1
|
Manning C. Visual processing and decision-making in autism and dyslexia: Insights from cross-syndrome approaches. Q J Exp Psychol (Hove) 2024; 77:1937-1948. [PMID: 38876999 PMCID: PMC11440862 DOI: 10.1177/17470218241264627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Atypical visual processing has been reported in developmental conditions like autism and dyslexia, and some accounts propose a causal role for visual processing in the development of these conditions. However, few studies make direct comparisons between conditions, or use sufficiently sensitive methods, meaning that it is hard to say whether atypical visual processing tells us anything specific about these conditions, or whether it reflects a more general marker of atypical development. Here I review findings from two computational modelling approaches (equivalent noise and diffusion modelling) and related electroencephalography (EEG) indices which we have applied to data from autistic, dyslexic and typically developing children to reveal how the component processes involved in visual processing and decision-making are altered in autism and dyslexia. The results identify both areas of convergence and divergence in autistic and dyslexic children's visual processing and decision-making, with implications for influential theoretical accounts such as weak central coherence, increased internal noise, and dorsal-stream vulnerability. In both sets of studies, we also see considerable variability across children in all three groups. To better understand this variability, and further understand the convergence and divergence identified between conditions, future studies would benefit from studying how the component processes reviewed here relate to transdiagnostic dimensions, which will also give insights into individual differences in visual processing and decision-making more generally.
Collapse
Affiliation(s)
- Catherine Manning
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Cannon J, Cardinaux A, Bungert L, Li C, Sinha P. Reduced precision of motor and perceptual rhythmic timing in autistic adults. Heliyon 2024; 10:e34261. [PMID: 39082034 PMCID: PMC11284439 DOI: 10.1016/j.heliyon.2024.e34261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Recent results suggest that autistic individuals exhibit reduced accuracy compared to non-autistic peers in temporally coordinating their actions with predictable external cues, e.g., synchronizing finger taps to an auditory metronome. However, it is not yet clear whether these difficulties are driven primarily by motor differences or extend into perceptual rhythmic timing tasks. We recruited autistic and non-autistic participants for an online study testing both finger tapping synchronization and continuation as well as rhythmic time perception (anisochrony detection). We fractionated each participant's synchronization results into parameters representing error correction, motor noise, and internal time-keeper noise, and also investigated error-correcting responses to small metronome timing perturbations. Contrary to previous work, we did not find strong evidence for reduced synchronization error correction. However, we found compelling evidence for noisier internal rhythmic timekeeping in the synchronization, continuation, and perceptual components of the experiment. These results suggest that noisier internal rhythmic timing processes underlie some sensorimotor coordination challenges in autism.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Annie Cardinaux
- Department of Brain & Cognitive Science, MIT, Cambridge, MA, USA
| | - Lindsay Bungert
- Department of Brain & Cognitive Science, MIT, Cambridge, MA, USA
| | - Cindy Li
- Department of Brain & Cognitive Science, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Pawan Sinha
- Department of Brain & Cognitive Science, MIT, Cambridge, MA, USA
| |
Collapse
|
4
|
Adl Zarrabi A, Jeulin M, Bardet P, Commère P, Naccache L, Aucouturier JJ, Ponsot E, Villain M. A simple psychophysical procedure separates representational and noise components in impairments of speech prosody perception after right-hemisphere stroke. Sci Rep 2024; 14:15194. [PMID: 38956187 PMCID: PMC11219855 DOI: 10.1038/s41598-024-64295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
After a right hemisphere stroke, more than half of the patients are impaired in their capacity to produce or comprehend speech prosody. Yet, and despite its social-cognitive consequences for patients, aprosodia following stroke has received scant attention. In this report, we introduce a novel, simple psychophysical procedure which, by combining systematic digital manipulations of speech stimuli and reverse-correlation analysis, allows estimating the internal sensory representations that subtend how individual patients perceive speech prosody, and the level of internal noise that govern behavioral variability in how patients apply these representations. Tested on a sample of N = 22 right-hemisphere stroke survivors and N = 21 age-matched controls, the representation + noise model provides a promising alternative to the clinical gold standard for evaluating aprosodia (MEC): both parameters strongly associate with receptive, and not expressive, aprosodia measured by MEC within the patient group; they have better sensitivity than MEC for separating high-functioning patients from controls; and have good specificity with respect to non-prosody-related impairments of auditory attention and processing. Taken together, individual differences in either internal representation, internal noise, or both, paint a potent portrait of the variety of sensory/cognitive mechanisms that can explain impairments of prosody processing after stroke.
Collapse
Affiliation(s)
- Aynaz Adl Zarrabi
- Université de Franche-Comté, SUPMICROTECH, CNRS, Institut FEMTO-ST, 25000, Besançon, France
| | - Mélissa Jeulin
- Department of Physical Medicine & Rehabilitation, APHP/Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Pauline Bardet
- Department of Physical Medicine & Rehabilitation, APHP/Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Pauline Commère
- Department of Physical Medicine & Rehabilitation, APHP/Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Lionel Naccache
- Department of Physical Medicine & Rehabilitation, APHP/Hôpital Pitié-Salpêtrière, 75013, Paris, France
- Paris Brain Institute (ICM), Inserm, CNRS, PICNIC-Lab, 75013, Paris, France
| | | | - Emmanuel Ponsot
- Science & Technology of Music and Sound, IRCAM/CNRS/Sorbonne Université, 75004, Paris, France
| | - Marie Villain
- Department of Physical Medicine & Rehabilitation, APHP/Hôpital Pitié-Salpêtrière, 75013, Paris, France.
- Paris Brain Institute (ICM), Inserm, CNRS, PICNIC-Lab, 75013, Paris, France.
| |
Collapse
|
5
|
Wang P, Reynaud A. The Random Step Method for Measuring the Point of Subjective Equality. Vision (Basel) 2023; 7:74. [PMID: 37987294 PMCID: PMC10661322 DOI: 10.3390/vision7040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023] Open
Abstract
Points of Subjective Equality (PSE) are commonly measured using staircase or constant stimuli methods. However, the staircase method is highly dependent on the step size, and the constant stimuli method is time-consuming. Thus, we wanted to develop an efficient and quick method to estimate both the PSE and the slope of the psychometric function. We developed a random-step algorithm in which a one-up-one-down rule is followed but with a random step size in a pre-defined range of test levels. Each stimulus would be chosen depending on the previous response of the subject. If the subject responded "up", any random level in the lower range would be picked for the next trial. And if the subject responded "down", any random level in the upper range would be picked for the next trial. This procedure would result in a bell-shaped distribution of the test levels around the estimated PSE, while a substantial amount of trials would still be dispersed at both bounds of the range. We then compared this method with traditional constant stimuli procedure on a task based on the Pulfrich phenomenon while the PSEs of participants could be varied using different neutral density filters. Our random-step method provided robust estimates of both the PSE and the slope under various noise levels with small trial counts, and we observed a significant correlation between the PSEs obtained with the two methods. The random-step method is an efficient way to measure the full psychometric function when testing time is critical, such as in clinical settings.
Collapse
Affiliation(s)
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H3G 1A4, Canada;
| |
Collapse
|
6
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Alarcon Carrillo S, Hess RF, Mao Y, Zhou J, Baldwin AS. Amblyopic stereo vision is efficient but noisy. Vision Res 2023; 210:108267. [PMID: 37285783 DOI: 10.1016/j.visres.2023.108267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
People with amblyopia demonstrate a reduced ability to judge depth using stereopsis. Our understanding of this deficit is limited, as standard clinical stereo tests may not be suited to give a quantitative account of the residual stereo ability in amblyopia. In this study we used a stereo test designed specifically for that purpose. Participants identified the location of a disparity-defined odd-one-out target within a random-dot display. We tested 29 amblyopic (3 strabismic, 17 anisometropic, 9 mixed) participants and 17 control participants. We obtained stereoacuity thresholds from 59% of our amblyopic participants. There was a factor of two difference between the median stereoacuity of our amblyopic (103 arcsec) and control (56 arcsec) groups. We used the equivalent noise method to evaluate the role of equivalent internal noise and processing efficiency in amblyopic stereopsis. Using the linear amplifier model (LAM), we determined the threshold difference was due to a greater equivalent internal noise in the amblyopic group (238 vs 135 arcsec), with no significant difference in processing efficiency. A multiple linear regression determined 56% of the stereoacuity variance within the amblyopic group was predicted by the two LAM parameters, with equivalent internal noise predicting 46% alone. Analysis of control group data aligned with our previous work, finding that trade-offs between equivalent internal noise and efficiency play a greater role. Our results allow a better understanding of what is limiting amblyopic performance in our task. We find this to be a reduced quality of disparity signals in the input to the task-specific processing.
Collapse
Affiliation(s)
- Sara Alarcon Carrillo
- McGill University, Department of Ophthalmology and Visual Sciences, Montreal, Canada
| | - Robert F Hess
- McGill University, Department of Ophthalmology and Visual Sciences, Montreal, Canada
| | - Yu Mao
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jiawei Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Alex S Baldwin
- McGill University, Department of Ophthalmology and Visual Sciences, Montreal, Canada.
| |
Collapse
|
8
|
Wang L, Ong JH, Ponsot E, Hou Q, Jiang C, Liu F. Mental representations of speech and musical pitch contours reveal a diversity of profiles in autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:629-646. [PMID: 35848413 PMCID: PMC10074762 DOI: 10.1177/13623613221111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT As a key auditory attribute of sounds, pitch is ubiquitous in our everyday listening experience involving language, music and environmental sounds. Given its critical role in auditory processing related to communication, numerous studies have investigated pitch processing in autism spectrum disorder. However, the findings have been mixed, reporting either enhanced, typical or impaired performance among autistic individuals. By investigating top-down comparisons of internal mental representations of pitch contours in speech and music, this study shows for the first time that, while autistic individuals exhibit diverse profiles of pitch processing compared to non-autistic individuals, their mental representations of pitch contours are typical across domains. These findings suggest that pitch-processing mechanisms are shared across domains in autism spectrum disorder and provide theoretical implications for using music to improve speech for those autistic individuals who have language problems.
Collapse
Affiliation(s)
- Li Wang
- University of Reading, UK
- The Chinese University of Hong Kong, Hong
Kong
| | | | | | - Qingqi Hou
- Nanjing Normal University of Special
Education, China
| | | | | |
Collapse
|
9
|
Gonçalves AM, Monteiro P. Autism Spectrum Disorder and auditory sensory alterations: a systematic review on the integrity of cognitive and neuronal functions related to auditory processing. J Neural Transm (Vienna) 2023; 130:325-408. [PMID: 36914900 PMCID: PMC10033482 DOI: 10.1007/s00702-023-02595-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 03/15/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with a wide spectrum of symptoms, mainly characterized by social, communication, and cognitive impairments. Latest diagnostic criteria according to DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 2013) now include sensory issues among the four restricted/repetitive behavior features defined as "hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of environment". Here, we review auditory sensory alterations in patients with ASD. Considering the updated diagnostic criteria for ASD, we examined research evidence (2015-2022) of the integrity of the cognitive function in auditory-related tasks, the integrity of the peripheral auditory system, and the integrity of the central nervous system in patients diagnosed with ASD. Taking into account the different approaches and experimental study designs, we reappraise the knowledge on auditory sensory alterations and reflect on how these might be linked with behavior symptomatology in ASD.
Collapse
Affiliation(s)
- Ana Margarida Gonçalves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Lu ZL, Dosher BA. Hierarchical Bayesian perceptual template modeling of mechanisms of spatial attention in central and peripheral cuing. J Vis 2023; 23:12. [PMID: 36826825 PMCID: PMC9973531 DOI: 10.1167/jov.23.2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The external noise paradigm and perceptual template model (PTM) have successfully been applied to characterize observer properties and mechanisms of observer state changes (e.g. attention and perceptual learning) in several research domains, focusing on individual level analysis. In this study, we developed a new hierarchical Bayesian perceptual template model (HBPTM) to model the trial-by-trial data from all individuals and conditions in a published spatial cuing study within a single structure and compared its performance to that of a Bayesian Inference Procedure (BIP), which separately infers the posterior distributions of the model parameters for each individual subject without the hierarchical structure. The HBPTM allowed us to compute the joint posterior distribution of the hyperparameters and parameters at the population, observer, and experiment levels and make statistical inferences at all these levels. In addition, we ran a large simulation study that varied the number of observers and number of trials in each condition and demonstrated the advantage of the HBPTM over the BIP across all the simulated datasets. Although it is developed in the context of spatial attention, the HBPTM and its extensions can be used to model data from the external noise paradigm in other domains and enable predictions of human performance at both the population and individual levels.
Collapse
Affiliation(s)
- Zhong-Lin Lu
- Division of Arts and Sciences, NYU Shanghai, Shanghai, China Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.,NYU-ECNU Institute of Brain and Cognitive Science, Shanghai, China.,
| | - Barbara Anne Dosher
- Department of Cognitive Sciences, University of California, Irvine, CA, USA.,
| |
Collapse
|
11
|
Raul P, McNally K, Ward LM, van Boxtel JJA. Does stochastic resonance improve performance for individuals with higher autism-spectrum quotient? Front Neurosci 2023; 17:1110714. [PMID: 37123379 PMCID: PMC10140507 DOI: 10.3389/fnins.2023.1110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
While noise is generally believed to impair performance, the detection of weak stimuli can sometimes be enhanced by introducing optimum noise levels. This phenomenon is termed 'Stochastic Resonance' (SR). Past evidence suggests that autistic individuals exhibit higher neural noise than neurotypical individuals. It has been proposed that the enhanced performance in Autism Spectrum Disorder (ASD) on some tasks could be due to SR. Here we present a computational model, lab-based, and online visual identification experiments to find corroborating evidence for this hypothesis in individuals without a formal ASD diagnosis. Our modeling predicts that artificially increasing noise results in SR for individuals with low internal noise (e.g., neurotypical), however not for those with higher internal noise (e.g., autistic, or neurotypical individuals with higher autistic traits). It also predicts that at low stimulus noise, individuals with higher internal noise outperform those with lower internal noise. We tested these predictions using visual identification tasks among participants from the general population with autistic traits measured by the Autism-Spectrum Quotient (AQ). While all participants showed SR in the lab-based experiment, this did not support our model strongly. In the online experiment, significant SR was not found, however participants with higher AQ scores outperformed those with lower AQ scores at low stimulus noise levels, which is consistent with our modeling. In conclusion, our study is the first to investigate the link between SR and superior performance by those with ASD-related traits, and reports limited evidence to support the high neural noise/SR hypothesis.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- *Correspondence: Pratik Raul,
| | - Kate McNally
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Lawrence M. Ward
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen J. A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Jeroen J. A. van Boxtel,
| |
Collapse
|
12
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
13
|
Jassim N, Owen AM, Smith P, Suckling J, Lawson RP, Baron-Cohen S, Parsons O. Perceptual decision-making in autism as assessed by "spot the difference" visual cognition tasks. Sci Rep 2022; 12:15458. [PMID: 36104435 PMCID: PMC9474452 DOI: 10.1038/s41598-022-19640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Discriminating between similar figures proves to be a remarkably demanding task due to the limited capacity of our visual cognitive processes. Here we examine how perceptual inference and decision-making are modulated by differences arising from neurodiversity. A large sample of autistic (n = 140) and typical (n = 147) participants completed two forced choice similarity judgement tasks online. Each task consisted of "match" (identical figures) and "mismatch" (subtle differences between figures) conditions. Signal detection theory analyses indicated a response bias by the autism group during conditions of uncertainty. More specifically, autistic participants were more likely to choose the "mismatch" option, thus leading to more hits on the "mismatch" condition, but also more false alarms on the "match" condition. These results suggest differences in response strategies during perceptual decision-making in autism.
Collapse
Affiliation(s)
- Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Adrian M Owen
- Department of Physiology and Pharmacology, The Western Institute for Neuroscience, London, Canada
- Department of Psychology, University of Western Ontario, London, Canada
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rebecca P Lawson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Owen Parsons
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Orchard ER, Dakin SC, van Boxtel JJA. Internal noise measures in coarse and fine motion direction discrimination tasks and the correlation with autism traits. J Vis 2022; 22:19. [PMID: 36149675 PMCID: PMC9520516 DOI: 10.1167/jov.22.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Motion perception is essential for visual guidance of behavior and is known to be limited by both internal additive noise (i.e., a constant level of random fluctuations in neural activity independent of the stimulus) and motion pooling (global integration of local motion signals across space). People with autism spectrum disorder (ASD) display abnormalities in motion processing, which have been linked to both elevated noise and abnormal pooling. However, to date, the impact of a third limit-induced internal noise (internal noise that scales up with increases in external stimulus noise)-has not been investigated in motion perception of any group. Here, we describe an extension on the double-pass paradigm to quantify additive noise and induced noise in a motion paradigm. We also introduce a new way to experimentally estimate motion pooling. We measured the impact of induced noise on direction discrimination, which we ascribe to fluctuations in decision-related variables. Our results are suggestive of higher internal noise in individuals with high ASD traits only on coarse but not fine motion direction discrimination tasks. However, we report no significant correlations between autism traits and additive noise, induced noise, or motion pooling in either task. We conclude that, under some conditions, the internal noise may be higher in individuals with pronounced ASD traits and that the assessment of induced internal noise is a useful way of exploring decision-related limits on motion perception, irrespective of ASD traits.
Collapse
Affiliation(s)
- Edwina R Orchard
- Department of Psychology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
| | - Steven C Dakin
- School of Optometry & Vision Science, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jeroen J A van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Noise Generation Methods Preserving Image Color Intensity Distributions. CYBERNETICS AND INFORMATION TECHNOLOGIES 2022. [DOI: 10.2478/cait-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In many visual perception studies, external visual noise is used as a methodology to broaden the understanding of information processing of visual stimuli. The underlying assumption is that two sources of noise limit sensory processing: the external noise inherent in the environmental signals and the internal noise or internal variability at different levels of the neural system. Usually, when external noise is added to an image, it is evenly distributed. However, the color intensity and image contrast are modified in this way, and it is unclear whether the visual system responds to their change or the noise presence. We aimed to develop several methods of noise generation with different distributions that keep the global image characteristics. These methods are appropriate in various applications for evaluating the internal noise in the visual system and its ability to filter the added noise. As these methods destroy the correlation in image intensity of neighboring pixels, they could be used to evaluate the role of local spatial structure in image processing.
Collapse
|
16
|
Ash RT, Palagina G, Fernandez-Leon JA, Park J, Seilheimer R, Lee S, Sabharwal J, Reyes F, Wang J, Lu D, Sarfraz M, Froudarakis E, Tolias AS, Wu SM, Smirnakis SM. Increased Reliability of Visually-Evoked Activity in Area V1 of the MECP2-Duplication Mouse Model of Autism. J Neurosci 2022; 42:6469-6482. [PMID: 35831173 PMCID: PMC9398540 DOI: 10.1523/jneurosci.0654-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.
Collapse
Affiliation(s)
- Ryan T Ash
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ganna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A Fernandez-Leon
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires and Instituto de Investigación en Tecnología Informática Avanzada, Exact Sciences Faculty-Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Jiyoung Park
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Rob Seilheimer
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangkyun Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jasdeep Sabharwal
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Fredy Reyes
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jing Wang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Dylan Lu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Muhammad Sarfraz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- FORTH, Heraklion, Crete, Greece 70013
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
Abstract
Autism is a neurodevelopmental disorder of unknown etiology. Recently, there has been a growing interest in sensory processing in autism as a core phenotype. However, basic questions remain unanswered. Here, we review the major findings and models of perception in autism and point to methodological issues that have led to conflicting results. We show that popular models of perception in autism, such as the reduced prior hypothesis, cannot explain the many and varied findings. To resolve these issues, we point to the benefits of using rigorous psychophysical methods to study perception in autism. We advocate for perceptual models that provide a detailed explanation of behavior while also taking into account factors such as context, learning, and attention. Furthermore, we demonstrate the importance of tracking changes over the course of development to reveal the causal pathways and compensatory mechanisms. Finally, we propose a developmental perceptual narrowing account of the condition. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bat-Sheva Hadad
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel; ,
| | - Amit Yashar
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel; ,
| |
Collapse
|
18
|
The amplitude of fNIRS hemodynamic response in the visual cortex unmasks autistic traits in typically developing children. Transl Psychiatry 2022; 12:53. [PMID: 35136021 PMCID: PMC8826368 DOI: 10.1038/s41398-022-01820-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Autistic traits represent a continuum dimension across the population, with autism spectrum disorder (ASD) being the extreme end of the distribution. Accumulating evidence shows that neuroanatomical and neurofunctional profiles described in relatives of ASD individuals reflect an intermediate neurobiological pattern between the clinical population and healthy controls. This suggests that quantitative measures detecting autistic traits in the general population represent potential candidates for the development of biomarkers identifying early pathophysiological processes associated with ASD. Functional near-infrared spectroscopy (fNIRS) has been extensively employed to investigate neural development and function. In contrast, the potential of fNIRS to define reliable biomarkers of brain activity has been barely explored. Features of non-invasiveness, portability, ease of administration, and low-operating costs make fNIRS a suitable instrument to assess brain function for differential diagnosis, follow-up, analysis of treatment outcomes, and personalized medicine in several neurological conditions. Here, we introduce a novel standardized procedure with high entertaining value to measure hemodynamic responses (HDR) in the occipital cortex of adult subjects and children. We found that the variability of evoked HDR correlates with the autistic traits of children, assessed by the Autism-Spectrum Quotient. Interestingly, HDR amplitude was especially linked to social and communication features, representing the core symptoms of ASD. These findings establish a quick and easy strategy for measuring visually-evoked cortical activity with fNIRS that optimize the compliance of young subjects, setting the background for testing the diagnostic value of fNIRS visual measurements in the ASD clinical population.
Collapse
|
19
|
Mihaylova MS, Bocheva NB, Stefanova MD, Genova BZ, Totev TT, Racheva KI, Shtereva KA, Staykova SN. Visual noise effect on reading in three developmental disorders: ASD, ADHD, and DD. AUTISM & DEVELOPMENTAL LANGUAGE IMPAIRMENTS 2022; 7:23969415221106119. [PMID: 36382080 PMCID: PMC9620686 DOI: 10.1177/23969415221106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background and aims Developmental disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and Developmental Dyslexia (DD) are reported to have more visual problems, oral language difficulties, and diminished reading skills in addition to their different diagnostic features. Moreover, these conditions also have increased internal noise and probably an impaired ability of external noise filtering. The aim of the present study was to compare the reading performance of these groups in the presence of external visual noise which disrupts the automatic reading processes through the degradation of letters. Methods Sixty-four children and adolescents in four groups, ASD, ADHD, DD, and TD, participated in the study. Two types of stimuli were used - unrelated words and pseudowords. The noise was generated by exchanging a fixed number of pixels between the black symbols and the white background distorting the letters. The task of the participants was to read aloud the words or pseudowords. The reading time for a single letter string, word or pseudoword, was calculated, and the proportion of errors was assessed in order to describe the reading performance. Results The results obtained showed that the reading of unrelated words and pseudowords differs in the separate groups of participants and is affected differently by the added visual noise. In the no-noise condition, the group with TD had the shortest time for reading words and short pseudowords, followed by the group with ASD, while their reading of long pseudowords was slightly slower than that of the ASD group. The noise increase evoked variations in the reading of groups with ASD and ADHD, which differed from the no-noise condition and the control group with TD. The lowest proportion of errors was observed in readers with TD. The reading performance of the DD group was the worst at all noise levels, with the most prolonged reading time and the highest proportion of errors. At the highest noise level, the participants from all groups read the words and pseudowords with similar reading speed and accuracy. Conclusions In reading words and pseudowords, the ASD, ADHD, and DD groups show difficulties specific for each disorder revealed in a prolonged reading time and a higher proportion of errors. The dissimilarity in reading abilities of the groups with different development is most evident when the accuracy and reading speed are linked together. Implications The use of noise that degrades the letter structure in the present study allowed us to separate the groups with ASD, ADHD, and DD and disclose specifics in the reading process of each disorder. Error type analysis may provide a basis to improve the educational strategies by appropriately structuring the learning process of children with TD, ASD, ADHD, and DD.
Collapse
Affiliation(s)
- Milena Slavcheva Mihaylova
- Milena Slavcheva Mihaylova, Institute of
Neurobiology, Bulgarian Academy of Sciences, 23 Academic Georgi Bonchev Street,
Sofia 1113, Bulgaria.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Burstein O, Geva R. The Brainstem-Informed Autism Framework: Early Life Neurobehavioral Markers. Front Integr Neurosci 2021; 15:759614. [PMID: 34858145 PMCID: PMC8631363 DOI: 10.3389/fnint.2021.759614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) have long-term implications on functioning at multiple levels. In this perspective, we offer a brainstem-informed autism framework (BIAF) that traces the protracted neurobehavioral manifestations of ASD to early life brainstem dysfunctions. Early life brainstem-mediated markers involving functions of autonomic/arousal regulation, sleep-wake homeostasis, and sensorimotor integration are delineated. Their possible contributions to the early identification of susceptible infants are discussed. We suggest that the BIAF expands our multidimensional understanding of ASD by focusing on the early involvement of brainstem systems. Importantly, we propose an integrated BIAF screener that brings about the prospect of a sensitive and reliable early life diagnostic scheme for weighing the risk for ASD. The BIAF screener could provide clinicians substantial gains in the future and may carve customized interventions long before the current DSM ASD phenotype is manifested using dyadic co-regulation of brainstem-informed autism markers.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Zhao YJ, Ma T, Zhang L, Ran X, Zhang RY, Ku Y. Atypically larger variability of resource allocation accounts for visual working memory deficits in schizophrenia. PLoS Comput Biol 2021; 17:e1009544. [PMID: 34748538 PMCID: PMC8601612 DOI: 10.1371/journal.pcbi.1009544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Working memory (WM) deficits have been widely documented in schizophrenia (SZ), and almost all existing studies attributed the deficits to decreased capacity as compared to healthy control (HC) subjects. Recent developments in WM research suggest that other components, such as precision, also mediate behavioral performance. It remains unclear how different WM components jointly contribute to deficits in schizophrenia. We measured the performance of 60 SZ (31 females) and 61 HC (29 females) in a classical delay-estimation visual working memory (VWM) task and evaluated several influential computational models proposed in basic science of VWM to disentangle the effect of various memory components. We show that the model assuming variable precision (VP) across items and trials is the best model to explain the performance of both groups. According to the VP model, SZ exhibited abnormally larger variability of allocating memory resources rather than resources or capacity per se. Finally, individual differences in the resource allocation variability predicted variation of symptom severity in SZ, highlighting its functional relevance to schizophrenic pathology. This finding was further verified using distinct visual features and subject cohorts. These results provide an alternative view instead of the widely accepted decreased-capacity theory and highlight the key role of elevated resource allocation variability in generating atypical VWM behavior in schizophrenia. Our findings also shed new light on the utility of Bayesian observer models to characterize mechanisms of mental deficits in clinical neuroscience. Working memory is a core cognitive function related to a broad range of cognitive domains such as problem-solving, attention, executive control, and IQ. Although working memory deficits have been well-documented in schizophrenia, the underlying mechanisms remain unclear. Conventional working memory theories attribute working memory deficits in schizophrenia to their reduced memory capacity, overlooking the potential roles of other memory components, such as precision. In this study, we take the approach of computational psychiatry and use computational modeling to uncover the major determinants of working memory deficits. We assess working memory performance of a large cohort of participants (60 schizophrenia patients and 61 demographic matched healthy controls) and evaluate multiple mainstream computational models of visual working memory. The variable precision model turns out to be the best model for both groups. We further find that the poorer performance of schizophrenia patients arises from heterogeneous distribution of memory resources when encoding items in memory. This resource allocation variability can also predict symptom severity in schizophrenia. Our study highlights the use of computational models in psychiatric researches.
Collapse
Affiliation(s)
- Yi-Jie Zhao
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Tianye Ma
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Li Zhang
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Xuemei Ran
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ru-Yuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (R-YZ); (YK)
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- * E-mail: (R-YZ); (YK)
| |
Collapse
|
22
|
Chaddad A, Li J, Lu Q, Li Y, Okuwobi IP, Tanougast C, Desrosiers C, Niazi T. Can Autism Be Diagnosed with Artificial Intelligence? A Narrative Review. Diagnostics (Basel) 2021; 11:2032. [PMID: 34829379 PMCID: PMC8618159 DOI: 10.3390/diagnostics11112032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.) for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic work of ASD is related to the variation of morphological features of brain thickness that is different from texture analysis. These techniques are based on imaging shape features that can be used with predictive models for predicting ASD. This review explores the progress of ASD-based radiomics with a brief description of ASD and the current non-invasive technique used to classify between ASD and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques will be also described. To consider the texture analysis with deep CNNs, more investigations are suggested to be integrated with additional validation steps on various MRI sites.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Jiali Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Qizong Lu
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Yujie Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Idowu Paul Okuwobi
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Camel Tanougast
- Laboratoire de Conception, Optimisation et Modélisation des Systèmes, University of Lorraine, 57070 Metz, France;
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
23
|
Internet of Things (IoT)-Enhanced Applied Behavior Analysis (ABA) for Special Education Needs. SENSORS 2021; 21:s21196693. [PMID: 34641011 PMCID: PMC8513056 DOI: 10.3390/s21196693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Applied behavior analysis (ABA) has become a popular behavioral therapy in the special education needs (SEN) community. ABA is used to manage SEN students’ behaviors by solving problems in socially important settings, and puts emphasis on having precise measurements on physical and observable events. In this work, we present how Internet of Things (IoT) technologies can be applied to enhance ABA therapy in normal SEN classroom settings. We measured (1) learning performance data, (2) learners’ physiological data, and (3) learning environment sensors’ data. Upon preliminary analysis, we have found that learners’ physiological data is highly diverse, while learner performance seems to be related to learners’ electrodermal activity. Our preliminary findings suggest the possibility of enhancing ABA for SEN with IoT technologies.
Collapse
|
24
|
Galigani M, Fossataro C, Gindri P, Conson M, Garbarini F. Monochannel Preference in Autism Spectrum Conditions Revealed by a Non-Visual Variant of Rubber Hand Illusion. J Autism Dev Disord 2021; 52:4252-4260. [PMID: 34595575 PMCID: PMC9508008 DOI: 10.1007/s10803-021-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/01/2022]
Abstract
Individuals with autism spectrum conditions (ASC) are less susceptible to multisensory delusions, such as rubber hand illusion (RHI). Here, we investigate whether a monochannel variant of RHI is more effective in inducing an illusory feeling of ownership in ASC. To this aim, we exploit a non-visual variant of the RHI that, excluding vision, leverages only on the somatosensory channel. While the visual-tactile RHI does not alter the perceived hand position in ASC individuals, the tacto-tactile RHI effectively modulates proprioception to a similar extent as that found in typical development individuals. These findings suggest a more effective integration of multiple inputs originating from the same sensory channel in ASC, revealing a monochannel preference in this population.
Collapse
Affiliation(s)
- Mattia Galigani
- Manibus Lab, Psychology Department, University of Turin, Via Verdi 10, 10124, Turin, Italy
| | - Carlotta Fossataro
- Manibus Lab, Psychology Department, University of Turin, Via Verdi 10, 10124, Turin, Italy.
| | | | - Massimiliano Conson
- Neuropsychology Laboratory, Psychology Department, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Francesca Garbarini
- Manibus Lab, Psychology Department, University of Turin, Via Verdi 10, 10124, Turin, Italy.,Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Beker S, Foxe JJ, Venticinque J, Bates J, Ridgeway EM, Schaaf RC, Molholm S. Looking for consistency in an uncertain world: test-retest reliability of neurophysiological and behavioral readouts in autism. J Neurodev Disord 2021; 13:43. [PMID: 34592931 PMCID: PMC8483424 DOI: 10.1186/s11689-021-09383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are associated with altered sensory processing and perception. Scalp recordings of electrical brain activity time-locked to sensory events (event-related potentials; ERPs) provide precise information on the time-course of related altered neural activity, and can be used to model the cortical loci of the underlying neural networks. Establishing the test-retest reliability of these sensory brain responses in ASD is critical to their use as biomarkers of neural dysfunction in this population. METHODS EEG and behavioral data were acquired from 33 children diagnosed with ASD aged 6-9.4 years old, while they performed a child-friendly task at two different time-points, separated by an average of 5.2 months. In two blocked conditions, participants responded to the occurrence of an auditory target that was either preceded or not by repeating visual stimuli. Intraclass correlation coefficients (ICCs) were used to assess test-retest reliability of measures of sensory (auditory and visual) ERPs and performance, for the two experimental conditions. To assess the degree of reliability of the variability of responses within individuals, this analysis was performed on the variance of the measurements, in addition to their means. This yielded a total of 24 measures for which ICCs were calculated. RESULTS The data yielded significant good ICC values for 10 of the 24 measurements. These spanned across behavioral and ERPs data, experimental conditions, and mean as well as variance measures. Measures of the visual evoked responses accounted for a disproportionately large number of the significant ICCs; follow-up analyses suggested that the contribution of a greater number of trials to the visual compared to the auditory ERP partially accounted for this. CONCLUSIONS This analysis reveals that sensory ERPs and related behavior can be highly reliable across multiple measurement time-points in ASD. The data further suggest that the inter-trial and inter-participant variability reported in the ASD literature likely represents replicable individual participant neural processing differences. The stability of these neuronal readouts supports their use as biomarkers in clinical and translational studies on ASD. Given the minimum interval between test/retest sessions across our cohort, we also conclude that for the tested age-range of ~ 6 to 9.4 years, these reliability measures are valid for at least a 3-month interval. Limitations related to EEG task demands and study length in the context of a clinical trial are considered.
Collapse
Affiliation(s)
- Shlomit Beker
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John Venticinque
- School of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juliana Bates
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth M Ridgeway
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roseann C Schaaf
- Department of Occupational Therapy, Jefferson College of Health Professions Faculty, Farber Institute for Neurosciences Thomas Jefferson University Philadelphia, Philadelphia, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
Inter-individual variations in internal noise predict the effects of spatial attention. Cognition 2021; 217:104888. [PMID: 34450395 DOI: 10.1016/j.cognition.2021.104888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Individuals differ considerably in the degree to which they benefit from attention allocation. Thus far, such individual differences were attributed to post-perceptual factors such as working-memory capacity. This study examined whether a perceptual factor - the level of internal noise - also contributes to this inter-individual variability in attentional effects. To that end, we estimated individual levels of internal noise from behavioral variability in an orientation discrimination task (with tilted gratings) using the double-pass procedure and the perceptual-template model. We also measured the effects of spatial attention in an acuity task: the participants reported the side of a square on which a small aperture appeared. Central arrows were used to engage sustained attention and peripheral cues to engage transient attention. We found reliable correlations between individual levels of internal noise and the effects of both types of attention, albeit of opposite directions: positive correlation with sustained attention and negative correlation with transient attention. These findings demonstrate that internal noise - a fundamental characteristic of visual perception - can predict individual differences in the effects of spatial attention, highlighting the intricate relations between perception and attention.
Collapse
|
27
|
Isenstein EL, Park WJ, Tadin D. Atypical and inflexible visual encoding in autism spectrum disorder. PLoS Biol 2021; 19:e3001293. [PMID: 34101723 PMCID: PMC8213133 DOI: 10.1371/journal.pbio.3001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Encoding, which involves translating sensory information into neural representations, is a critical first step in the sensory-perceptual pathway. Using a visual orientation task, a new study found both lower encoding capacity and less flexible adaptation in people with autism spectrum disorder.
Collapse
Affiliation(s)
- Emily L. Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
| | - Woon Ju Park
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
28
|
Noel JP, Zhang LQ, Stocker AA, Angelaki DE. Individuals with autism spectrum disorder have altered visual encoding capacity. PLoS Biol 2021; 19:e3001215. [PMID: 33979326 PMCID: PMC8143398 DOI: 10.1371/journal.pbio.3001215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/24/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure. Initially, sensory representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback altered the sensory representations of the neurotypical group toward the novel experimental statistics, while also increasing their total encoding capacity. In contrast, neither total encoding capacity nor its allocation significantly changed in the ASD group. Across both groups, the degree of adaptation was correlated with participants’ initial encoding capacity. These findings highlight substantial deficits in sensory encoding—independent from and potentially in addition to deficits in decoding—in individuals with ASD. It is increasingly recognized that individuals with Autism Spectrum Disorder (ASD) show anomalies in perception, and these have been recently attributed to altered decoding (i.e. interpretation of sensory signals). This study reveals that independent of these changes, individuals with ASD show upstream deficits in sensory encoding (i.e., how samples are drawn from the environment).
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York City, New York, United States of America
| | - Ling-Qi Zhang
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan A. Stocker
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dora E. Angelaki
- Center for Neural Science, New York University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Barbot A, Park WJ, Ng CJ, Zhang RY, Huxlin KR, Tadin D, Yoon G. Functional reallocation of sensory processing resources caused by long-term neural adaptation to altered optics. eLife 2021; 10:58734. [PMID: 33616034 PMCID: PMC7963487 DOI: 10.7554/elife.58734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
The eye’s optics are a major determinant of visual perception. Elucidating how long-term exposure to optical defects affects visual processing is key to understanding the capacity for, and limits of, sensory plasticity. Here, we show evidence of functional reallocation of sensory processing resources following long-term exposure to poor optical quality. Using adaptive optics to bypass all optical defects, we assessed visual processing in neurotypically-developed adults with healthy eyes and with keratoconus – a corneal disease causing severe optical aberrations. Under fully-corrected optical conditions, keratoconus patients showed altered contrast sensitivity, with impaired sensitivity for fine spatial details and better-than-typical sensitivity for coarse spatial details. Both gains and losses in sensitivity were more pronounced in patients experiencing poorer optical quality in their daily life and mediated by changes in signal enhancement mechanisms. These findings show that adult neural processing adapts to better match the changes in sensory inputs caused by long-term exposure to altered optics.
Collapse
Affiliation(s)
- Antoine Barbot
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States
| | - Woon Ju Park
- Brain and Cognitive Sciences, University of Rochester, Rochester, United States.,Department of Psychology, University of Washington, Seattle, United States
| | - Cherlyn J Ng
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States
| | - Ru-Yuan Zhang
- Brain and Cognitive Sciences, University of Rochester, Rochester, United States.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States.,Brain and Cognitive Sciences, University of Rochester, Rochester, United States.,Department of Neuroscience, University of Rochester, Rochester, United States
| | - Duje Tadin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States.,Brain and Cognitive Sciences, University of Rochester, Rochester, United States.,Department of Neuroscience, University of Rochester, Rochester, United States
| | - Geunyoung Yoon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States
| |
Collapse
|
30
|
Mihaylova MS, Bocheva NB, Totev TT, Staykova SN. Visual Noise Effect on Contour Integration and Gaze Allocation in Autism Spectrum Disorder. Front Neurosci 2021; 15:623663. [PMID: 33633537 PMCID: PMC7900628 DOI: 10.3389/fnins.2021.623663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Contradictory results have been obtained in the studies that compare contour integration abilities in Autism Spectrum Disorders (ASDs) and typically developing individuals. The present study aimed to explore the limiting factors of contour integration ability in ASD and verify the role of the external visual noise by a combination of psychophysical and eye-tracking approaches. To this aim, 24 children and adolescents with ASD and 32 age-matched participants with typical development had to detect the presence of contour embedded among similar Gabor elements in a Yes/No procedure. The results obtained showed that the responses in the group with ASD were not only less accurate but also were significantly slower compared to the control group at all noise levels. The detection performance depended on the group differences in addition to the effect of the intellectual functioning of the participants from both groups. The comparison of the agreement and accuracy of the responses in the double-pass experiment showed that the results of the participants with ASD are more affected by the increase of the external noise. It turned out that the internal noise depends on the level of the added external noise: the difference between the two groups was non-significant at the low external noise and significant at the high external noise. In accordance with the psychophysical results, the eye-tracking data indicated a larger gaze allocation area in the group with autism. These findings may imply higher positional uncertainty in ASD due to the inability to maintain the information of the contour location from previous presentations and interference from noise elements in the contour vicinity. Psychophysical and eye-tracking data suggest lower efficiency in using stimulus information in the ASD group that could be caused by fixation instability and noisy and unstable perceptual template that affects noise filtering.
Collapse
Affiliation(s)
- Milena Slavcheva Mihaylova
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadejda Bogdanova Bocheva
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetalin Totev Totev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
31
|
Haigh SM, Endevelt-Shapira Y, Behrmann M. Trial-to-Trial Variability in Electrodermal Activity to Odor in Autism. Autism Res 2020; 13:2083-2093. [PMID: 32860323 DOI: 10.1002/aur.2377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
Abnormal trial-to-trial variability (TTV) has been identified as a key feature of neural processing that is related to increased symptom severity in autism. The majority of studies evaluating TTV have focused on cortical processing. However, identifying whether similar atypicalities are evident in the peripheral nervous system will help isolate perturbed mechanisms in autism. The current study focuses on TTV in responses from the peripheral nervous system, specifically from electrodermal activity (EDA). We analyzed previously collected EDA data from 17 adults with autism and 19 neurotypical controls who viewed faces while being simultaneously exposed to fear (fear-induced sweat) and neutral odors. Average EDA peaks were significantly smaller and TTV was reduced in the autism group compared to controls, particularly during the fear odor condition. Amplitude and TTV were positively correlated in both groups, but the relationship was stronger in the control group. In addition, TTV was reduced in those with higher Autism Quotient scores but only for the individuals with autism. These findings confirm the existing results that atypical TTV is a key feature of autism and that it reflects symptom severity, although the smaller TTV in EDA contrasts with the previous findings of greater TTV in cortical responses. Identifying the relationship between cortical and peripheral TTV in autism is key for furthering our understanding of autism physiology. LAY SUMMARY: We compared the changes in electrodermal activity (EDA) to emotional faces over the course of repeated faces in adults with autism and their matched controls. The faces were accompanied by smelling fear-inducing odors. We found smaller and less variable responses to the faces in autism when smelling fear odors, suggesting that the peripheral nervous system may be more rigid. These findings were exaggerated in those who had more severe autism-related symptoms.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Nevada, USA
| | | | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Chung S, Son JW. Visual Perception in Autism Spectrum Disorder: A Review of Neuroimaging Studies. Soa Chongsonyon Chongsin Uihak 2020; 31:105-120. [PMID: 32665755 PMCID: PMC7350544 DOI: 10.5765/jkacap.200018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Although autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, patients with ASD frequently manifest atypical sensory behaviors. Recently, atypical sensory perception in ASD has received much attention, yet little is known about its cause or neurobiology. Herein, we review the findings from neuroimaging studies related to visual perception in ASD. Specifically, we examined the neural underpinnings of visual detection, motion perception, and face processing in ASD. Results from neuroimaging studies indicate that atypical visual perception in ASD may be influenced by attention or higher order cognitive mechanisms, and atypical face perception may be affected by disrupted social brain network. However, there is considerable evidence for atypical early visual processing in ASD. It is likely that visual perceptual abnormalities are independent of deficits of social functions or cognition. Importantly, atypical visual perception in ASD may enhance difficulties in dealing with complex and subtle social stimuli, or improve outstanding abilities in certain fields in individuals with Savant syndrome. Thus, future research is required to elucidate the characteristics and neurobiology of autistic visual perception to effectively apply these findings in the interventions of ASD.
Collapse
Affiliation(s)
- Seungwon Chung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Jung-Woo Son
- Department of Neuropsychiatry, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
33
|
Foxe JJ, Del Bene VA, Ross LA, Ridgway EM, Francisco AA, Molholm S. Multisensory Audiovisual Processing in Children With a Sensory Processing Disorder (II): Speech Integration Under Noisy Environmental Conditions. Front Integr Neurosci 2020; 14:39. [PMID: 32765229 PMCID: PMC7381232 DOI: 10.3389/fnint.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Background: There exists a cohort of children and adults who exhibit an inordinately high degree of discomfort when experiencing what would be considered moderate and manageable levels of sensory input. That is, they show over-responsivity in the face of entirely typical sound, light, touch, taste, or smell inputs, and this occurs to such an extent that it interferes with their daily functioning and reaches clinical levels of dysfunction. What marks these individuals apart is that this sensory processing disorder (SPD) is observed in the absence of other symptom clusters that would result in a diagnosis of Autism, ADHD, or other neurodevelopmental disorders more typically associated with sensory processing difficulties. One major theory forwarded to account for these SPDs posits a deficit in multisensory integration, such that the various sensory inputs are not appropriately integrated into the central nervous system, leading to an overwhelming sensory-perceptual environment, and in turn to the sensory-defensive phenotype observed in these individuals. Methods: We tested whether children (6-16 years) with an over-responsive SPD phenotype (N = 12) integrated multisensory speech differently from age-matched typically-developing controls (TD: N = 12). Participants identified monosyllabic words while background noise level and sensory modality (auditory-alone, visual-alone, audiovisual) were varied in pseudorandom order. Improved word identification when speech was both seen and heard compared to when it was simply heard served to index multisensory speech integration. Results: School-aged children with an SPD show a deficit in the ability to benefit from the combination of both seen and heard speech inputs under noisy environmental conditions, suggesting that these children do not benefit from multisensory integrative processing to the same extent as their typically developing peers. In contrast, auditory-alone performance did not differ between the groups, signifying that this multisensory deficit is not simply due to impaired processing of auditory speech. Conclusions: Children with an over-responsive SPD show a substantial reduction in their ability to benefit from complementary audiovisual speech, to enhance speech perception in a noisy environment. This has clear implications for performance in the classroom and other learning environments. Impaired multisensory integration may contribute to sensory over-reactivity that is the definitional of SPD.
Collapse
Affiliation(s)
- John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.,The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Lars A Ross
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Elizabeth M Ridgway
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.,The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
34
|
Self-reported Sensory Hypersensitivity Moderates Association Between Tactile Psychophysical Performance and Autism-Related Traits in Neurotypical Adults. J Autism Dev Disord 2019; 49:3159-3172. [PMID: 31073751 DOI: 10.1007/s10803-019-04043-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atypical responses to tactile stimulation have been linked to core domains of dysfunction in individuals with autism spectrum disorder (ASD) and phenotypic traits associated with ASD in neurotypical individuals. We investigated (a) the extent to which two psychophysically derived measures of tactile sensitivity-detection threshold and dynamic range-relate to traits associated with ASD and (b) whether those relations vary according to the presence of self-reported sensory hypersensitivities in neurotypical individuals. A narrow dynamic range was associated with increased autism-related traits in individuals who reported greater sensory hypersensitivity. In contrast, in individuals less prone to sensory hypersensitivity, a narrow dynamic range was associated with reduced autism-related traits. Findings highlight the potential importance of considering dynamic psychophysical metrics in future studies.
Collapse
|
35
|
Pfeiffer B, Stein Duker L, Murphy A, Shui C. Effectiveness of Noise-Attenuating Headphones on Physiological Responses for Children With Autism Spectrum Disorders. Front Integr Neurosci 2019; 13:65. [PMID: 31798424 PMCID: PMC6863142 DOI: 10.3389/fnint.2019.00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the proof of concept of an intervention to decrease sympathetic activation as measured by skin conductivity (electrodermal activity, EDA) in children with an autism spectrum disorder (ASD) and auditory hypersensitivity (hyperacusis). In addition, researchers examined if the intervention provided protection against the negative effects of decibel level of environmental noises on electrodermal measures between interventions. The feasibility of implementation and outcome measures within natural environments were evaluated. Method: A single-subject multi-treatment design was used with six children, aged 8–16 years, with a form of Autism (i.e., Autism, PDD-NOS). Participants used in-ear (IE) and over-ear (OE) headphones for two randomly sequenced treatment phases. Each child completed four phases: (1) a week of baseline data collection; (2) a week of an intervention; (3) a week of no intervention; and (4) a week of the other intervention. Empatica E4 wristbands collected EDA data. Data was collected on 16–20 occasions per participant, with five measurements per phase. Results: Separated tests for paired study phases suggested that regardless of intervention type, noise attenuating headphones led to a significance difference in both skin conductance levels (SCL) and frequency of non-specific conductance responses (NS-SCRs) between the baseline measurement and subsequent phases. Overall, SCL and NS-SCR frequency significantly decreased between baseline and the first intervention phase. A protective effect of the intervention was tested by collapsing intervention results into three phases. Slope correlation suggested constant SCL and NS-SCR frequency after initial use of the headphones regardless of the increase in environmental noises. A subsequent analysis of the quality of EDA data identified that later phases of data collection were associated with better data quality. Conclusion: Many children with ASD have hypersensitivities to sound resulting in high levels of sympathetic nervous system reactivity, which is associated with problematic behaviors and distress. The findings of this study suggest that the use of noise attenuating headphones for individuals with ASD and hyperacusis may reduce sympathetic activation. Additionally, results suggest that the use of wearable sensors to collect physiological data in natural environments is feasible with established protocols and training procedures.
Collapse
Affiliation(s)
- Beth Pfeiffer
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, United States
| | - Leah Stein Duker
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - AnnMarie Murphy
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, United States
| | - Chengshi Shui
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
36
|
Abstract
The idea that the brain learns generative models of the world has been widely promulgated. Most approaches have assumed that the brain learns an explicit density model that assigns a probability to each possible state of the world. However, explicit density models are difficult to learn, requiring approximate inference techniques that may find poor solutions. An alternative approach is to learn an implicit density model that can sample from the generative model without evaluating the probabilities of those samples. The implicit model can be trained to fool a discriminator into believing that the samples are real. This is the idea behind generative adversarial algorithms, which have proven adept at learning realistic generative models. This paper develops an adversarial framework for probabilistic computation in the brain. It first considers how generative adversarial algorithms overcome some of the problems that vex prior theories based on explicit density models. It then discusses the psychological and neural evidence for this framework, as well as how the breakdown of the generator and discriminator could lead to delusions observed in some mental disorders.
Collapse
Affiliation(s)
- Samuel J. Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
37
|
Olman CA, Espensen-Sturges T, Muscanto I, Longenecker JM, Burton PC, Grant AN, Sponheim SR. Fragmented ambiguous objects: Stimuli with stable low-level features for object recognition tasks. PLoS One 2019; 14:e0215306. [PMID: 30973914 PMCID: PMC6459591 DOI: 10.1371/journal.pone.0215306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
Visual object recognition is a complex skill that relies on the interaction of many spatially distinct and specialized visual areas in the human brain. One tool that can help us better understand these specializations and interactions is a set of visual stimuli that do not differ along low-level dimensions (e.g., orientation, contrast) but do differ along high-level dimensions, such as whether a real-world object can be detected. The present work creates a set of line segment-based images that are matched for luminance, contrast, and orientation distribution (both for single elements and for pair-wise combinations) but result in a range of object and non-object percepts. Image generation started with images of isolated objects taken from publicly available databases and then progressed through 3-stages: a computer algorithm generating 718 candidate images, expert observers selecting 217 for further consideration, and naïve observers performing final ratings. This process identified a set of 100 images that all have the same low-level properties but cover a range of recognizability (proportion of naïve observers (N = 120) who indicated that the stimulus "contained a known object") and semantic stability (consistency across the categories of living, non-living/manipulable, and non-living/non-manipulable when the same observers named "known" objects). Stimuli are available at https://github.com/caolman/FAOT.git.
Collapse
Affiliation(s)
- Cheryl A. Olman
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Tori Espensen-Sturges
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Isaac Muscanto
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Julia M. Longenecker
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Philip C. Burton
- College of Liberal Arts, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrea N. Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Scott R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Healthcare System, Minneapolis, Minnesota, United States of America
| |
Collapse
|
38
|
Bakroon A, Lakshminarayanan V. Do different experimental tasks affect psychophysical measurements of motion perception in autism-spectrum disorder? An analysis. CLINICAL OPTOMETRY 2018; 10:131-143. [PMID: 30588145 PMCID: PMC6296182 DOI: 10.2147/opto.s179336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a rapid increase in the number of individuals with high-functioning autism (HFA). Research on motion perception in HFA has shown deficits in processing motion information at the higher visual cortical areas (V5/middle temporal). Several hypotheses have been put forth to explain these deficits as being due to enhanced processing of small details at the expense of the global picture or as a global integration abnormality. However, there is a lot of variability in the results obtained from experiments designed to study motion in adults with autism. These could be due to the inherent diagnostic differences within even the same range of the autism spectrum and/or due to comparison of different experimental paradigms whose processing by the same visual neural areas could be different. In this review, we discuss the various results on motion processing in HFA, as well as the theories of motion perception in autism.
Collapse
Affiliation(s)
- Asmaa Bakroon
- Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada,
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada,
- Departments of Physics and Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Department of Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
39
|
Abstract
The spatial context in which we view a visual stimulus strongly determines how we perceive the stimulus. In the visual tilt illusion, the perceived orientation of a visual grating is affected by the orientation signals in its surrounding context. Conceivably, the spatial context in which a visual grating is perceived can be defined by interactive multisensory information rather than visual signals alone. Here, we tested the hypothesis that tactile signals engage the neural mechanisms supporting visual contextual modulation. Because tactile signals also convey orientation information and touch can selectively interact with visual orientation perception, we predicted that tactile signals would modulate the visual tilt illusion. We applied a bias-free method to measure the tilt illusion while testing visual-only, tactile-only or visuo-tactile contextual surrounds. We found that a tactile context can influence visual tilt perception. Moreover, combining visual and tactile orientation information in the surround results in a larger tilt illusion relative to the illusion achieved with the visual-only surround. These results demonstrate that the visual tilt illusion is subject to multisensory influences and imply that non-visual signals access the neural circuits whose computations underlie the contextual modulation of vision.
Collapse
|