1
|
Pham PNV, Yahsaly L, Ochsenfarth C, Giebel B, Schnitzler R, Zahn P, Frey UH. Influence of Anesthetic Regimes on Extracellular Vesicles following Remote Ischemic Preconditioning in Coronary Artery Disease. Int J Mol Sci 2024; 25:9304. [PMID: 39273253 PMCID: PMC11395148 DOI: 10.3390/ijms25179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Remote ischemic preconditioning (RIPC) reduces ischemia-reperfusion injury in aortocoronary bypass surgery, potentially via extracellular vesicles (EVs) and their micro-RNA content. Clinical data implicate that propofol might inhibit the cardioprotective RIPC effect. This prospective, randomized study investigated the influence of different anesthetic regimes on RIPC efficacy and EV micro-RNA signatures. We also assessed the impact of propofol on cell protection after hypoxic conditioning and EV-mediated RIPC in vitro. H9c2 rat cardiomyoblasts were subjected to hypoxia, with or without propofol, and subsequent simulated ischemia-reperfusion injury. Apoptosis was measured by flow cytometry. Blood samples of 64 patients receiving anesthetic maintenance with propofol or isoflurane, along with RIPC or sham procedures, were analyzed, and EVs were enriched using a polymer-based method. Propofol administration corresponded with increased Troponin T levels (4669 ± 435.6 pg/mL), suggesting an inhibition of the cardioprotective RIPC effect. RIPC leads to a notable rise in miR-21 concentrations in the group receiving propofol anesthesia (fold change 7.22 ± 6.6). In vitro experiments showed that apoptosis reduction was compromised with propofol and only occurred in an EV-enriched preconditioning medium, not in an EV-depleted medium. Our study could clinically and experimentally confirm propofol inhibition of RIPC protection. Increased miR-21 expression could provide evidence for a possible inhibitory mechanism.
Collapse
Affiliation(s)
- Phuong N V Pham
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Loubna Yahsaly
- Department of Cardiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Crista Ochsenfarth
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Romina Schnitzler
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Peter Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ulrich H Frey
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Polak M, Wieczorek J, Botor M, Auguścik-Duma A, Hoffmann A, Wnuk-Wojnar A, Gawron K, Mizia-Stec K. Principles and Limitations of miRNA Purification and Analysis in Whole Blood Collected during Ablation Procedure from Patients with Atrial Fibrillation. J Clin Med 2024; 13:1898. [PMID: 38610663 PMCID: PMC11012484 DOI: 10.3390/jcm13071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: MicroRNA (miRNA) have the potential to be non-invasive and attractive biomarkers for a vast number of diseases and clinical conditions; however, a reliable analysis of miRNA expression in blood samples meets a number of methodological challenges. In this report, we presented and discussed, specifically, the principles and limitations of miRNA purification and analysis in blood plasma samples collected from the left atrium during an ablation procedure on patients with atrial fibrillation (AF). Materials and Methods: Consecutive patients hospitalized in the First Department of Cardiology for pulmonary vein ablation were included in this study (11 with diagnosed paroxysmal AF, 14 with persistent AF, and 5 without AF hospitalized for left-sided WPW ablation-control group). Whole blood samples were collected from the left atrium after transseptal puncture during the ablation procedure of AF patients. Analysis of the set of miRNA molecules was performed in blood plasma samples using the MIHS-113ZF-12 kit and miScript microRNA PCR Array Human Cardiovascular Disease. Results: The miRNS concentrations were in the following ranges: paroxysmal AF: 7-23.1 ng/µL; persistent AF: 4.9-66.8 ng/µL; controls: 6.3-10.6 ng/µL. The low A260/280 ratio indicated the protein contamination and the low A260/A230 absorbance ratio suggested the contamination by hydrocarbons. Spectrophotometric measurements also indicated low concentration of nucleic acids (<10 ng/µL). Further steps of analysis revealed that the concentration of cDNA after the Real-Time PCR (using the PAXgene RNA Blood kit) reaction was higher (148.8 ng/µL vs. 68.4 ng/µL) and the obtained absorbance ratios (A260/A280 = 2.24 and A260/A230 = 2.23) indicated adequate RNA purity. Conclusions: Although developments in miRNA sequencing and isolation technology have improved, detection of plasma-based miRNA, low RNA content, and sequencing bias introduced during library preparation remain challenging in patients with AF. The measurement of the quantity and quality of the RNA obtained is crucial for the interpretation of an efficient RNA isolation.
Collapse
Affiliation(s)
- Mateusz Polak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Wieczorek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguścik-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Hoffmann
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Wnuk-Wojnar
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Afruza R, Minerva N, Lack JB, Chakraborty M, Haddad JA, Ali RO, Koh C, Levy EB, Etzion O, Heller T. A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma. Methods Protoc 2023; 6:112. [PMID: 37987359 PMCID: PMC10660533 DOI: 10.3390/mps6060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Cell-free RNAs (cfRNAs) are promising analytes as non-invasive biomarkers and have even greater potential if tied in with metabolomics. Plasma is an optimal source for cfRNAs but is often derived from a variety of anticoagulants. Plasma obtained in heparin is suitable for metabolomics but is difficult to utilize for qPCR-based downstream analysis. In the present study, we aimed to develop a simple, time-efficient, and cost-effective heparinase protocol, followed by library preparation and sequencing of human plasma cfRNAs drawn and stored in heparin at -80 °C for several years. Blood was collected in CPT™ sodium heparin tubes from patients with chronic HCV infection (NCT02400216) at the National Institutes of Health (NIH) Clinical Center. Plasma cfRNAs were treated with heparinase I and used for library preparation and next-generation sequencing (NGS). Heparinase treatment maintained RNA integrity and allowed for successful library preparation for all the study subjects even with 7 ng of cfRNAs as starting material. The classification report derived from Pavian R package v1.2.0 showed no artificial reads. The abundance of chordate over microbial reads suggests no addition of experimental error through heparinase I treatment. We report a novel and practical approach to heparinase treatment for human plasma collected and frozen in sodium heparin for several years. This is an effective demonstration of utilizing heparin plasma for NGS and downstream transcriptomic research, which could then be integrated with metabolomics from the same samples, maximizing efficiency and minimizing blood draws.
Collapse
Affiliation(s)
- Rownock Afruza
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - Nicole Minerva
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - Justin B. Lack
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Moumita Chakraborty
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - James A. Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - Rabab O. Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Elliot B. Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.M.); (M.C.); (J.A.H.); (O.E.)
| |
Collapse
|
4
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
5
|
Akula SM, Bolin P, Cook PP. Cellular miR-150-5p may have a crucial role to play in the biology of SARS-CoV-2 infection by regulating nsp10 gene. RNA Biol 2021; 19:1-11. [PMID: 34904915 PMCID: PMC8786335 DOI: 10.1080/15476286.2021.2010959] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role for circulating miRNAs as biomarkers of the COVID-19 disease remains uncertain. We analysed the circulating miRNA profile in twelve COVID-19 patients with moderate-severe disease. This analysis was conducted by performing next generation sequencing (NGS) followed by real-time polymerase chain reaction (RT-qPCR). Compared with healthy controls, we detected significant changes in the circulating miRNA profile of COVID-19 patients. The miRNAs that were significantly altered in all the COVID-19 patients were miR-150-5p, miR-375, miR-122-5p, miR-494-3p, miR-3197, miR-4690-5p, miR-1915-3p, and miR-3652. Infection assays performed using miRNA mimics in HEK-293 T cells determined miR-150-5p to have a crucial role in SARS-CoV-2 infection and this was based on the following data: (i) miR-150-5p mimic lowered in vitro SARS-CoV-2 infection; (ii) miR-150-5p inhibitor reversed the effects of miR-150-5p mimic on SARS-CoV-2 infection of cells; and (iii) a novel miRNA recognition element (MRE) was identified in the coding strand of SARS-CoV-2 nsp10, the expression of which could be inhibited by miR-150-5p mimic. Our findings identified crucial miRNA footprints in COVID-19 patients with moderate-severe disease. A combination of co-transfection and Western blotting experiments also determined the ability of miR-150-5p to inhibit SARS-CoV-2 infection via directly interacting with MRE in the coding strand of nsp10. Our investigation showed that a sharp decline in the miR-150-5p plasma levels in COVID-19 patients may support enhanced SARS-CoV-2 infection. Furthermore, this study provides insight into one possible mechanism by which COVID-19-induced changes to miR-150-5p levels may promote SARS-CoV-2 infection via modulating nsp10 expression.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology & Immunology (S.m. Akula), Department of Internal Medicine (P. Bolin, P.P.Cook), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Paul Bolin
- Department of Microbiology & Immunology (S.m. Akula), Department of Internal Medicine (P. Bolin, P.P.Cook), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Paul P Cook
- Department of Microbiology & Immunology (S.m. Akula), Department of Internal Medicine (P. Bolin, P.P.Cook), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
6
|
Polymorphic Variants in the GRK5 Gene Promoter Are Associated With Diastolic Dysfunction in Coronary Artery Bypass Graft Surgery Patients. Anesth Analg 2021; 134:858-868. [PMID: 34871184 DOI: 10.1213/ane.0000000000005809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The G-protein-coupled receptor kinase 5 (GRK5) is a mediator of cardiovascular homeostasis and participates in inflammation and cardiac fibrosis, both being involved in the development of diastolic dysfunction (DD). While mechanisms of transcriptional regulation of the GRK5 promoter are unclear, we tested the hypotheses, that (1) GRK5 expression varies depending on functional single nucleotide polymorphisms (SNPs) in the GRK5 promoter and (2) this is associated with DD in patients undergoing coronary artery bypass graft (CABG) surgery. METHODS We amplified and sequenced the GRK5 promoter followed by cloning, reporter assays, and electrophoretic mobility shift assays (EMSA). GRK5 messenger ribonucleic acid (mRNA) expression was determined in right atrial tissue sampled from 50 patients undergoing CABG surgery. In another prospective study, GRK5 genotypes were associated with determinants of diastolic function using transesophageal echocardiography in 255 patients with CABG with normal systolic left ventricular (LV) function. Specifically, we measured ejection fraction (EF), transmitral Doppler early filling velocity (E), tissue Doppler early diastolic lateral mitral annular velocity (E' lateral), and calculated E/E', E' norm and the difference of E' lateral and E' norm to account for age-related changes in diastolic function. RESULTS We identified 6 SNPs creating 3 novel haplotypes with the greatest promoter activation in haplotype tagging (ht) SNP T(-678)C T-allele constructs (P < .001). EMSAs showed allele-specific transcription factor binding proving functional activity. GRK5 mRNA expression was greatest in TT genotypes (TT: 131 fg/µg [95% CI, 108-154]; CT: 109 [95% confidence interval {CI}, 93-124]; CC: 83 [95% CI, 54-112]; P = .012). Moreover, GRK5 genotypes were significantly associated with determinants of diastolic function. Grading of DD revealed more grade 3 patients in TT compared to CT and CC genotypes (58% vs 38% vs 4%; P = .023). E´ lateral was lowest in TT genotypes (P = .007) and corresponding E/E' measurements showed 1.27-fold increased values in TT versus CC genotypes (P = .01), respectively. While E' norm values were not different between genotypes (P = .182), the difference between E' lateral and E' norm was significantly higher in TT genotypes compared to CC and CT genotypes (-1.2 [interquartile range {IQR}, 2.7], -0.5 [IQR, 3.4], and -0.4 [IQR, 4.2; P = .035], respectively). CONCLUSIONS A functional GRK5 SNP results in allele-dependent differences in GRK5 promoter activity and mRNA expression. This is associated with altered echocardiographic determinants of diastolic function. Thus, SNPs in the GRK5 promoter are associated with altered perioperative diastolic cardiac function. In the future, preoperative testing for these and other SNPs might allow to initiate more specific diagnostic and perioperative pathways to benefit patients at risk.
Collapse
|
7
|
Kiss A, Heber S, Kramer AM, Hackl M, Skalicky S, Hallström S, Podesser BK, Santer D. MicroRNA Expression Profile Changes after Cardiopulmonary Bypass and Ischemia/Reperfusion-Injury in a Porcine Model of Cardioplegic Arrest. Diagnostics (Basel) 2020; 10:diagnostics10040240. [PMID: 32326306 PMCID: PMC7236010 DOI: 10.3390/diagnostics10040240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of microRNAs (miRNA) associated with cardiopulmonary bypass, cardiac arrest and subsequent myocardial ischemia/reperfusion may unravel novel therapeutic targets and biomarkers. The primary aim of the present study was to investigate the effects of cardiopulmonary bypass and temperature of cardioplegic arrest on myocardial miRNA profile in pigs' left ventricular tissue. We employed next-generation sequencing to analyse miRNA profiles in the following groups: (1) hearts were arrested with antegrade warm St Thomas Hospital No. 2 (STH2) cardioplegia (n = 5; STH2-warm, 37 °C) and (2) cold STH2 (n = 6; STH2-cold, 4 °C) cardioplegia. Sixty min of ischemia was followed by 60 min of on-pump reperfusion with an additional 90 min of off-pump reperfusion. In addition, two groups without cardiac arrest (off-pump and on-pump group; n = 3, respectively) served as additional controls. STH2-warm and STH2-cold cardioplegia revealed no hemodynamic differences. In contrast, coronary venous creatine kinase-myocardial band (CK-MB) levels were significantly lower in pigs receiving STH2-warm cardioplegia (p < 0.05). Principal component analysis revealed that cardiopulmonary bypass and cardioplegic arrest markedly affected miRNAs in left ventricular tissue. Accordingly, ssc-miR-122, ssc-miR-10a-5p, ssc-miR-193a-3p, ssc-miR-499-3p, ssc-miR-374a-5p, ssc-miR-345-5p, ssc-miR-142-3p, ssc-miR-424-5p, ssc-miR-545-3p, ssc-miR-30b-5p, ssc-miR-145-5p, ssc-miR-374b-5p and ssc-miR-139-3p were differently regulated by cardiopulmonary bypass (false discovery rate (FDR) < 0.05 versus off-pump group). However, only ssc-miR-451 was differently expressed between STH2-warm and STH2-cold (FDR < 0.05). These data demonstrate for the first time that cardiopulmonary bypass and temperature of cardioplegic solution affected the expression of miRNAs in left ventricular tissue. In conclusion, specific miRNAs are potential therapeutic targets for limiting ischemia-reperfusion injury in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
| | - Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Anne-Margarethe Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
| | | | | | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
- Correspondence: ; Tel.: +43-1-40400-52210
| | - David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
8
|
Ren W, Liang L, Li Y, Wei FY, Mu N, Zhang L, He W, Cao Y, Xiong D, Li H. Upregulation of miR‑423 improves autologous vein graft restenosis via targeting ADAMTS‑7. Int J Mol Med 2020; 45:532-542. [PMID: 31894258 PMCID: PMC6984782 DOI: 10.3892/ijmm.2019.4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Coronary artery bypass graft (CABG) is one of the primary methods of treating coronary heart disease (CHD); however, vein graft restenosis is a major limiting factor of the effectiveness of CABG. Emerging evidence has indicated that miR‑423 is associated with vascular diseases. Additionally, upregulation of a disintegrin and metalloproteinase with thrombospondin motifs‑7 (ADAMTS‑7) contributes to neointima formation by promoting the proliferation and migration of vascular smooth muscle cells and inhibiting the proliferation and migration of endothelial cells. The aim of the present study was to examine the effects of miR‑423 target, ADAMTS‑7, on regulating vein graft disease and identify novel biomarkers for use in therapy of vein graft failure (VGF). Aberrant expression of miR‑423 in plasma of patients with CHD prior to and following CABG confirms that miR‑423 may be a suitable target for preventing VGF. Furthermore, a dual‑luciferase reporter gene assay indicated that miR‑423 directly interacted with ADAMTS‑7 and suppressed its expression. Ectopic expression of miR‑423 suppressed ADAMTS‑7, resulting in decreased proliferation and migration rates of human umbilical vein smooth muscle cells by targeting ADAMTS‑7, but resulted in increased proliferation and migration of human umbilical vein endothelial cells in vitro. Overexpression of miR‑423 also enhanced re‑endothelialization and decreased neointimal formation in a rat vein graft model. In conclusion, the results of the present study demonstrated that the miR‑423/ADAMTS‑7 axis may possess potential clinical value for the prevention and treatment of restenosis in patients with CHD following CABG.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Liwen Liang
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Fei-Yu Wei
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Ninghui Mu
- Department of Geriatrics/General Medical Science, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Wei He
- Department of Medical Services, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
9
|
Feng X, Liu Y, Wan N. Plasma microRNA detection standardization test. J Clin Lab Anal 2019; 34:e23058. [PMID: 31617231 PMCID: PMC7031554 DOI: 10.1002/jcla.23058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can be used for early diagnosis of myocardial infarction. However, due to a lack of standardized operating procedures, their value for clinical application is low. METHODS Detection of plasma miRNAs was optimized by analyzing factors influencing miRNA variance and myocardial infarction risk scores during analysis (extraction, reverse transcription, and real-time PCR) and pre-analysis (dietary status, anticoagulants, storage conditions, and hemolysis). RESULTS Regarding variable factors during analysis, the centrifugal column method was superior to Trizol LS reagent when extracting miRNA from plasma. Recovery rate was highest with plasma volumes of 200 and 300 µL. During analysis, the main source of miRNA detection inaccuracy was derived from RNA extraction (mainly organic extraction), and not reverse transcription or PCR. MiRNA variance could be reduced by use of an internal reference. During analysis, 95% of risk score variation fluctuated within a range of 6.267. The variable factors pre-analysis mainly involved dietary status, anticoagulant selection, and storage conditions. Hemolysis positively correlated with miRNA levels, but there was no significant change in risk score after internal reference calibration. CONCLUSION Preliminary standardization for miRNA detection provides a reference for clinical blood testing of miRNAs.
Collapse
Affiliation(s)
- Xiaomin Feng
- Dalian Medical University, Dalian, Liaoning, China
| | - Yuwei Liu
- Dalian Medical University, Dalian, Liaoning, China
| | - Nan Wan
- Department of Laboratory Medicine Science Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Frey UH, Klaassen M, Ochsenfarth C, Murke F, Thielmann M, Kottenberg E, Kleinbongard P, Klenke S, Engler A, Heusch G, Giebel B, Peters J. Remote ischaemic preconditioning increases serum extracellular vesicle concentrations with altered micro-RNA signature in CABG patients. Acta Anaesthesiol Scand 2019; 63:483-492. [PMID: 30548252 DOI: 10.1111/aas.13296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) can attenuate myocardial ischaemia/reperfusion injury but its underlying mechanisms remain largely unknown. Recently, extracellular vesicles (EVs) containing microRNAs (miRNAs) were shown to mediate distant intercellular communication that may be involved in cardioprotection. We tested the hypothesis that RIPC in anaesthetized patients undergoing coronary artery bypass (CABG) surgery results in the release of EVs from the ischaemic/reperfused arm into the blood stream harbouring cardioprotective miRNAs. METHODS In 58 patients randomised to RIPC (three 5/5 minutes episodes of left arm ischaemia/reperfusion by suprasystolic blood pressure cuff inflations/deflations) or Sham, a subprotocol comprising of parallel right radial artery and regional (left subclavian) venous blood sampling before (awake) and 5 and 60 minutes after RIPC/Sham during isoflurane/sufentanil anaesthesia could be completed. EVs were extracted by polymer-based precipitation methods, their concentrations measured, and their miRNA signature analysed. RESULTS Five minutes after RIPC, regional venous EV concentrations downstream from the cuff increased and arterial concentrations increased after 60 minutes (fold change [fc]: RIPC: 1.33 ± 0.5, Sham: 0.91 ± 0.31; P = 0.003 for interaction). Already 5 minutes after RIPC, expression of 26 miRNAs (threshold fc: 3.0, P < 0.05) isolated from EVs including the cardioprotective miR-21 had increased. RIPC also decreased postoperative Troponin I concentrations (AUC RIPC: 336 ng/mL × 72 hours ± 306 vs Sham: 713 ± 1013; P = 0.041). CONCLUSIONS Remote ischaemic preconditioning increases serum EV concentrations, most likely by early EV release from the patients' left (RIPC) arm, alters their miRNA signature, and is associated with myocardial protection. Thus, an increased EV concentration with an altered miR-signature may mediate the RIPC effect.
Collapse
Affiliation(s)
- Ulrich H. Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
- Klinik für Anästhesiologie, operative Intensivmedizin, Schmerz‐ und Palliativmedizin, Marien Hospital Herne Universitätsklinikum der Ruhr‐Universität Bochum Bochum Germany
| | - Marina Klaassen
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Crista Ochsenfarth
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
- Klinik für Anästhesiologie, operative Intensivmedizin, Schmerz‐ und Palliativmedizin, Marien Hospital Herne Universitätsklinikum der Ruhr‐Universität Bochum Bochum Germany
| | - Florian Murke
- Institut für Transfusionsmedizin Universitätsklinikum Universität Duisburg‐Essen Essen Essen Germany
| | - Matthias Thielmann
- Klinik für Thorax‐ und kardiovaskuläre Chirurgie, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz‐ und Gefäßzentrum, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Stefanie Klenke
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Andrea Engler
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Gerd Heusch
- Institut für Pathophysiologie, Westdeutsches Herz‐ und Gefäßzentrum, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| | - Bernd Giebel
- Institut für Transfusionsmedizin Universitätsklinikum Universität Duisburg‐Essen Essen Essen Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen Universität Duisburg‐Essen Essen Germany
| |
Collapse
|