These mice exhibited cognitive dysfunction in behavioral experiments and impaired the electrophysiological response to the stimuli, which elicits long-term potentiation. Shati/Nat8l in the hippocampus is suggested to possibly play an important role in synaptic plasticity to maintain cognitive function. This molecule could be a therapeutic target for hippocampus-related disorders such as dementia.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Daiki Ikejima
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
4
|
Krause N, Wegner A. N-acetyl-aspartate metabolism at the interface of cancer, immunity, and neurodegeneration. Curr Opin Biotechnol 2024; 85:103051. [PMID: 38103520 DOI: 10.1016/j.copbio.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
N-acetyl-L-aspartic acid (NAA) is a prominent amino acid derivative primarily associated with vertebrate brain metabolism. This review delineates the critical role of NAA across various cell types and its significance in pathophysiological contexts, including Canavan disease and cancer metabolism. Although traditionally linked with myelination and aspartoacylase-driven carbon donation, its significance as a carbon source for myelination remains debated. Evidence suggests that intact NAA might substantially impact cellular signaling, particularly processes such as histone acetylation. Beyond the brain, NAA metabolism's relevance is evident in diverse tissues, such as adipocytes, immune cells, and notably, cancer cells. In several cancer types, there is an observed upregulation of NAA synthesis accompanied by a simultaneous downregulation of its degradation. This pattern highlights the potential signaling role of intact NAA in disease.
Collapse
Affiliation(s)
- Nils Krause
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Izuo N, Miyanishi H, Nishizawa D, Fujii T, Hasegawa J, Sato N, Tanioka F, Sugimura H, Ikeda K, Nitta A. DNA methylation status of SHATI/NAT8L promoter in the blood of cigarette smokers. Neuropsychopharmacol Rep 2023; 43:570-575. [PMID: 37668111 PMCID: PMC10739067 DOI: 10.1002/npr2.12373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 09/06/2023] Open
Abstract
AIMS Cigarette smoking is a preventable risk factor for various diseases such as cancer, ischemic stroke, cardiac stroke, and chronic obstructive pulmonary disease. Smoking cessation is of great importance not only for individual smokers but also for social health. Regarding current cessation therapies, the effectiveness of nicotine replacement is limited, and the cost of varenicline medication is considerable. Thus, a method for screening smokers who are responsive to cessation therapy based on the therapeutic effectiveness is required. Peripheral biomarkers reflecting smoking dependence status are necessary to establish a method for achieving effective cessation therapy. METHODS Methylation status of smokers' blood DNA was evaluated focusing on SHATI/NAT8L, an addiction-related gene. Eight CpG sites in SHATI/NAT8L were quantified by pyrosequencing. RESULTS There was no difference in the methylation status of this gene between smokers (n = 129) and non-smokers (n = 129) at all CpG sites. No correlations between the methylation status of SHATI/NAT8L and indicators of smoking dependence were found. CONCLUSIONS Although the present study found no significance in the DNA methylation of SHATI/NAT8L among smokers, the exploration of predictable peripheral biomarkers for the effectiveness of smoking cessation therapy is required.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Daisuke Nishizawa
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuma Fujii
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Junko Hasegawa
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Naomi Sato
- Department of Clinical NursingHamamatsu University School of MedicineShizuokaJapan
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Fumihiko Tanioka
- Department of PathologyIwata City HospitalShizuokaJapan
- Present address:
KDP Pathology Clinic2‐30‐14 Hirosawa Nakaku HamamatsuShizuokaJapan
| | - Haruhiko Sugimura
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
- Present address:
Sasaki Institute, Sasaki Foundation2‐2 Kandasurugadai, Chiyoda‐KuTokyo101‐0062Japan
| | - Kazutaka Ikeda
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| |
Collapse
|
6
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
7
|
Kharel P, Singhal NK, Mahendran T, West N, Croos B, Rana J, Smith L, Freeman E, Chattopadhyay A, McDonough J, Basu S. NAT8L mRNA oxidation is linked to neurodegeneration in multiple sclerosis. Cell Chem Biol 2023; 30:308-320.e5. [PMID: 36882060 DOI: 10.1016/j.chembiol.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
RNA oxidation has been implicated in neurodegeneration, but the underlying mechanism for such effects is unclear. Extensive RNA oxidation occurs within the neurons in multiple sclerosis (MS) brains. Here, we identified selectively oxidized mRNAs in neuronal cells that pertained to neuropathological pathways. N-acetyl aspartate transferase 8 like (NAT8L) is one such transcript, whose translation product enzymatically synthesizes N-acetyl aspartic acid (NAA), a neuronal metabolite important for myelin synthesis. We reasoned that impediment of translation of an oxidized NAT8L mRNA will result in a reduction in its cognate protein, thus lowering the NAA level. This hypothesis is supported by our studies on cells, an animal model, and postmortem human MS brain. Reduced brain NAA level hampers myelin integrity making neuronal axons more susceptible to damage, which contributes to MS neurodegeneration. Overall, this work provides a framework for a mechanistic understanding of the link between RNA oxidation and neurodegeneration.
Collapse
Affiliation(s)
- Prakash Kharel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - Thulasi Mahendran
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Brintha Croos
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Joram Rana
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Lindsey Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Ernest Freeman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
8
|
Kusui Y, Izuo N, Uno K, Ge B, Muramatsu SI, Nitta A. Knockdown of Piccolo in the Nucleus Accumbens Suppresses Methamphetamine-Induced Hyperlocomotion and Conditioned Place Preference in Mice. Neurochem Res 2022; 47:2856-2864. [PMID: 35906352 DOI: 10.1007/s11064-022-03680-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Methamphetamine (METH), the most widely distributed psychostimulant, aberrantly activates the reward system in the brain to induce addictive behaviors. The presynaptic protein "Piccolo", encoded by Pclo, was identified as a METH-responsive protein with enhanced expression in the nucleus accumbens (NAc) in mice. Although the physiological and pathological significance of Piccolo has been identified in dopaminergic signaling, its role in METH-induced behavioral abnormalities and the underlying mechanisms remain unclear. To clarify such functions, mice with Piccolo knockdown in the NAc (NAc-miPiccolo mice) by local injection of an adeno-associated virus vector carrying miRNA targeting Pclo were generated and investigated. NAc-miPiccolo mice exhibited suppressed hyperlocomotion, sensitization, and conditioned place preference behavior induced by systemic administration of METH. The excessive release of dopamine in the NAc was reduced in NAc-miPiccolo mice at baseline and in response to METH. These results suggest that Piccolo in the NAc is involved in METH-induced behavioral alterations and is a candidate therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Bin Ge
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, Shimotsuke, Japan
- Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
9
|
Chino K, Izuo N, Noike H, Uno K, Kuboyama T, Tohda C, Muramatsu SI, Nitta A. Shati/Nat8l Overexpression Improves Cognitive Decline by Upregulating Neuronal Trophic Factor in Alzheimer's Disease Model Mice. Neurochem Res 2022; 47:2805-2814. [PMID: 35759136 DOI: 10.1007/s11064-022-03649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a type of dementia characterized by the deposition of amyloid β, a causative protein of AD, in the brain. Shati/Nat8l, identified as a psychiatric disease related molecule, is a responsive enzyme of N-acetylaspartate (NAA) synthesis. In the hippocampi of AD patients and model mice, the NAA content and Shati/Nat8l expression were reported to be reduced. Having recently clarified the involvement of Shati/Nat8l in cognitive function, we examined the recovery effect of the hippocampal overexpression of Shati/Nat8l in AD model mice (5XFAD). Shati/Nat8l overexpression suppressed cognitive dysfunction without affecting the Aβ burden or number of NeuN-positive neurons. In addition, brain-derived neurotrophic factor mRNA was upregulated by Shati/Nat8l overexpression in 5XFAD mice. These results suggest that Shati/Nat8l overexpression prevents cognitive dysfunction in 5XFAD mice, indicating that Shati/Nat8l could be a therapeutic target for AD.
Collapse
Affiliation(s)
- Kakeru Chino
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroshi Noike
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Tomoharu Kuboyama
- Laboratory of Pharmacognosy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Open Innovation Center, Jichi Medical University, Shimotsuke, 329-0498, Japan
- Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
11
|
Miyanishi H, Kitazawa A, Izuo N, Muramatsu SI, Nitta A. N-Acetyl Transferase, Shati/Nat8l, in the Dorsal Hippocampus Suppresses Aging-induced Impairment of Cognitive Function in Mice. Neurochem Res 2022; 47:2703-2714. [DOI: 10.1007/s11064-022-03594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
|
12
|
Kowalski R, Pikul P, Lewandowski K, Sakowicz-Burkiewicz M, Pawełczyk T, Zyśk M. The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain. Antioxidants (Basel) 2021; 10:1404. [PMID: 34573036 PMCID: PMC8466109 DOI: 10.3390/antiox10091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acetylaspartate, NAT8L takes part in oligoglia and astroglia cell maturation, myelin production, and dopamine-dependent brain signaling. Therefore, understanding N-acetylaspartate metabolism is an emergent task in neurobiology. This project used in in vitro and in vivo approaches in order to establish the impact of maturation factors and glial cells on N-acetylaspartate metabolism. Embryonic rat neural stem cells and primary neurons were maturated with either nerve growth factor, trans-retinoic acid or activators of cAMP-dependent protein kinase A (dibutyryl-cAMP, forskolin, theophylline). For in vivo, adult male Wistar rats were injected with theophylline (20 mg/kg b.w.) daily for two or eight weeks. Our studies showed that the N-acetylaspartate metabolism differs between primary neurons and neural stem cell cultures. The presence of glia cells protected N-acetylaspartate metabolism from dramatic changes within the maturation processes, which was impossible in the case of pure primary neuron cultures. In the case of differentiation processes, our data points to dibutyryl-cAMP as the most prominent regulator of N-acetylaspartate metabolism.
Collapse
Affiliation(s)
- Robert Kowalski
- University Clinical Center in Gdansk, 80-952 Gdansk, Poland; (R.K.); (K.L.)
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland;
| | - Krzysztof Lewandowski
- University Clinical Center in Gdansk, 80-952 Gdansk, Poland; (R.K.); (K.L.)
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Tadeusz Pawełczyk
- Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.-B.); (T.P.)
| |
Collapse
|
13
|
Miyanishi H, Muramatsu SI, Nitta A. Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacology 2021; 46:1594-1605. [PMID: 34099867 PMCID: PMC8280178 DOI: 10.1038/s41386-021-01033-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The global number of patients with depression increases in correlation to exposure to social stress. Chronic stress does not trigger depression in all individuals, as some remain resilient. The underlying molecular mechanisms that contribute to stress sensitivity have been poorly understood, although revealing the regulation of stress sensitivity could help develop treatments for depression. We previously found that striatal Shati/Nat8l, an N-acetyltransferase, was increased in a depression mouse model. We investigated the roles of Shati/Nat8l in stress sensitivity in mice and found that Shati/Nat8l and brain-derived neurotrophic factor (BDNF) levels in the dorsal striatum were increased in stress-susceptible mice but not in resilient mice exposed to repeated social defeat stress (RSDS). Knockdown of Shati/Nat8l in the dorsal striatum induced resilience to RSDS. In addition, blockade of BDNF signaling in the dorsal striatum by ANA-12, a BDNF-specific receptor tropomyosin-receptor-kinase B (TrkB) inhibitor, also induced resilience to stress. Shati/Nat8l is correlated with BDNF expression after RSDS, and BDNF is downstream of Shati/Nat8l pathways in the dorsal striatum; Shati/Nat8l is epigenetically regulated by BDNF via histone acetylation. Our results demonstrate that striatal Shati/Nat8l-BDNF pathways determine stress sensitivity through epigenetic regulation. The striatal Shati/Nat8l-BDNF pathway could be a novel target for treatments of depression and could establish a novel therapeutic strategy for depression patients.
Collapse
Affiliation(s)
- Hajime Miyanishi
- grid.267346.20000 0001 2171 836XDepartment of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-ichi Muramatsu
- grid.410804.90000000123090000Division of Neurological Gene Therapy, Open Innovation Center, Jichi Medical University, Shimotsuke, Japan ,grid.26999.3d0000 0001 2151 536XCenter for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
14
|
Zyśk M, Pikul P, Kowalski R, Lewandowski K, Sakowicz-Burkiewicz M, Pawełczyk T. Neither Excessive Nitric Oxide Accumulation nor Acute Hyperglycemia Affects the N-Acetylaspartate Network in Wistar Rat Brain Cells. Int J Mol Sci 2020; 21:ijms21228541. [PMID: 33198375 PMCID: PMC7697070 DOI: 10.3390/ijms21228541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The N-acetylaspartate network begins in neurons with N-acetylaspartate production catalyzed by aspartate N-acetyltransferase from acetyl-CoA and aspartate. Clinical studies reported a significant depletion in N-acetylaspartate brain level in type 1 diabetic patients. The main goal of this study was to establish the impact of either hyperglycemia or oxidative stress on the N-acetylaspartate network. For the in vitro part of the study, embryonic rat primary neurons were treated by using a nitric oxide generator for 24 h followed by 6 days of post-treatment culture, while the neural stem cells were cultured in media with 25–75 mM glucose. For the in vivo part, male adult Wistar rats were injected with streptozotocin (65 mg/kg body weight, ip) to induce hyperglycemia (diabetes model) and euthanized 2 or 8 weeks later. Finally, the biochemical profile, NAT8L protein/Nat8l mRNA levels and enzymatic activity were analyzed. Ongoing oxidative stress processes significantly affected energy metabolism and cholinergic neurotransmission. However, the applied factors did not affect the N-acetylaspartate network. This study shows that reduced N-acetylaspartate level in type 1 diabetes is not related to oxidative stress and that does not trigger N-acetylaspartate network fragility. To reveal why N-acetylaspartate is reduced in this pathology, other processes should be considered.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
- Correspondence: ; Tel.: +48-58-349-2770
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | - Robert Kowalski
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | | | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Tadeusz Pawełczyk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| |
Collapse
|
15
|
Zyśk M, Sakowicz-Burkiewicz M, Pikul P, Kowalski R, Michno A, Pawełczyk T. The Impact of Acetyl-CoA and Aspartate Shortages on the N-Acetylaspartate Level in Different Models of Cholinergic Neurons. Antioxidants (Basel) 2020; 9:antiox9060522. [PMID: 32545833 PMCID: PMC7346116 DOI: 10.3390/antiox9060522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylaspartate is produced by neuronal aspartate N-acetyltransferase (NAT8L) from acetyl-CoA and aspartate. In cholinergic neurons, acetyl-CoA is also utilized in the mitochondrial tricarboxylic acid cycle and in acetylcholine production pathways. While aspartate has to be shared with the malate–aspartate shuttle, another mitochondrial machinery together with the tricarboxylic acid cycle supports the electron transport chain turnover. The main goal of this study was to establish the impact of toxic conditions on N-acetylaspartate production. SN56 cholinergic cells were exposed to either Zn2+ overload or Ca2+ homeostasis dysregulation and male adult Wistar rats’ brains were studied after 2 weeks of challenge with streptozotocin-induced hyperglycemia or daily theophylline treatment. Our results allow us to hypothesize that the cholinergic neurons from brain septum prioritized the acetylcholine over N-acetylaspartate production. This report provides the first direct evidence for Zn2+-dependent suppression of N-acetylaspartate synthesis leading to mitochondrial acetyl-CoA and aspartate shortages. Furthermore, Zn2+ is a direct concentration-dependent inhibitor of NAT8L activity, while Zn2+-triggered oxidative stress is unlikely to be significant in such suppression.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
- Correspondence: ; Tel.: +48-5834-927-70
| | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Center, Polish Academy of Science, 80-308 Gdansk, Poland;
- Clinical Laboratory University Clinical Center in Gdansk, 80-211 Gdansk, Poland;
| | - Robert Kowalski
- Clinical Laboratory University Clinical Center in Gdansk, 80-211 Gdansk, Poland;
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdansk, 80-2011 Gdansk, Poland;
| | - Tadeusz Pawełczyk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| |
Collapse
|
16
|
Pleasure D, Guo F, Chechneva O, Bannerman P, McDonough J, Burns T, Wang Y, Hull V. Pathophysiology and Treatment of Canavan Disease. Neurochem Res 2020; 45:561-565. [PMID: 30535831 PMCID: PMC11131954 DOI: 10.1007/s11064-018-2693-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/28/2023]
Affiliation(s)
- David Pleasure
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA.
- , C/o Shriners Hospital, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| | - Olga Chechneva
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| | - Peter Bannerman
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| | - Jennifer McDonough
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Travis Burns
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| | - Yan Wang
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| | - Vanessa Hull
- Institute for Pediatric Regenerative Research, Shriners Hospitals for Children Northern California and UC Davis School of Medicine, 2425 Stockton Blvd, 95817, Sacramento, CA, USA
| |
Collapse
|