1
|
Baric TJ, Reneer ZB. Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses. Viruses 2024; 17:1. [PMID: 39861790 PMCID: PMC11769264 DOI: 10.3390/v17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses.
Collapse
Affiliation(s)
| | - Z. Beau Reneer
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3500, USA;
| |
Collapse
|
2
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
3
|
Wang W, Li W, Wen Z, Wang C, Liu W, Zhang Y, Liu J, Ding T, Shuai L, Zhong G, Bu Z, Qu L, Ren M, Li F. Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203499. [PMID: 36266926 PMCID: PMC9762316 DOI: 10.1002/advs.202203499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Indexed: 05/03/2023]
Abstract
Outbreaks of coronaviruses (CoVs), especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have posed serious threats to humans and animals, which urgently calls for effective broad-spectrum antivirals. RNA-dependent RNA polymerase (RdRp) plays an essential role in viral RNA synthesis and is an ideal pan-coronaviral therapeutic target. Herein, based on cryo-electron microscopy and biochemical approaches, gossypol (GOS) is identified from 881 natural products to directly block SARS-CoV-2 RdRp, thus inhibiting SARS-CoV-2 replication in both cellular and mouse infection models. GOS also acts as a potent inhibitor against the SARS-CoV-2 variant of concern (VOC) and exerts same inhibitory effects toward mutated RdRps of VOCs as the RdRp of the original SARS-CoV-2. Moreover, that the RdRp inhibitor GOS has broad-spectrum anti-coronavirus activity against alphacoronaviruses (porcine epidemic diarrhea virus and swine acute diarrhea syndrome coronavirus), betacoronaviruses (SARS-CoV-2), gammacoronaviruses (avian infectious bronchitis virus), and deltacoronaviruses (porcine deltacoronavirus) is showed. The findings demonstrate that GOS may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and other coronavirus outbreaks.
Collapse
Affiliation(s)
- Wenjing Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| | - Wenkang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Chong Wang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Weilong Liu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518112P. R. China
| | - Yufang Zhang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Juncheng Liu
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Tianze Ding
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Lei Shuai
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Gongxun Zhong
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Zhigao Bu
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Lingbo Qu
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Maozhi Ren
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduSichuan610213P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| |
Collapse
|
4
|
Sarkar R, Banerjee S, Halder P, Koley H, Komoto S, Chawla-Sarkar M. Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication. J Antimicrob Chemother 2022; 77:3443-3455. [PMID: 36210599 DOI: 10.1093/jac/dkac339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. OBJECTIVES To assess the therapeutic potential of ivermectin and importazole against rotaviruses. METHODS Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. RESULTS Importin-β1 and Ran were found to be induced during rotavirus infection. Knocking down importin-β1 severely impaired rotavirus replication, suggesting a critical role for importin-β1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-β1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. CONCLUSIONS The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, 700010, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Yang SNY, Maher B, Wang C, Wagstaff KM, Fraser JE, Jans DA. High Throughput Screening Targeting the Dengue NS3-NS5 Interface Identifies Antivirals against Dengue, Zika and West Nile Viruses. Cells 2022; 11:730. [PMID: 35203378 PMCID: PMC8870125 DOI: 10.3390/cells11040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus (DENV) threatens almost 70% of the world's population, with no effective therapeutic currently available and controversy surrounding the one approved vaccine. A key factor in dengue viral replication is the interaction between DENV nonstructural proteins (NS) 5 and 3 (NS3) in the infected cell. Here, we perform a proof-of-principle high-throughput screen to identify compounds targeting the NS5-NS3 binding interface. We use a range of approaches to show for the first time that two small molecules-repurposed drugs I-OMe tyrphostin AG538 (I-OMe-AG238) and suramin hexasodium (SHS)-inhibit NS5-NS3 binding at low μM concentration through direct binding to NS5 that impacts thermostability. Importantly, both have strong antiviral activity at low μM concentrations against not only DENV-2, but also Zika virus (ZIKV) and West Nile virus (WNV). This work highlights the NS5-NS3 binding interface as a viable target for the development of anti-flaviviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia; (S.N.Y.Y.); (B.M.); (C.W.); (K.M.W.); (J.E.F.)
| |
Collapse
|
6
|
Pesce G, Gondelaud F, Ptchelkine D, Nilsson JF, Bignon C, Cartalas J, Fourquet P, Longhi S. Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. Int J Mol Sci 2022; 23:ijms23020923. [PMID: 35055108 PMCID: PMC8780864 DOI: 10.3390/ijms23020923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Henipaviruses are severe human pathogens within the Paramyxoviridae family. Beyond the P protein, the Henipavirus P gene also encodes the V and W proteins which share with P their N-terminal, intrinsically disordered domain (NTD) and possess a unique C-terminal domain. Henipavirus W proteins antagonize interferon (IFN) signaling through NTD-mediated binding to STAT1 and STAT4, and prevent type I IFN expression and production of chemokines. Structural and molecular information on Henipavirus W proteins is lacking. By combining various bioinformatic approaches, we herein show that the Henipaviruses W proteins are predicted to be prevalently disordered and yet to contain short order-prone segments. Using limited proteolysis, differential scanning fluorimetry, analytical size exclusion chromatography, far-UV circular dichroism and small-angle X-ray scattering, we experimentally confirmed their overall disordered nature. In addition, using Congo red and Thioflavin T binding assays and negative-staining transmission electron microscopy, we show that the W proteins phase separate to form amyloid-like fibrils. The present study provides an additional example, among the few reported so far, of a viral protein forming amyloid-like fibrils, therefore significantly contributing to enlarge our currently limited knowledge of viral amyloids. In light of the critical role of the Henipavirus W proteins in evading the host innate immune response and of the functional role of phase separation in biology, these studies provide a conceptual asset to further investigate the functional impact of the phase separation abilities of the W proteins.
Collapse
Affiliation(s)
- Giulia Pesce
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Denis Ptchelkine
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Juliet F. Nilsson
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Christophe Bignon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Jérémy Cartalas
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France;
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
- Correspondence:
| |
Collapse
|
7
|
Segatori VI, Garona J, Caligiuri LG, Bizzotto J, Lavignolle R, Toro A, Sanchis P, Spitzer E, Krolewiecki A, Gueron G, Alonso DF. Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients. Viruses 2021; 13:2084. [PMID: 34696514 PMCID: PMC8537229 DOI: 10.3390/v13102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.
Collapse
Affiliation(s)
- Valeria Inés Segatori
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
- Centro de Medicina Traslacional, Hospital El Cruce, Florencio Varela B1888AAE, Argentina
| | - Lorena Grisel Caligiuri
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ayelén Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Eduardo Spitzer
- Laboratorio Elea-Phoenix, Los Polvorines B1613AUE, Argentina;
| | - Alejandro Krolewiecki
- Instituto de Investigaciones de Enfermedades Tropicales (IIET-CONICET), Sede Regional Orán, Universidad Nacional de Salta, Orán A4530ANQ, Argentina;
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Daniel Fernando Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| |
Collapse
|
8
|
Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules 2021; 11:1324. [PMID: 34572537 PMCID: PMC8471210 DOI: 10.3390/biom11091324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Henipaviruses are BSL-4 zoonotic pathogens responsible in humans for severe encephalitis. Their V protein is a key player in the evasion of the host innate immune response. We previously showed that the Henipavirus V proteins consist of a long intrinsically disordered N-terminal domain (NTD) and a β-enriched C-terminal domain (CTD). These terminals are critical for V binding to DDB1, which is a cellular protein that is a component of the ubiquitin ligase E3 complex, as well as binding to MDA5 and LGP2, which are two host sensors of viral RNA. Here, we serendipitously discovered that the Hendra virus V protein undergoes a liquid-to-hydrogel phase transition and identified the V region responsible for this phenomenon. This region, referred to as PNT3 and encompassing residues 200-310, was further investigated using a combination of biophysical and structural approaches. Congo red binding assays, together with negative-staining transmisison electron microscopy (TEM) studies, show that PNT3 forms amyloid-like fibrils. Fibrillation abilities are dramatically reduced in a rationally designed PNT3 variant in which a stretch of three contiguous tyrosines, falling within an amyloidogenic motif, were replaced by three alanines. Worthy to note, Congo red staining experiments provided hints that these amyloid-like fibrils form not only in vitro but also in cellula after transfection or infection. The present results set the stage for further investigations aimed at assessing the functional role of phase separation and fibrillation by the Henipavirus V proteins.
Collapse
Affiliation(s)
- Edoardo Salladini
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Frank Gondelaud
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Juliet F. Nilsson
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Giulia Pesce
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Christophe Bignon
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Roxane Fabre
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, CEDEX 9, 13288 Marseille, France;
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.G.M.); (R.P.)
| | - Andrey V. Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, 34293 Montpellier, France;
| | - Branka Horvat
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Denis Gerlier
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Cyrille Mathieu
- Team Immunobiology of the Viral Infections, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM, U1111, CNRS, UMR 5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; (B.H.); (D.G.); (C.M.)
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, CEDEX 9, 13288 Marseille, France; (E.S.); (F.G.); (J.F.N.); (G.P.); (C.B.)
| |
Collapse
|
9
|
Kory P, Meduri GU, Varon J, Iglesias J, Marik PE. Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19. Am J Ther 2021; 28:e299-e318. [PMID: 34375047 PMCID: PMC8088823 DOI: 10.1097/mjt.0000000000001377] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND After COVID-19 emerged on U.S shores, providers began reviewing the emerging basic science, translational, and clinical data to identify potentially effective treatment options. In addition, a multitude of both novel and repurposed therapeutic agents were used empirically and studied within clinical trials. AREAS OF UNCERTAINTY The majority of trialed agents have failed to provide reproducible, definitive proof of efficacy in reducing the mortality of COVID-19 with the exception of corticosteroids in moderate to severe disease. Recently, evidence has emerged that the oral antiparasitic agent ivermectin exhibits numerous antiviral and anti-inflammatory mechanisms with trial results reporting significant outcome benefits. Given some have not passed peer review, several expert groups including Unitaid/World Health Organization have undertaken a systematic global effort to contact all active trial investigators to rapidly gather the data needed to grade and perform meta-analyses. DATA SOURCES Data were sourced from published peer-reviewed studies, manuscripts posted to preprint servers, expert meta-analyses, and numerous epidemiological analyses of regions with ivermectin distribution campaigns. THERAPEUTIC ADVANCES A large majority of randomized and observational controlled trials of ivermectin are reporting repeated, large magnitude improvements in clinical outcomes. Numerous prophylaxis trials demonstrate that regular ivermectin use leads to large reductions in transmission. Multiple, large "natural experiments" occurred in regions that initiated "ivermectin distribution" campaigns followed by tight, reproducible, temporally associated decreases in case counts and case fatality rates compared with nearby regions without such campaigns. CONCLUSIONS Meta-analyses based on 18 randomized controlled treatment trials of ivermectin in COVID-19 have found large, statistically significant reductions in mortality, time to clinical recovery, and time to viral clearance. Furthermore, results from numerous controlled prophylaxis trials report significantly reduced risks of contracting COVID-19 with the regular use of ivermectin. Finally, the many examples of ivermectin distribution campaigns leading to rapid population-wide decreases in morbidity and mortality indicate that an oral agent effective in all phases of COVID-19 has been identified.
Collapse
Affiliation(s)
- Pierre Kory
- Front-Line Covid-19 Critical Care Alliance, Madison, WI
| | - Gianfranco Umberto Meduri
- Memphis VA Medical Center—University of Tennessee Health Science Center, Pulmonary, Critical Care, and Research Services, Memphis, TN
| | - Joseph Varon
- University of Texas Health Science Center, Critical Care Service, Houston, TX
| | - Jose Iglesias
- Department of Medicine, Hackensack School of Medicine, Seton Hall, NJ; and
| | - Paul E. Marik
- Eastern Virginia Medical School, Division of Pulmonary and Critical Care, Norfolk, VA
| |
Collapse
|
10
|
Martin AJ, Jans DA. Antivirals that target the host IMPα/β1-virus interface. Biochem Soc Trans 2021; 49:281-295. [PMID: 33439253 PMCID: PMC7925013 DOI: 10.1042/bst20200568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
Although transport into the nucleus mediated by the importin (IMP) α/β1-heterodimer is central to viral infection, small molecule inhibitors of IMPα/β1-dependent nuclear import have only been described and shown to have antiviral activity in the last decade. Their robust antiviral activity is due to the strong reliance of many different viruses, including RNA viruses such as human immunodeficiency virus-1 (HIV-1), dengue (DENV), and Zika (ZIKV), on the IMPα/β1-virus interface. High-throughput compound screens have identified many agents that specifically target this interface. Of these, agents targeting IMPα/β1 directly include the FDA-approved macrocyclic lactone ivermectin, which has documented broad-spectrum activity against a whole range of viruses, including HIV-1, DENV1-4, ZIKV, West Nile virus (WNV), Venezuelan equine encephalitis virus, chikungunya, and most recently, SARS-CoV-2 (COVID-19). Ivermectin has thus far been tested in Phase III human clinical trials for DENV, while there are currently close to 80 trials in progress worldwide for SARS-CoV-2; preliminary results for randomised clinical trials (RCTs) as well as observational/retrospective studies are consistent with ivermectin affording clinical benefit. Agents that target the viral component of the IMPα/β1-virus interface include N-(4-hydroxyphenyl) retinamide (4-HPR), which specifically targets DENV/ZIKV/WNV non-structural protein 5 (NS5). 4-HPR has been shown to be a potent inhibitor of infection by DENV1-4, including in an antibody-dependent enhanced animal challenge model, as well as ZIKV, with Phase II clinical challenge trials planned. The results from rigorous RCTs will help determine the therapeutic potential of the IMPα/β1-virus interface as a target for antiviral development.
Collapse
Affiliation(s)
- Alexander J. Martin
- Nuclear Signaling Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David A. Jans
- Nuclear Signaling Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
Jans DA, Wagstaff KM. The broad spectrum host-directed agent ivermectin as an antiviral for SARS-CoV-2 ? Biochem Biophys Res Commun 2021; 538:163-172. [PMID: 33341233 PMCID: PMC7577703 DOI: 10.1016/j.bbrc.2020.10.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
FDA approved for parasitic indications, the small molecule ivermectin has been the focus of growing attention in the last 8 years due to its potential as an antiviral. We first identified ivermectin in a high throughput compound library screen as an agent potently able to inhibit recognition of the nuclear localizing Human Immunodeficiency Virus-1 (HIV-1) integrase protein by the host importin (IMP) α/β1 heterodimer, and recently demonstrated its ability to bind directly to IMPα to cause conformational changes that prevent its function in nuclear import of key viral as well as host proteins. Cell culture experiments have shown robust antiviral action towards a whole range of viruses, including HIV-1, dengue, Zika and West Nile Virus, Venezuelan equine encephalitis virus, Chikungunya, pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19). Close to 70 clinical trials are currently in progress worldwide for SARS-CoV-2. Although few of these studies have been completed, the results that are available, as well as those from observational/retrospective studies, indicate clinical benefit. Here we discuss the case for ivermectin as a host-directed broad-spectrum antiviral agent, including for SARS-CoV-2.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signaling Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Kylie M Wagstaff
- Cancer Targeting and Nuclear Therapeutics Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Kinobe RT, Owens L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin's possible mode of action against SARS-CoV-2. Fundam Clin Pharmacol 2021; 35:260-276. [PMID: 33427370 PMCID: PMC8013482 DOI: 10.1111/fcp.12644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023]
Abstract
Viral infections remain a major cause of economic loss with an unmet need for novel therapeutic agents. Ivermectin is a putative antiviral compound; the proposed mechanism is the inhibition of nuclear translocation of viral proteins, facilitated by mammalian host importins, a necessary process for propagation of infections. We systematically reviewed the evidence for the applicability of ivermectin against viral infections including SARS‐CoV‐2 regarding efficacy, mechanisms and selective toxicity. The SARS‐CoV‐2 genome was mined to determine potential nuclear location signals for ivermectin and meta‐analyses for in vivo studies included all comparators over time, dose range and viral replication in multiple organs. Ivermectin inhibited the replication of many viruses including those in Flaviviridae, Circoviridae and Coronaviridae families in vitro. Real and mock nuclear location signals were identified in SARS‐CoV‐2, a potential target for ivermectin and predicting a sequestration bait for importin β, stopping infected cells from reaching a virus‐resistant state. While pharmacokinetic evaluations indicate that ivermectin could be toxic if applied based on in vitro studies, inhibition of viral replication in vivo was shown for Porcine circovirus in piglets and Suid herpesvirus in mice. Overall standardized mean differences and 95% confidence intervals for ivermectin versus controls were −4.43 (−5.81, −3.04), p < 0.00001. Based on current results, the potential for repurposing ivermectin as an antiviral agent is promising. However, further work is needed to reconcile in vitro studies with clinical efficacy. Developing ivermectin as an additional antiviral agent should be pursued with an emphasis on pre‐clinical trials in validated models of infection.
Collapse
Affiliation(s)
- Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
13
|
The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses. Cells 2020; 9:cells9122654. [PMID: 33321790 PMCID: PMC7764567 DOI: 10.3390/cells9122654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The transport of host proteins into and out of the nucleus is key to host function. However, nuclear transport is restricted by nuclear pores that perforate the nuclear envelope. Protein intrinsic disorder is an inherent feature of this selective transport barrier and is also a feature of the nuclear transport receptors that facilitate the active nuclear transport of cargo, and the nuclear transport signals on the cargo itself. Furthermore, intrinsic disorder is an inherent feature of viral proteins and viral strategies to disrupt host nucleocytoplasmic transport to benefit their replication. In this review, we highlight the role that intrinsic disorder plays in the nuclear transport of host and viral proteins. We also describe viral subversion mechanisms of the host nuclear transport machinery in which intrinsic disorder is a feature. Finally, we discuss nuclear import and export as therapeutic targets for viral infectious disease.
Collapse
|
14
|
Sen Gupta PS, Biswal S, Panda SK, Ray AK, Rana MK. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. J Biomol Struct Dyn 2020; 40:2217-2226. [PMID: 33111618 PMCID: PMC7605516 DOI: 10.1080/07391102.2020.1839564] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ∼5000 folds within 48 h, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets along with Importin-α studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively, followed by Importin-α with -9.0 kcal/mol. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site and Importin-α, with MM/PBSA free energy of -187.3 kJ/mol, almost twice that of Helicase (-94.6 kJ/mol) and even lower than that of Importin-α (-156.7 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration.
Collapse
Affiliation(s)
- Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Abhik Kumar Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, India
| |
Collapse
|
15
|
Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal? Cells 2020; 9:cells9092100. [PMID: 32942671 PMCID: PMC7564151 DOI: 10.3390/cells9092100] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The small molecule macrocyclic lactone ivermectin, approved by the US Food and Drug Administration for parasitic infections, has received renewed attention in the last eight years due to its apparent exciting potential as an antiviral. It was identified in a high-throughput chemical screen as inhibiting recognition of the nuclear localizing Human Immunodeficiency Virus-1 (HIV-1) integrase protein by the host heterodimeric importin (IMP) α/β1 complex, and has since been shown to bind directly to IMPα to induce conformational changes that prevent its normal function in mediating nuclear import of key viral and host proteins. Excitingly, cell culture experiments show robust antiviral action towards HIV-1, dengue virus (DENV), Zika virus, West Nile virus, Venezuelan equine encephalitis virus, Chikungunya virus, Pseudorabies virus, adenovirus, and SARS-CoV-2 (COVID-19). Phase III human clinical trials have been completed for DENV, with >50 trials currently in progress worldwide for SARS-CoV-2. This mini-review discusses the case for ivermectin as a host-directed broad-spectrum antiviral agent for a range of viruses, including SARS-CoV-2.
Collapse
|
16
|
Inhibition of Human Adenovirus Replication by the Importin α/β1 Nuclear Import Inhibitor Ivermectin. J Virol 2020; 94:JVI.00710-20. [PMID: 32641484 DOI: 10.1128/jvi.00710-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Human adenoviruses (HAdV) are ubiquitous within the human population and comprise a significant burden of respiratory illnesses worldwide. Pediatric and immunocompromised individuals are at particular risk for developing severe disease; however, no approved antiviral therapies specific to HAdV exist. Ivermectin is an FDA-approved broad-spectrum antiparasitic drug that also exhibits antiviral properties against a diverse range of viruses. Its proposed function is inhibiting the classical protein nuclear import pathway mediated by importin-α (Imp-α) and -β1 (Imp-β1). Many viruses, including HAdV, rely on this host pathway for transport of viral proteins across the nuclear envelope. In this study, we show that ivermectin inhibits HAdV-C5 early gene transcription, early and late protein expression, genome replication, and production of infectious viral progeny. Similarly, ivermectin inhibits genome replication of HAdV-B3, a clinically important pathogen responsible for numerous recent outbreaks. Mechanistically, we show that ivermectin disrupts binding of the viral E1A protein to Imp-α without affecting the interaction between Imp-α and Imp-β1. Our results further extend ivermectin's broad antiviral activity and provide a mechanistic underpinning for its mode of action as an inhibitor of cellular Imp-α/β1-mediated nuclear import.IMPORTANCE Human adenoviruses (HAdVs) represent a ubiquitous and clinically important pathogen without an effective antiviral treatment. HAdV infections typically cause mild symptoms; however, individuals such as children, those with underlying conditions, and those with compromised immune systems can develop severe disseminated disease. Our results demonstrate that ivermectin, an FDA-approved antiparasitic agent, is effective at inhibiting replication of several HAdV types in vitro This is in agreement with the growing body of literature suggesting ivermectin has broad antiviral activity. This study expands our mechanistic knowledge of ivermectin by showing that ivermectin targets the ability of importin-α (Imp-α) to recognize nuclear localization sequences, without effecting the Imp-α/β1 interaction. These data also exemplify the applicability of targeting host factors upon which viruses rely as a viable antiviral strategy.
Collapse
|
17
|
Fatoki TH, Ibraheem O, Ogunyemi IO, Akinmoladun AC, Ugboko HU, Adeseko CJ, Awofisayo OA, Olusegun SJ, Enibukun JM. Network analysis, sequence and structure dynamics of key proteins of coronavirus and human host, and molecular docking of selected phytochemicals of nine medicinal plants. J Biomol Struct Dyn 2020; 39:6195-6217. [PMID: 32686993 DOI: 10.1080/07391102.2020.1794971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The novel coronavirus of 2019 (nCoV-19) has become a pandemic, affecting over 205 nations with over 7,410,000 confirmed cases which has resulted to over 418,000 deaths worldwide. This study aimed to identify potential therapeutic compounds and phytochemicals of medicinal plants that have potential to modulate the expression network of genes that are involve in SARS-CoV-2 pathology in human host and to understand the dynamics key proteins involved in the virus-host interactions. The method used include gene network analysis, molecular docking, and sequence and structure dynamics simulations. The results identified DNA-dependent protein kinase (DNA-PK) and Protein kinase CK2 as key players in SARS-CoV-2 lifecycle. Among the predicted drugs compounds, clemizole, monorden, spironolactone and tanespimycin showed high binding energies; among the studied repurposing compounds, remdesivir, simeprevir and valinomycin showed high binding energies; among the predicted acidic compounds, acetylursolic acid and hardwickiic acid gave high binding energies; while among the studied anthraquinones and glycosides compounds, ellagitannin and friedelanone showed high binding energies against 3-Chymotrypsin-like protease (3CLpro), Papain-like protease (PLpro), helicase (nsp13), RNA-dependent RNA polymerase (nsp12), 2'-O-ribose methyltransferase (nsp16) of SARS-CoV-2 and DNA-PK and CK2alpha in human. The order of affinity for CoV proteins is 5Y3E > 6NUS > 6JYT > 2XYR > 3VB6. Finally, medicinal plants with phytochemicals such as caffeine, ellagic acid, quercetin and their derivatives could possibly remediate COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Toluwase Hezekiah Fatoki
- Translational Bioinformatics Unit, Department of Biochemistry, Federal University Oye Ekiti, Oye Ekiti, Ekiti State, Nigeria
| | - Omodele Ibraheem
- Translational Bioinformatics Unit, Department of Biochemistry, Federal University Oye Ekiti, Oye Ekiti, Ekiti State, Nigeria
| | | | | | - Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | | | - Oladoja A Awofisayo
- Department of Pharmaceutical and Medicinal Chemistry, University of Uyo, Uyo, Nigeria
| | | | | |
Collapse
|
18
|
Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo) 2020; 73:593-602. [PMID: 32533071 PMCID: PMC7290143 DOI: 10.1038/s41429-020-0336-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Ivermectin proposes many potentials effects to treat a range of diseases, with its antimicrobial, antiviral, and anti-cancer properties as a wonder drug. It is highly effective against many microorganisms including some viruses. In this comprehensive systematic review, antiviral effects of ivermectin are summarized including in vitro and in vivo studies over the past 50 years. Several studies reported antiviral effects of ivermectin on RNA viruses such as Zika, dengue, yellow fever, West Nile, Hendra, Newcastle, Venezuelan equine encephalitis, chikungunya, Semliki Forest, Sindbis, Avian influenza A, Porcine Reproductive and Respiratory Syndrome, Human immunodeficiency virus type 1, and severe acute respiratory syndrome coronavirus 2. Furthermore, there are some studies showing antiviral effects of ivermectin against DNA viruses such as Equine herpes type 1, BK polyomavirus, pseudorabies, porcine circovirus 2, and bovine herpesvirus 1. Ivermectin plays a role in several biological mechanisms, therefore it could serve as a potential candidate in the treatment of a wide range of viruses including COVID-19 as well as other types of positive-sense single-stranded RNA viruses. In vivo studies of animal models revealed a broad range of antiviral effects of ivermectin, however, clinical trials are necessary to appraise the potential efficacy of ivermectin in clinical setting.
Collapse
Affiliation(s)
- Fatemeh Heidary
- Head of Ophthalmology Division, Taleghani Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Reza Gharebaghi
- Kish International Campus, University of Tehran, Tehran, Iran. .,International Virtual Ophthalmic Research Center (IVORC), Austin, TX, USA.
| |
Collapse
|
19
|
Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural Description of the Nipah Virus Phosphoprotein and Its Interaction with STAT1. Biophys J 2020; 118:2470-2488. [PMID: 32348724 PMCID: PMC7231922 DOI: 10.1016/j.bpj.2020.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
The structural characterization of modular proteins containing long intrinsically disordered regions intercalated with folded domains is complicated by their conformational diversity and flexibility and requires the integration of multiple experimental approaches. Nipah virus (NiV) phosphoprotein, an essential component of the viral RNA transcription/replication machine and a component of the viral arsenal that hijacks cellular components and counteracts host immune responses, is a prototypical model for such modular proteins. Curiously, the phosphoprotein of NiV is significantly longer than the corresponding protein of other paramyxoviruses. Here, we combine multiple biophysical methods, including x-ray crystallography, NMR spectroscopy, and small angle x-ray scattering, to characterize the structure of this protein and provide an atomistic representation of the full-length protein in the form of a conformational ensemble. We show that full-length NiV phosphoprotein is tetrameric, and we solve the crystal structure of its tetramerization domain. Using NMR spectroscopy and small angle x-ray scattering, we show that the long N-terminal intrinsically disordered region and the linker connecting the tetramerization domain to the C-terminal X domain exchange between multiple conformations while containing short regions of residual secondary structure. Some of these transient helices are known to interact with partners, whereas others represent putative binding sites for yet unidentified proteins. Finally, using NMR spectroscopy and isothermal titration calorimetry, we map a region of the phosphoprotein, comprising residues between 110 and 140 and common to the V and W proteins, that binds with weak affinity to STAT1 and confirm the involvement of key amino acids of the viral protein in this interaction. This provides new, to our knowledge, insights into how the phosphoprotein and the nonstructural V and W proteins of NiV perform their multiple functions.
Collapse
Affiliation(s)
| | - Filip Yabukarski
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Guillaume Communie
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Eric Condamine
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble CNRS, CEA, University Grenoble Alpes, EMBL, Grenoble, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie, INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie, INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Martin Blackledge
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marc Jamin
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
20
|
Functional analysis of an essential Ran-binding protein gene, CpRbp1, from the chestnut blight fungus Cryphonectria parasitica using heterokaryon rescue. Sci Rep 2020; 10:8111. [PMID: 32415177 PMCID: PMC7229160 DOI: 10.1038/s41598-020-65036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
A Ran binding protein (RanBP) homolog, CpRbp1, from Cryphonectria parasitica, has been identified as a protein that is affected by hypovirus infection or tannic acid supplementation. In this study, functional analyses of CpRbp1 were performed by constructing a knockout mutant and analyzing the resulting heterokaryon. Transformation-mediated gene replacement resulted in two putative CpRbp1-null mutants and genotype analyses identified these two mutants as heterokaryotic transformants consisting of two types of nuclei, one with the wild-type CpRbp1 allele and another with the CpRbp1-null mutant allele. Although stable mycelial growth of the heterokaryotic transformant was observed on selective medium containing hygromycin B, neither germination nor growth of the resulting conidia, which were single-cell monokaryotic progeny, was observed on the medium. In trans complementation of heterokaryons using a full-length wild-type allele of the CpRbp1 gene resulted in complemented transformants. These transformants sporulated single-cell monokaryotic conidia that were able to grow on media selective for replacing and/or complementing markers. These results clearly indicate that CpRbp1 is an essential gene, and heterokaryons allowed the fungus to maintain lethal CpRbp1-null mutant nuclei. Moreover, in trans complementation of heterokaryons using chimeric structures of the CpRbp1 gene allowed for analysis of its functional domains, which was previously hampered due to the lethality of the gene. In addition, in trans complementation using heterologous RanBP genes from Aspergillus nidulans was successful, suggesting that the function of RanBP is conserved during evolution. Furthermore, in trans complementation allowed for functional analyses of lethal orthologs. This study demonstrates that our fungal heterokaryon system can be applied effectively to determine whether a gene of interest is essential, perform functional analyses of a lethal gene, and analyze corresponding heterologous genes.
Collapse
|
21
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, Jans DA. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res 2020; 177:104760. [PMID: 32135219 DOI: 10.1016/j.antiviral.2020.104760] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Infection by RNA viruses such as human immunodeficiency virus (HIV)-1, influenza, and dengue virus (DENV) represent a major burden for human health worldwide. Although RNA viruses replicate in the infected host cell cytoplasm, the nucleus is central to key stages of the infectious cycle of HIV-1 and influenza, and an important target of DENV nonstructural protein 5 (NS5) in limiting the host antiviral response. We previously identified the small molecule ivermectin as an inhibitor of HIV-1 integrase nuclear entry, subsequently showing ivermectin could inhibit DENV NS5 nuclear import, as well as limit infection by viruses such as HIV-1 and DENV. We show here that ivermectin's broad spectrum antiviral activity relates to its ability to target the host importin (IMP) α/β1 nuclear transport proteins responsible for nuclear entry of cargoes such as integrase and NS5. We establish for the first time that ivermectin can dissociate the preformed IMPα/β1 heterodimer, as well as prevent its formation, through binding to the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity. We show that ivermectin inhibits NS5-IMPα interaction in a cell context using quantitative bimolecular fluorescence complementation. Finally, we show for the first time that ivermectin can limit infection by the DENV-related West Nile virus at low (μM) concentrations. Since it is FDA approved for parasitic indications, ivermectin merits closer consideration as a broad spectrum antiviral of interest.
Collapse
Affiliation(s)
- Sundy N Y Yang
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Sarah C Atkinson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Chunxiao Wang
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Alexander Lee
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia.
| |
Collapse
|
23
|
Heaton SM, Atkinson SC, Sweeney MN, Yang SNY, Jans DA, Borg NA. Exportin-1-Dependent Nuclear Export of DEAD-box Helicase DDX3X is Central to its Role in Antiviral Immunity. Cells 2019; 8:E1181. [PMID: 31575075 PMCID: PMC6848931 DOI: 10.3390/cells8101181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022] Open
Abstract
DEAD-box helicase 3, X-linked (DDX3X) regulates the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated antiviral response, but can also be a host factor contributing to the replication of viruses of significance to human health, such as human immunodeficiency virus type 1 (HIV-1). These roles are mediated in part through its ability to actively shuttle between the nucleus and the cytoplasm to modulate gene expression, although the trafficking mechanisms, and impact thereof on immune signaling and viral infection, are incompletely defined. We confirm that DDX3X nuclear export is mediated by the nuclear transporter exportin-1/CRM1, dependent on an N-terminal, leucine-rich nuclear export signal (NES) and the monomeric guanine nucleotide binding protein Ran in activated GTP-bound form. Transcriptome profiling and ELISA show that exportin-1-dependent export of DDX3X to the cytoplasm strongly impacts IFN-β production and the upregulation of immune genes in response to infection. That this is key to DDX3X's antiviral role was indicated by enhanced infection by human parainfluenza virus-3 (hPIV-3)/elevated virus production when the DDX3X NES was inactivated. Our results highlight a link between nucleocytoplasmic distribution of DDX3X and its role in antiviral immunity, with strong relevance to hPIV-3, as well as other viruses such as HIV-1.
Collapse
Affiliation(s)
- Steven M Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Melissa N Sweeney
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Sundy N Y Yang
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - David A Jans
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
24
|
Heaton SM. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin Transl Immunology 2019; 8:e1067. [PMID: 31312450 PMCID: PMC6613463 DOI: 10.1002/cti2.1067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
Pathogen resistance and development costs are major challenges in current approaches to antiviral therapy. The high error rate of RNA synthesis and reverse‐transcription confers genome plasticity, enabling the remarkable adaptability of RNA viruses to antiviral intervention. However, this property is coupled to fundamental constraints including limits on the size of information available to manipulate complex hosts into supporting viral replication. Accordingly, RNA viruses employ various means to extract maximum utility from their informationally limited genomes that, correspondingly, may be leveraged for effective host‐oriented therapies. Host‐oriented approaches are becoming increasingly feasible because of increased availability of bioactive compounds and recent advances in immunotherapy and precision medicine, particularly genome editing, targeted delivery methods and RNAi. In turn, one driving force behind these innovations is the increasingly detailed understanding of evolutionarily diverse host–virus interactions, which is the key concern of an emerging field, neo‐virology. This review examines biotechnological solutions to disease and other sustainability issues of our time that leverage the properties of RNA and DNA viruses as developed through co‐evolution with their hosts.
Collapse
Affiliation(s)
- Steven M Heaton
- Department of Biochemistry & Molecular Biology Monash University Clayton VIC Australia
| |
Collapse
|
25
|
Yang SNY, Atkinson SC, Fraser JE, Wang C, Maher B, Roman N, Forwood JK, Wagstaff KM, Borg NA, Jans DA. Novel Flavivirus Antiviral That Targets the Host Nuclear Transport Importin α/β1 Heterodimer. Cells 2019; 8:cells8030281. [PMID: 30909636 PMCID: PMC6468590 DOI: 10.3390/cells8030281] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) threatens almost 70% of the world’s population, with no effective vaccine or therapeutic currently available. A key contributor to infection is nuclear localisation in the infected cell of DENV nonstructural protein 5 (NS5) through the action of the host importin (IMP) α/β1 proteins. Here, we used a range of microscopic, virological and biochemical/biophysical approaches to show for the first time that the small molecule GW5074 has anti-DENV action through its novel ability to inhibit NS5–IMPα/β1 interaction in vitro as well as NS5 nuclear localisation in infected cells. Strikingly, GW5074 not only inhibits IMPα binding to IMPβ1, but can dissociate preformed IMPα/β1 heterodimer, through targeting the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity, as shown using analytical ultracentrifugation, thermostability analysis and circular dichroism measurements. Importantly, GW5074 has strong antiviral activity at low µM concentrations against not only DENV-2, but also zika virus and West Nile virus. This work highlights DENV NS5 nuclear targeting as a viable target for anti-flaviviral therapeutics.
Collapse
Affiliation(s)
- Sundy N Y Yang
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Johanna E Fraser
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Chunxiao Wang
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Belinda Maher
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Noelia Roman
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| | - David A Jans
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.
| |
Collapse
|
26
|
Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol 2019; 58:50-60. [PMID: 30826604 DOI: 10.1016/j.ceb.2019.01.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Central to eukaryotic cell function, transport into and out of the nucleus is largely mediated by members of the Importin (IMP) superfamily of transporters of α- and β-types. The first inhibitor of nuclear transport, leptomycin B (LMB), was shown to be a specific inhibitor of the IMPβ homologue Exportin 1 (EXP1) almost 20 years ago, but it has only been in the last five or so years that new inhibitors of nuclear export as well as import have been identified and characterised. Of utility in biological research, these inhibitors include those that target-specific EXPs/IMPs, with accompanying toxicity profiles, as well as agents that specifically target particular nuclear import cargoes. Both types of inhibitors have begun to be tested in preclinical/clinical studies, with particular focus on limiting various types of cancer or treating viral infection, and the most advanced agent targeting EXP1 (Selinexor) has progressed successfully through >40 clinical trials for a range of high-grade cancers and is approaching FDA approval for a number of indications. Selectively inhibiting the nucleocytoplasmic trafficking of specific proteins of interest remains a challenge, but progress in the area of the host-pathogen interface holds promise for the future.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Alexander J Martin
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Kosyna FK, Depping R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018; 7:cells7110221. [PMID: 30469340 PMCID: PMC6262578 DOI: 10.3390/cells7110221] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nuclear transport receptors of the karyopherin superfamily of proteins transport macromolecules from one compartment to the other and are critical for both cell physiology and pathophysiology. The nuclear transport machinery is tightly regulated and essential to a number of key cellular processes since the spatiotemporally expression of many proteins and the nuclear transporters themselves is crucial for cellular activities. Dysregulation of the nuclear transport machinery results in localization shifts of specific cargo proteins and associates with the pathogenesis of disease states such as cancer, inflammation, viral illness and neurodegenerative diseases. Therefore, inhibition of the nuclear transport system has future potential for therapeutic intervention and could contribute to the elucidation of disease mechanisms. In this review, we recapitulate clue findings in the pathophysiological significance of nuclear transport processes and describe the development of nuclear transport inhibitors. Finally, clinical implications and results of the first clinical trials are discussed for the most promising nuclear transport inhibitors.
Collapse
Affiliation(s)
- Friederike K Kosyna
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
28
|
Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening. Antiviral Res 2018; 151:8-19. [PMID: 29337164 DOI: 10.1016/j.antiviral.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/24/2022]
Abstract
Although the alphavirus Venezuelan equine encephalitis virus (VEEV) has been the cause of multiple outbreaks resulting in extensive human and equine mortality and morbidity, there are currently no anti-VEEV therapeutics available. VEEV pathogenicity is largely dependent on targeting of the viral capsid protein (CP) to the host cell nucleus through the nuclear transporting importin (Imp) α/β1 heterodimer. Here we perform a high-throughput screen, combined with nested counterscreens to identify small molecules able to inhibit the Impα/β1:CP interaction for the first time. Several compounds were able to significantly reduce viral replication in infected cells. Compound G281-1564 in particular could inhibit VEEV replication at low μM concentration, while showing minimal toxicity, with steady state and dynamic quantitative microscopic measurements confirming its ability to inhibit CP nuclear import. This study establishes the principle that inhibitors of CP nucleocytoplasmic trafficking can have potent antiviral activity against VEEV, and represents a platform for future development of safe anti-VEEV compounds with high efficacy and specificity.
Collapse
|