1
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
3
|
Dong L, Gao L. SP1-Driven FOXM1 Upregulation Induces Dopaminergic Neuron Injury in Parkinson's Disease. Mol Neurobiol 2024; 61:5510-5524. [PMID: 38200349 DOI: 10.1007/s12035-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
The aberrant expression of Forkhead box M1 (FOXM1) has been associated with the pathological processes of Parkinson's disease (PD), but the upstream and downstream regulators remain poorly understood. This study sought to examine the underlying mechanism of FOXM1 in dopaminergic neuron injury in PD. Bioinformatics analysis was conducted to pinpoint the differential expression of FOXM1, which was verified in the nigral tissues of rotenone-lesioned mice and dopaminergic neuron MN9D cells. Interactions among SP1, FOXM1, SNAI2, and CXCL12 were analyzed. To evaluate their effects on dopaminergic neuron injury, the lentiviral vector-mediated manipulation of FOXM1, SP1, and CXCL12 was introduced in rotenone-lesioned mice and MN9D cells. SP1, FOXM1, SNAI2, and CXCL12 abundant expression occurred in rotenone-lesioned mice and MN9D cells. Silencing of FOXM1 delayed the rotenone-induced dopaminergic neuron injury in vitro. Mechanistically, SP1 was an upstream transcription factor of FOXM1 and upregulated FOXM1 expression, leading to increased SNAI2 and CXCL12 expression. In vivo, data confirmed that SP1 promoted dopaminergic neuron injury by activating the FOXM1/SNAI2/CXCL12 axis. Our data indicate that SP1 silencing has neuroprotective effects on dopaminergic neurons, which is dependent upon the inactivated FOXM1/SNAI2/CXCL12 axis.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
5
|
Vettorazzi M, Díaz I, Angelina E, Salido S, Gutierrez L, Alvarez SE, Cobo J, Enriz RD. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg Chem 2024; 144:107112. [PMID: 38237390 DOI: 10.1016/j.bioorg.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Iván Díaz
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Emilio Angelina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Departamento de Química, Área de Química Física, Laboratorio de Estructura Molecular y Propiedades, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Sofía Salido
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Lucas Gutierrez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Sergio E Alvarez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Justo Cobo
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina.
| |
Collapse
|
6
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Talib WH, Ahmed Jum’AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW, Mahmod AI. Role of vitamins A, C, D, E in cancer prevention and therapy: therapeutic potentials and mechanisms of action. Front Nutr 2024; 10:1281879. [PMID: 38274206 PMCID: PMC10808607 DOI: 10.3389/fnut.2023.1281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Zeena Shamil Attallah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Mohanned Sami Jallad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Rawan Wamidh Hadi
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
8
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
9
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Zhang J, Li H, Dong J, Zhang N, Liu Y, Luo X, Chen J, Wang J, Wang A. Omics-Based Identification of Shared and Gender Disparity Routes in Hras12V-Induced Hepatocarcinogenesis: An Important Role for Dlk1-Dio3 Genomic Imprinting Region. Front Genet 2021; 12:620594. [PMID: 34135934 PMCID: PMC8202007 DOI: 10.3389/fgene.2021.620594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of gender disparity is very profound in hepatocellular carcinoma (HCC). Although previous research has revealed important roles of microRNA (miRNA) in HCC, there are no studies investigating the role of miRNAs in gender disparity observed hepatocarcinogenesis. In the present study, we investigated the global miRNAomics changes related to Ras-induced male-prevalent hepatocarcinogenesis in a Hras12V-transgenic mouse model (Ras-Tg) by next-generation sequencing (NGS). We identified shared by also unique changes in miRNA expression profiles in gender-dependent hepatocarcinogenesis. Two hundred sixty-four differentially expressed miRNAs (DEMIRs) with q value ≤0.05 and fold change ≥2 were identified. A vertical comparison revealed that the lower numbers of DEMIRs in the hepatic tumor (T) compared with the peri-tumor precancerous tissue (P) of Ras-Tg and normal liver tissue of wild-type C57BL/6J mice (W) in males indicated that males are more susceptible to develop HCC. The expression pattern analysis revealed 43 common HCC-related miRNAs and 4 Ras-positive-related miRNAs between males and females. By integrating the mRNA transcriptomic data and using 3-node FFL analysis, a group of significant components commonly contributing to HCC between sexes were filtered out. A horizontal comparison showed that the majority of DEMIRs are located in the Dlk1-Dio3 genomic imprinting region (GIR) and that they are closely related to not only hepatic tumorigenesis but also to gender disparity in hepatocarcinogenesis. This is achieved by regulating multiple metabolic pathways, including retinol, bile acid, and steroid hormones. In conclusion, the identification of shared and gender-dependent DEMIRs in hepatocarcinogenesis provides valuable insights into the mechanisms that contribute to male-biased Ras-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
12
|
Roy S, Khan S, Jairajpuri DS, Hussain A, Alajmi MF, Islam A, Luqman S, Parvez S, Hassan MI. Investigation of sphingosine kinase 1 inhibitory potential of cinchonine and colcemid targeting anticancer therapy. J Biomol Struct Dyn 2021; 40:6350-6362. [PMID: 33565370 DOI: 10.1080/07391102.2021.1882341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) signaling regulates numerous diseases such as cancer, diabetes, and inflammation-related ailments, rheumatoid arthritis, atherosclerosis, and multiple sclerosis. The importance of SphK1 in chemo-resistance has been extensively explored in breast, lung, colon, and hepatocellular carcinomas. SphK1 is considered an attractive drug target for the development of anticancer therapy. New drug molecules targeting the S1P signaling are required owing to its pleiotropic nature and association with multiple downstream targets. Here, we have investigated the binding affinity and SphK1 inhibitory potential of cinchonine and colcemid using a combined molecular docking and simulation studies followed by experimental analysis. These compounds bind to SphK1 with a significantly high affinity and subsequently inhibit kinase activity (IC50 7-9 μM). Further, MD simulation studies revealed that both cinchonine and colcemid bind to the residues at the active site pocket of SphK1 with several non-covalent interactions, which may be responsible for inhibiting its kinase activity. Besides, the binding of cinchonine and colcemid causes substantial conformational changes in the structure of SphK1. Taken together, cinchonine and colcemid may be implicated in designing potential drug molecules with improved affinity and specificity for SphK1 targeting anticancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
13
|
Peretinoin, an Acyclic Retinoid, for the Secondary Prevention of Hepatocellular Carcinoma. Molecules 2021; 26:molecules26020295. [PMID: 33435572 PMCID: PMC7827668 DOI: 10.3390/molecules26020295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The high rates of hepatocellular carcinoma (HCC) recurrence after initially successful curative therapy emphasize ongoing unmet needs to prevent or reduce HCC recurrence. Retinoid acid (RA), a metabolite of vitamin A and its related analogues (termed retinoids) has been suggested as a promising chemotherapeutic agent in cancer treatment. The synthetic oral retinoid peretinoin is the only agent for the secondary chemoprevention of HCC after curative therapy that is currently well applied into clinical development. Here we present an updated summary of the molecular pathogenesis of HCC and of preclinical and clinical findings with peretinoin, including its clinical characteristics, safety and tolerability profile and future perspectives for clinical use.
Collapse
|
14
|
Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, Tanabe KK. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med 2020; 9:E3817. [PMID: 33255794 PMCID: PMC7760293 DOI: 10.3390/jcm9123817] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally. Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets patients with baseline chronic liver disease. Various epidemiological and experimental studies have identified candidates for secondary prevention-both etiology-specific and generic prevention strategies-including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based omics analysis along with better characterization of the hepatic microenvironment will further facilitate the identification of targets for prevention. In this review, we will summarize HCC risk factors, pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and also discuss current challenges in translating experimental work into clinical practice.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Antonio Saviano
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Yujin Hoshida
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Department of Internal Medicine, Dallas, TX 75390, USA;
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Thomas Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| |
Collapse
|
15
|
Transcriptional Regulation of Sphingosine Kinase 1. Cells 2020; 9:cells9112437. [PMID: 33171624 PMCID: PMC7695205 DOI: 10.3390/cells9112437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Once thought to be primarily structural in nature, sphingolipids have become increasingly appreciated as second messengers in a wide array of signaling pathways. Sphingosine kinase 1, or SK1, is one of two sphingosine kinases that phosphorylate sphingosine into sphingosine-1-phosphate (S1P). S1P is generally pro-inflammatory, pro-angiogenic, immunomodulatory, and pro-survival; therefore, high SK1 expression and activity have been associated with certain inflammatory diseases and cancer. It is thus important to develop an understanding of the regulation of SK1 expression and activity. In this review, we explore the current literature on SK1 transcriptional regulation, illustrating a complex system of transcription factors, cytokines, and even micro-RNAs (miRNAs) on the post transcriptional level.
Collapse
|
16
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
17
|
McGowan EM, Haddadi N, Nassif NT, Lin Y. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19. Int J Mol Sci 2020; 21:ijms21197189. [PMID: 33003377 PMCID: PMC7583882 DOI: 10.3390/ijms21197189] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918-the COVID-19 pandemic-caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world's third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the "cytokine storm syndrome", endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.
Collapse
Affiliation(s)
- Eileen M McGowan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
- Correspondence: ; Tel.: +61-405814048
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| |
Collapse
|
18
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
19
|
Yu J, Dong J, Chen K, Ding Y, Yang Z, Lan T. Generation of mice with hepatocyte-specific conditional deletion of sphingosine kinase 1. Transgenic Res 2020; 29:419-428. [PMID: 32696422 DOI: 10.1007/s11248-020-00211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
SphK1 gene has different roles in various types of cells in liver diseases, but most studies are based on global knockout mice, which hampers the study on the cellular and molecular mechanisms of SphK1. In order to further study the role of SphK1 in liver, SphK1 conditional knockout mice were constructed. A liver-specific SphK1 gene knockout mouse model was constructed by the Cre/Loxp recombinant enzyme system. PCR technologies and western blotting were used to identified the elimination of SphK1 gene in hepatocytes. SphK1flox/flox mice were used as a control group to verify the effectiveness of SphK1 liver-specific knockout mice from the profile, pathology, and serology of mice. The ablation of SphK1 in hepatic parenchymal cells was demonstrated by fluorescent in situ hybridization and the contents of S1P and Sph were measured by ELISA kit. The genotypes of liver in SphK1 conditional knockout mice were different from that of other organs. The mRNA and protein levels of SphK1 in liver tissue of SphK1 conditional knockout mice were almost depleted by compared with SphK1flox/flox mice. Physiology and pathology showed no significant difference between SphK1 liver conditional knockout mice and SphK1flox/flox mice. Additionally, SphK1 was eliminated in hepatocytes, leading to the reduce of S1P content in hepatocytes and liver tissues and the increase of Sph content in hepatocytes. The model of SphK1 gene liver conditional knockout mice was successfully constructed, providing a tool for the study of the roles of SphK1 in hepatocyte and liver diseases.
Collapse
Affiliation(s)
- Jinfeng Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kangdi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yaping Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhicheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
22
|
Sukocheva OA, Lukina E, McGowan E, Bishayee A. Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:123-158. [PMID: 32085881 DOI: 10.1016/bs.apcsb.2019.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morbidity of inflammatory gastrointestinal (GI) diseases continues to grow resulting in worsen quality of life and increased burden on public medical systems. Complex and heterogenous illnesses, inflammatory bowel diseases (IBDs) encompass several inflammation -associated pathologies including Crohn's disease and ulcerative colitis. IBD is often initiated by a complex interplay between host genetic and environmental factors, lifestyle and diet, and intestinal bacterial components. IBD inflammatory signature was linked to the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) signaling pathway that is currently targeted by IBD therapies. Sphingolipid signaling was identified as one of the key mediators and regulators of pro-inflammatory conditions, and, specifically, TNF-α related signaling. All GI tissues and circulating immune/blood cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinases (SphK1 and SphK2) that generate sphingosine-1-phosphate (S1P), a bioactive lipid and ligand for five G-protein coupled membrane S1P receptors (S1PRs). Numerous normal and pathogenic inflammatory responses are mediated by SphK/S1P/S1PRs signaling axis including lymphocyte trafficking and activation of cytokine signaling machinery. SphK1/S1P/S1PRs axis has recently been defined as a target for the treatment of GI diseases including IBD/colitis. Several SphK1 inhibitors and S1PRs antagonists have been developed as novel anti-inflammatory agents. In this review, we discuss the mechanisms of SphK/S1P signaling in inflammation-linked GI disorders. The potential role of SphK/S1PRs inhibitors in the prevention and treatment of IBD/colitis is critically evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Elena Lukina
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Eileen McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
23
|
Simon TG, Ma Y, Ludvigsson JF, Chong DQ, Giovannucci EL, Fuchs CS, Meyerhardt JA, Corey KE, Chung RT, Zhang X, Chan AT. Association Between Aspirin Use and Risk of Hepatocellular Carcinoma. JAMA Oncol 2019; 4:1683-1690. [PMID: 30286235 DOI: 10.1001/jamaoncol.2018.4154] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Prospective data on the risk of hepatocellular carcinoma (HCC) according to dose and duration of aspirin therapy are limited. Objective To examine the potential benefits of aspirin use for primary HCC prevention at a range of doses and durations of use within 2 prospective, nationwide populations. Design, Setting, and Participants Pooled analysis of 2 prospective US cohort studies: the Nurses' Health Study and the Health Professionals Follow-up Study. Data were accessed from November 1, 2017, through March 7, 2018. A total of 133 371 health care professionals who reported data on aspirin use, frequency, dosage, and duration of use biennially since 1980 in women and 1986 in men were included. Individuals with a cancer diagnosis at baseline (except nonmelanoma skin cancer) were excluded. Main Outcomes and Measures Cox proportional hazards regression models were used to calculate multivariable adjusted hazard ratios (HRs) and 95% CIs for HCC. Results Of the 133 371 participants, 87 507 were women and 45 864 were men; in 1996, the median time of follow-up, the mean (SD) age was 62 (8) years for women and 64 (8) years for men. Over more than 26 years of follow-up encompassing 4 232 188 person-years, 108 incident HCC cases (65 women, 43 men) were documented. Compared with nonregular use, regular aspirin use (≥2 standard-dose [325-mg] tablets per week) was associated with reduced HCC risk (adjusted HR, 0.51; 95% CI, 0.34-0.77). This benefit appeared to be dose related: compared with nonuse, the multivariable-adjusted HR for HCC was 0.87 (95% CI, 0.51-1.48) for up to 1.5 standard-dose tablets per week, 0.51 (95% CI, 0.30-0.86) for more than 1.5 to 5 tablets per week, and 0.49 (95% CI, 0.28-0.96) for more than 5 tablets per week (P for trend = .006). Significantly lower HCC risk was observed with increasing duration (P for trend = .03); this decrease was apparent with use of 1.5 or more standard-dose aspirin tablets per week for 5 or more years (adjusted HR, 0.41; 95% CI, 0.21-0.77). In contrast, use of nonaspirin nonsteroidal anti-inflammatory drugs was not significantly associated with HCC risk (adjusted HR, 1.09; 95% CI, 0.78-1.51). Conclusions and Relevance This study suggests that regular, long-term aspirin use is associated with a dose-dependent reduction in HCC risk, which is apparent after 5 or more years of use. Similar associations were not found with nonaspirin NSAIDs. Further research appears to be needed to clarify whether aspirin use represents a feasible strategy for primary prevention against HCC.
Collapse
Affiliation(s)
- Tracey G Simon
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston.,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jonas F Ludvigsson
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden.,Columbia University College of Physicians and Surgeons, New York, New York
| | | | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston.,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston.,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew T Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Broad Institute, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
24
|
Nishimura N, Kaji K, Kitade M, Aihara Y, Sato S, Seki K, Sawada Y, Takaya H, Okura Y, Kawaratani H, Moriya K, Namisaki T, Mitoro A, Yoshiji H. Acyclic retinoid and angiotensin-II receptor blocker exert a combined protective effect against diethylnitrosamine-induced hepatocarcinogenesis in diabetic OLETF rats. BMC Cancer 2018; 18:1164. [PMID: 30477453 PMCID: PMC6260898 DOI: 10.1186/s12885-018-5099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Insulin resistance (IR) is closely associated with the progression of hepatocellular carcinoma (HCC). Acyclic retinoid (ACR) targets retinoid X receptor α and reportedly prevents HCC recurrence in clinical practice. Angiotensin-II receptor blocker (ARB) can also inhibit experimental hepatocarcinogenesis and HCC development. These are reported to suppress IR-based hepatocarcinogenesis; however, limited data are available regarding the combined effects of both these agents. This study aimed to investigate the combined chemopreventive effect of ACR and ARB on liver tumorigenesis on rats with congenital diabetes. Methods Male diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats underwent 70% partial hepatectomy following a single intraperitoneal injection of diethylnitrosamine to induce hepatocarcinogenesis and the administration of ACR (peretinoin, 40 mg/kg/day), ARB (losartan, 30 mg/kg/day), and a combination of ACR and ARB. Six weeks thereafter, we assessed the size and number of the pre-neoplastic lesions (PNL) as well as the altered angiogenesis, oxidative stress, and chronic inflammation in the liver. Moreover, we assessed the effects exerted by ACR and ARB on in vitro cell growth in human HCC cell lines and human umbilical vascular endothelial cells (HUVECs). Results OLETF rats showed increase in the size and number of PNLs compared to LETO rats. ACR suppressed the augmentation in size and number of PNLs in the OLETF rats with suppression of cell growth, intrahepatic angiogenesis, lipid peroxidation, oxidative DNA damage, and proinflammatory cytokine production. Combining ACR with ARB enhanced the tumor-suppressive effect and ameliorated intrahepatic angiogenesis, lipid peroxidation, and proinflammatory status; however, cell growth and oxidative DNA damage remained unchanged. IR-mimetic condition accelerated in vitro proliferative activity in human HCC cells, while ACR inhibited this proliferation with G0/G1 arrest and apoptosis. Furthermore, ACR and ARB significantly attenuated the HUVECs proliferation and tubular formation under the IR-mimetic condition, and a combination of both agents demonstrated greater inhibitory effects on HUVEC growth than each single treatment. Conclusions ACR and ARB exert a combined inhibitory effect against IR-based hepatocarcinogenesis by the inhibition of cell growth, intrahepatic angiogenesis, and oxidative stress. Thus, this combination therapy appears to hold potential as a chemopreventive treatment therapy against HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-5099-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norihisa Nishimura
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yosuke Aihara
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yasushi Okura
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
25
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Wang Z, Qu H, Gong W, Liu A. Up-regulation and tumor-promoting role of SPHK1 were attenuated by miR-330-3p in gastric cancer. IUBMB Life 2018; 70:1164-1176. [PMID: 30281914 DOI: 10.1002/iub.1934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Zhihua Wang
- Department of Gastroenterology, Yuhuangding Hospital of Yantai, Yantai, Shandong, China
| | - Huajun Qu
- Department of Oncology, Yuhuangding Hospital of Yantai, Yantai, Shandong, China
| | - Wenjing Gong
- Department of Oncology, Yuhuangding Hospital of Yantai, Yantai, Shandong, China
| | - Aina Liu
- Department of Oncology, Yuhuangding Hospital of Yantai, Yantai, Shandong, China
| |
Collapse
|
27
|
Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro. Int J Mol Sci 2018; 19:ijms19020108. [PMID: 29360739 PMCID: PMC5855541 DOI: 10.3390/ijms19020108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.
Collapse
|