1
|
Song YM, Park HG, Lee JS. Hierarchically Graphitic Carbon Structure Derived from Metal Ions Impregnated Harmful Inedible Seaweed as Energy-Related Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4643. [PMID: 39336385 PMCID: PMC11433207 DOI: 10.3390/ma17184643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
This study explored the development of hierarchical graphitic carbon structures (HGCs) from harmful inedible seaweed waste harvested in the summer. Elevated sea temperatures during the summer increase the cellulose content of seaweeds, making them unsuitable for consumption. By utilizing seaweed biomass, this study addresses critical marine environmental issues and provides a sustainable solution for promising electrode materials for energy storage devices. The fabrication process involved impregnating seaweed with Ni ions, followed by annealing to create a highly crystalline carbon structure. Subsequent etching produced numerous nano-sized pores and a large surface area (806 m2/g), significantly enhancing the number of electrically active sites. The resulting HGCs exhibited a high capacitance and maintained their capacity even after 10,000 cycles in fast-current systems. This innovative approach not only mitigates the environmental burden of seaweed waste but also offers a sustainable method for converting it into efficient energy storage materials.
Collapse
Affiliation(s)
- Yun-Mi Song
- Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea
| | - Hui Gyeong Park
- Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Soo Lee
- Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Deng XG, Fan LQ, Fu XY, Tang T, Lin SH, Chen L, Yu FD, Huang YF, Huang ML, Wu JH. Carbon-reinforced Ni 3S 2/Ti 3C 2T x MXene composite as an anode for superior-performance lithium-ion capacitors. J Colloid Interface Sci 2024; 661:237-248. [PMID: 38301462 DOI: 10.1016/j.jcis.2024.01.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Lithium ion capacitors (LICs) are a new generation of energy storage devices that combine the super energy storage capability of lithium ion batteries with the satisfactory power density of supercapacitors. The development of high-performance LICs still faces great challenges due to the unbalanced reaction kinetics at the anode and cathode. Therefore, it is an inevitable need to enhance the electron/ion transfer capability of the anode materials. In this paper, to obtain a superior-rate and high-capacity Ni3S2-based anode, highly conductive Ti3C2Tx MXene sheets were introduced to sever as the carrier of Ni3S2 nanoparticles and simultaneously an amorphous carbon layer which coats onto the surface of Ni3S2 nanoparticles was in-situ generated by the carbonization of dopamine reactant. The as-synthesized Ni3S2/Ti3C2Tx/C composite exhibits a high specific surface area (112.6 m2/g) because of the addition of Ti3C2Tx that can reduce the aggregation of Ni3S2 nanoparticles and the in-situ generated amorphous carbon layer that can suppress the growth of Ni3S2 nanoparticles. The Ni3S2/Ti3C2Tx/C anode possesses a remarkable reversible discharge specific capacity (626.0 mAh/g under 0.2 A/g current density), which increases to 1150.8 mAh/g after 400-cycle charge/discharge measurement at the same measurement condition indicating eminent cyclability, along with superior rate capability. To construct a superior-performance LIC device, a sterculiae lychnophorae derived porous carbon (SLPC) cathode with an average discharge specific capacity of 73.4 mAh/g@0.1A/g was prepared. The Ni3S2/Ti3C2Tx/C//SLPC LIC device with optimal cathode/anode mass ratio has a satisfactory energy density ranging from 32.8 to 119.1 Wh kg-1 at the corresponding power density of 8799.4 to 157.5 W kg-1, together with a prominent capacity retention (95.5 %@1 A/g after 10,000 cycles).
Collapse
Affiliation(s)
- Xu-Geng Deng
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Le-Qing Fan
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Xiao-Yun Fu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Tao Tang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shi-Hua Lin
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Long Chen
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Fu-Da Yu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yun-Fang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Miao-Liang Huang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
3
|
Wu PJ, Huang CH, Hsieh CT, Liu WR. Synthesis and Characterization of MnIn 2S 4/Single-Walled Carbon Nanotube Composites as an Anode Material for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:716. [PMID: 38668210 PMCID: PMC11053989 DOI: 10.3390/nano14080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
In this study, we synthesized a transition metal sulfide (TMS) with a spinel structure, i.e., MnIn2S4 (MIS), using a two-step hydrothermal and sintering process. In the context of lithium-ion battery (LIB) applications, ternary TMSs are being considered as interesting options for anode materials. This consideration arises from their notable attributes, including high theoretical capacity, excellent cycle stability, and cost-effectiveness. However, dramatic volume changes result in the electrochemical performance being severely limited, so we introduced single-walled carbon nanotubes (SWCNTs) and prepared an MIS/SWCNT composite to enhance the structural stability and electronic conductivity. The synthesized MIS/SWCNT composite exhibits better cycle performance than bare MIS. Undergoing 100 cycles, MIS only yields a reversible capacity of 117 mAh/g at 0.1 A/g. However, the MIS/SWCNT composite exhibits a reversible capacity as high as 536 mAh/g after 100 cycles. Moreover, the MIS/SWCNT composite shows a better rate capability. The current density increases with cycling, and the SWCNT composite exhibits high reversible capacities of 232 and 102 mAh/g at 2 A/g and 5 A/g, respectively. Under the same conditions, pristine MIS can only deliver reversible capacities of 21 and 4 mAh/g. The results indicate that MIS/SWCNT composites are promising anode materials for LIBs.
Collapse
Affiliation(s)
- Pei-Jun Wu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Center for Circular Economy, Chung Yuan Christian University, 200 Chung Pei Road, Chungli District, Taoyuan City 320, Taiwan;
| | - Chia-Hung Huang
- Department of Electrical Engineering, National University of Tainan, No. 33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan;
- Metal Industries Research and Development Centre, Kaohsiung 701, Taiwan
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Wei-Ren Liu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Center for Circular Economy, Chung Yuan Christian University, 200 Chung Pei Road, Chungli District, Taoyuan City 320, Taiwan;
| |
Collapse
|
4
|
Tao S, Momen R, Luo Z, Zhu Y, Xiao X, Cao Z, Xiong D, Deng W, Liu Y, Hou H, Zou G, Ji X. Trapping Lithium Selenides with Evolving Heterogeneous Interfaces for High-Power Lithium-Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207975. [PMID: 36631278 DOI: 10.1002/smll.202207975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2 Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2 Se. A heterostructure material (denoted as CoSe2 /SnSe) with the ability to evolve continuously (CoSe2 /SnSe→Co/Sn→Co/Li13 Sn5 ) is successfully designed by employing CoSnO3 -MOF as a precursor. Impressively, CoSe2 /SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g-1 after 1000 cycles at the high current density of 4 A g-1 . In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2 Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2 Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.
Collapse
Affiliation(s)
- Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Roya Momen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yirong Zhu
- College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, Hunan, 412007, P. R. China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Youcai Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
5
|
Feng M, Wang W, Hu Z, Fan C, Zhao X, Wang P, Li H, Yang L, Wang X, Liu Z. Engineering chemical-bonded Ti 3C 2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors. SCIENCE CHINA MATERIALS 2022; 66:944-954. [PMID: 36937247 PMCID: PMC10015531 DOI: 10.1007/s40843-022-2268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 06/18/2023]
Abstract
Lithium-ion capacitors (LICs) are promising energy storage devices because they feature the high energy density of lithium-ion batteries and the high power density of supercapacitors. However, the mismatch of electrochemical reaction kinetics between the anode and cathode in LICs makes exploring anode materials with fast ion diffusion and electron transfer channels an urgent task. Herein, the two-dimensional (2D) Ti3C2 MXene with controllable terminal groups was introduced into 1D carbon nanofibers to form a 3D conductive network by the electrospinning strategy. In such Ti3C2 MXene and carbon matrix composites (named KTi-400@CNFs), the 2D nanosheet structure endows Ti3C2 MXene with more active sites for Li+ ion storage, and the carbon framework is favorable to the conductivity of the composites. Impressively, Ti-O-C bonds are formed at the interface between Ti3C2 MXene and the carbon framework. Such chemical bonding in the composites builds a bridge for rapid electron transportation and quick ion diffusion in the longitudinal direction from layer to layer. As a result, the optimized KTi-400@CNFs composites maintain a good capacity of 235 mA h g-1 for 500 cycles at a current density of 5 A g-1. The LIC consisting of the KTi-400@CNFs//AC configuration achieves high energy density (114.3 W h kg-1) and high power density (12.8 kW kg-1). This paper provides guidance for designing 2D materials and the KTi-400@CNFs composites with such a unique structure and superior electrochemical performance have great potential in the next-generation energy storage fields. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s40843-022-2268-9 and is accessible for authorized users.
Collapse
Affiliation(s)
- Min Feng
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Wanli Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Zhaowei Hu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Cheng Fan
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Xiaoran Zhao
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Peng Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Huifang Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Lei Yang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xiaojun Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| |
Collapse
|
6
|
Anand S, Ahmad MW, Fatima A, Kumar A, Bharadwaj A, Yang DJ, Choudhury A. Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. NANOTECHNOLOGY 2021; 32:495403. [PMID: 34433156 DOI: 10.1088/1361-6528/ac20fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Nickel disulfide nanoparticles (NiS2NPs)-anchored carbon nanofibers (NiS2NPs@CNF) hybrid mats were fabricated via the sequential process of stabilization and carbonization of electrospun polyacrylonitrile-based fibers followed by hydrothermal growth of NiS2NPs on the porous surface of CNFs. The vertical growth of NiS2NPs on entire surfaces of porous CNFs appeared in the SEM images of hybrid mat. The hierarchical NiS2NPs@CNF core-shell hybrid nanofibers with 3D interconnected network architecture can endow continuous channels for easy and rapid ionic diffusion to access the electroactive NiS2NPs. The conductive and interconnected CNF core could facilitate electron transfer to the NiS2shell. Moreover, the porous CNF as a buffering matrix can resist volumetric deformation during the long-term charge-discharge process. The NiS2NPs@CNF electrode can yield high specific capacitance (916.3 F g-1at 0.5 A g-1) and reveal excellent cycling performances. The solid-state asymmetric supercapacitor (ASC) was fabricated with NiS2NPs@CNF mat as a binder-free positive electrode and activated carbon cloth as a negative electrode. As-assembled ASC not only produce high specific capacitance (364.8 F g-1at 0.5 A g-1) but also exhibit excellent cycling stability (∼92.8% after 5000 cycles). The ASC delivered a remarkably high energy density of 129.7 Wh kg-1at a power density of 610 W kg-1. These encouraging results could make this NiS2NPs@CNF hybrid mat a good choice of cathode material for the fabrication of flexible solid-state ASC for various flexible/wearable electronics.
Collapse
Affiliation(s)
- Surbhi Anand
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Md Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Anupam Kumar
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Arvind Bharadwaj
- Centre for Converging Technologies, University of Rajasthan, J.L.N. Marg, Jaipur 302004, India
| | - Duck-Joo Yang
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States of America
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| |
Collapse
|
7
|
Li FF, Gao JF, He ZH, Kong LB. Realizing high-performance and low-cost lithium-ion capacitor by regulating kinetic matching between ternary nickel cobalt phosphate microspheres anode with ultralong-life and super-rate performance and watermelon peel biomass-derived carbon cathode. J Colloid Interface Sci 2021; 598:283-301. [PMID: 33901853 DOI: 10.1016/j.jcis.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Lithium-ion capacitors (LICs) are emerging as one of the most advanced energy storage devices by combining the virtues of both supercapacitors (SCs) and lithium-ion batteries (LIBs). However, the kinetic and capacity mismatch between anode and cathode is the main obstacle to wide applications of LICs. Therefore, the effective strategy of constructing a high-performance LIC is to improve the rate and cycle performance of the anode and the specific capacity of the cathode. Herein, the nickel cobalt phosphate (NiCoP) microspheres anode is demonstrated with robust structural integrity, high electrical conductivity, and fast kinetic feature. Simultaneously, the watermelon-peel biomass-derived carbon (WPBC) cathode is demonstrated a sustainable synthesis strategy with high specific capacity. As expected, the NiCoP exhibits high specific capacities (567 mAh g-1 at 0.1 A g-1), superior rate performance (300 mAh g-1 at 1A g-1), and excellent cycle stability (58 mAh g-1 at 5 A g-1 after 15,000 cycles). The WPBC possesses a high specific surface area (SSA) of 3303.6 m2 g-1 and a high specific capacity of 226 mAh g-1 at 0.1 A g-1. Encouragingly, the NiCoP//WPBC-6 LIC device can deliver high energy density (ED) of 127.4 ± 3.3 and 67 ± 3.8Wh kg-1 at power density (PD) of 190 and 18240 W kg-1 (76.4% capacity retention after 7000 cycles), respectively.
Collapse
Affiliation(s)
- Feng-Feng Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jian-Fei Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zheng-Hua He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Zhu W, Cheng Y, Wang C, Pinna N, Lu X. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. NANOSCALE 2021; 13:9112-9146. [PMID: 34008677 DOI: 10.1039/d1nr01070k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) electrospun nanomaterials have attracted significant attention due to their unique structures and outstanding chemical and physical properties such as large specific surface area, distinct electronic and mass transport, and mechanical flexibility. Over the past years, the integration of metal sulfides with electrospun nanomaterials has emerged as an exciting research topic owing to the synergistic effects between the two components, leading to novel and interesting properties in energy, optics and catalysis research fields for example. In this review, we focus on the recent development of the preparation of electrospun nanomaterials integrated with functional metal sulfides with distinct nanostructures. These functional materials have been prepared via two efficient strategies, namely direct electrospinning and post-synthesis modification of electrospun nanomaterials. In this review, we systematically present the chemical and physical properties of the electrospun nanomaterials integrated with metal sulfides and their application in electronic and optoelectronic devices, sensing, catalysis, energy conversion and storage, thermal shielding, adsorption and separation, and biomedical technology. Additionally, challenges and further research opportunities in the preparation and application of these novel functional materials are also discussed.
Collapse
Affiliation(s)
- Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ya Cheng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
9
|
Yang YJ, Yao C, Chen S, Wang N, Yang P, Jiang C, Liu M, Cheng Y. A 3D flower-like CoNi2S4/carbon nanotube nanosheet arrays grown on Ni foam as a binder-free electrode for asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Naskar P, Kundu D, Maiti A, Chakraborty P, Biswas B, Banerjee A. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem 2021. [DOI: 10.1002/celc.202100029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
11
|
Sajjad M, Javed MS, Imran M, Mao Z. CuCo 2O 4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy. NEW J CHEM 2021. [DOI: 10.1039/d1nj04919d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meet practical application requirements, high specific energy and specific power and excellent cyclability are highly desired.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhiyu Mao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
12
|
Singh A, Ojha SK, Singh M, Ojha AK. Controlled synthesis of NiCo2S4@NiCo2O4 core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136349] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
A Highly Sensitive Amperometric Glutamate Oxidase Microbiosensor Based on a Reduced Graphene Oxide/Prussian Blue Nanocube/Gold Nanoparticle Composite Film-Modified Pt Electrode. SENSORS 2020; 20:s20102924. [PMID: 32455706 PMCID: PMC7284453 DOI: 10.3390/s20102924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
A simple method that relies only on an electrochemical workstation has been investigated to fabricate a highly sensitive glutamate microbiosensor for potential neuroscience applications. In this study, in order to develop the highly sensitive glutamate electrode, a 100 µm platinum wire was modified by the electrochemical deposition of gold nanoparticles, Prussian blue nanocubes, and reduced graphene oxide sheets, which increased the electroactive surface area; and the chitosan layer, which provided a suitable environment to bond the glutamate oxidase. The optimization of the fabrication procedure and analytical conditions is described. The modified electrode was characterized using field emission scanning electron microscopy, impedance spectroscopy, and cyclic voltammetry. The results exhibited its excellent sensitivity for glutamate detection (LOD = 41.33 nM), adequate linearity (50 nM-40 µM), ascendant reproducibility (RSD = 4.44%), and prolonged stability (more than 30 repetitive potential sweeps, two-week lifespan). Because of the important role of glutamate in neurotransmission and brain function, this small-dimension, high-sensitivity glutamate electrode is a promising tool in neuroscience research.
Collapse
|
14
|
Kim W, Lee JS, Jang J. Aptamer-Functionalized Three-Dimensional Carbon Nanowebs for Ultrasensitive and Free-Standing PDGF Biosensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20882-20890. [PMID: 32315526 DOI: 10.1021/acsami.0c03709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research on flexible biosensors is mostly focused on their use in obtaining information on physical signals (such as temperature, heart rate, pH, and intraocular pressure). Consequently, there are hardly any studies on using flexible electronics for detecting biomolecules and biomarkers that cause diseases. In this study, we propose a flexible, three-dimensional carbon nanoweb (3DCNW)-based aptamer sensor to detect the platelet-induced growth factor (PDGF), which is an oncogenic biomarker. As a template for the 3D structure, poly(acrylonitrile) (PAN) nanowebs were synthesized using a facile electrospinning process. The PAN nanowebs were then subjected to chemical vapor deposition with copper powder. This was followed by Cu etching to generate carbon protrusions on the web surface. As an active site, PDGF-B binding aptamer was introduced on the 3DCNW surface to form biosensor electrodes. The 3DCNW-based aptasensor exhibited excellent sensitivity (down to 1.78 fM), with high selectivity, reversibility, and stability to PDGF-BB.
Collapse
Affiliation(s)
- Wooyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
15
|
Wang YK, Liu MC, Cao J, Zhang HJ, Kong LB, Trudgeon DP, Li X, Walsh FC. 3D Hierarchically Structured CoS Nanosheets: Li + Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3709-3718. [PMID: 31860261 DOI: 10.1021/acsami.9b10990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium-ion capacitors possess excellent power and energy densities, and they can combine both of those advantages from supercapacitors and lithium-ion batteries, leading to novel generation hybrid devices for storing energy. This study synthesized one three-dimensional (3D) hierarchical structure, self-assembled from CoS nanosheets, according to a simple and efficient manner, and can be used as an anode for lithium ion capacitors. This CoS anode, based on a conversion-type Li+ storage mechanism dominated by diffusion control, showed a large reversible capacity, together with excellent stability for cycling. The CoS shows a discharge capacity ≈434 mA h/g at 0.1 A/g. The hybrid lithium-ion capacitor, which had the CoS anode as well as the biochar cathode, exhibits excellent electrochemical performance with ultrahigh energy and power densities of 125.2 Wh/kg and 6400 W/kg, respectively, and an extended cycling life of 81.75% retention after 40 000 cycles. The CoS with self-assembled 3D hierarchical structure in combination with a carbon cathode offers a versatile device for future applications in energy storage.
Collapse
Affiliation(s)
- Yun-Kai Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals , Lanzhou University of Technology , Lanzhou 730050 , China
| | - Mao-Cheng Liu
- School of Materials Science and Engineering , Lanzhou University of Technology , Lanzhou 730050 , China
| | - Jianyun Cao
- School of Materials , University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| | - Hu-Jun Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals , Lanzhou University of Technology , Lanzhou 730050 , China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals , Lanzhou University of Technology , Lanzhou 730050 , China
- School of Materials Science and Engineering , Lanzhou University of Technology , Lanzhou 730050 , China
| | - David P Trudgeon
- Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences , University of Exeter , Penryn Campus , Cornwall TR10 9FE , United Kingdom
| | - Xiaohong Li
- Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences , University of Exeter , Penryn Campus , Cornwall TR10 9FE , United Kingdom
| | - Frank C Walsh
- Electrochemical Engineering Laboratory, National Centre for Advanced Tribology & Materials Engineering Research Group , University of Southampton , Highfield, Southampton , SO17 1BJ , United Kingdom
| |
Collapse
|
16
|
Shinde SK, Ramesh S, Bathula C, Ghodake GS, Kim DY, Jagadale AD, Kadam AA, Waghmode DP, Sreekanth TVM, Kim HS, Nagajyothi PC, Yadav HM. Novel approach to synthesize NiCo 2S 4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co. Sci Rep 2019; 9:13717. [PMID: 31548661 PMCID: PMC6757066 DOI: 10.1038/s41598-019-50165-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we developed a new approach to synthesize NiCo2S4 thin films for supercapacitor application using the successive ionic layer adsorption and reaction (SILAR) method on Ni mesh with different molar ratios of Ni and Co precursors. The five different NiCo2S4 electrodes affect the electrochemical performance of the supercapacitor. The NiCo2S4 thin films demonstrate superior supercapacitance performance with a significantly higher specific capacitance of 1427 F g-1 at a scan rate of 20 mV s-1. These results indicate that ternary NiCo2S4 thin films are more effective electrodes compared to binary metal oxides and metal sulfides.
Collapse
Affiliation(s)
- S K Shinde
- Department of Biological and Environmental Science, Dongguk University-Ilsan, Biomedical Campus, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, 04620, South Korea
| | - C Bathula
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - G S Ghodake
- Department of Biological and Environmental Science, Dongguk University-Ilsan, Biomedical Campus, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - D-Y Kim
- Department of Biological and Environmental Science, Dongguk University-Ilsan, Biomedical Campus, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - A D Jagadale
- Center for Energy Storage and Conversion, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - A A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Biomedi Campus, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - D P Waghmode
- Department of Chemistry, Sadguru Gadage Maharaj College, Karad, 415124, India
| | - T V M Sreekanth
- College of Mechanical Engineering, Yeungnam University, Gyeongsan, 48135, South Korea
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, 04620, South Korea
| | - P C Nagajyothi
- College of Mechanical Engineering, Yeungnam University, Gyeongsan, 48135, South Korea.
| | - H M Yadav
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea.
| |
Collapse
|
17
|
Zhuang B, Wu Z, Chu W, Gao Y, Cao Z, Bold T, Yang N. High‐Performance Lithium‐ion Supercapatteries Constructed Using Li
3
V
2
(PO
4
)
3
/C Mesoporous Nanosheets. ChemistrySelect 2019. [DOI: 10.1002/slct.201902966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Biying Zhuang
- School of Chemical EngineeringInner Mongolia University of Technology No. 49 Aimin Street, Xincheng District Hohhot 010051 P. R. China
| | - Zhaojun Wu
- School of Chemical EngineeringInner Mongolia University of Technology No. 49 Aimin Street, Xincheng District Hohhot 010051 P. R. China
| | - Wenjing Chu
- School of Chemical EngineeringInner Mongolia University of Technology No. 49 Aimin Street, Xincheng District Hohhot 010051 P. R. China
| | - Yanfang Gao
- School of Chemical EngineeringInner Mongolia University of Technology No. 49 Aimin Street, Xincheng District Hohhot 010051 P. R. China
| | - Zhenzhu Cao
- School of Chemical EngineeringInner Mongolia University of Technology No. 49 Aimin Street, Xincheng District Hohhot 010051 P. R. China
| | - Tungalagtamir Bold
- Mongolian University of Science and TechnologySukhbaatar District Ulaanbaatar City 14191 Mongolia
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen Siegen 57076 Germany
| |
Collapse
|
18
|
Zhang HJ, Wang YK, Kong LB. A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe 2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors. NANOSCALE 2019; 11:7263-7276. [PMID: 30932121 DOI: 10.1039/c9nr00164f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
As energy storage devices, lithium-ion hybrid capacitors (LIHCs) are currently favored by researchers, because they combine the high energy density of lithium-ion batteries and the high power density as well as the long cycle life of electric double-layer capacitors. However, the reason that LIHCs are problematic for researchers and cannot be applied practically is the slow dynamic behavior of the battery type anode that leads to low magnification and cycle performance of the anode, furthermore, causing a dynamic imbalance between the Faraday embedded electrode and the capacitive electrode. Hence, it is imperative to find an anode material that can quickly intercalate/de-intercalate lithium. In this study, a novel anode material, MoSe2 nanoflowers, for LIHCs was incorporated through a facile solvothermal technique. The MoSe2 nanoflowers with a small volume change after Li+ insertion, conducive to a rapid kinetic layered heterostructure, result in extraordinary electrochemical performance. The prepared MoSe2 nanoflowers exhibit very good invertible capacity (641.4 mA h g-1 at 0.1 A g-1 after 200 cycles), superior velocity performance (380.3 mA h g-1 at 5 A g-1) and long-term cycling stability (214.6 mA h g-1 even after 1000 cycles at 1 A g-1) as anode materials for LIHCs. Benefiting from the reasonable nanometer size effect, locally fine charge transfers and low energy diffusion barriers, MoSe2 nanoflowers possess high rate pseudocapacitive behavior. In addition, the assembled MoSe2//AC (AC, activated carbon) LIHCs deliver a high energy density (78.75-39.1 W h kg-1) and high-power characteristic (150-3600 W kg-1). Besides, after 5000 cycles, the capacity retention rate is 70.28% under a broad potential window (0.5-3.5 V). This LIHC based on a transition metal selenide as an anode shows great potential for application in the fields of new energy electric vehicles and smart electronic products.
Collapse
Affiliation(s)
- Hu-Jun Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China.
| | | | | |
Collapse
|
19
|
Design and synthesis of sandwich-like CoNi2S4@C@NiCo-LDH microspheres for supercapacitors. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 2019; 48:4178-4280. [DOI: 10.1039/c8cs00664d] [Citation(s) in RCA: 540] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review describes an in-depth overview and knowledge on the variety of synthetic strategies for forming metal sulfides and their potential use to achieve effective hydrogen generation and beyond.
Collapse
Affiliation(s)
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Libo Deng
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Chris Bowen
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Yan Zhang
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Sanming Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Zhiqun Lin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Feng Peng
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
21
|
Zhuang B, Guo Z, Chu W, Cao Z, Bold T, Gao Y. Mesoporous carbon film inlaid with Li3V2(PO4)3 nanoclusters through delaying sol-gel method for high performance lithium-ion hybrid supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wang YK, Zhang WB, Zhao Y, Li K, Kong LB. Coprecipitation Reaction System Synthesis and Lithium-Ion Capacitor Energy Storage Application of the Porous Structural Bimetallic Sulfide CoMoS 4 Nanoparticles. ACS OMEGA 2018; 3:8803-8812. [PMID: 31459013 PMCID: PMC6644895 DOI: 10.1021/acsomega.8b01408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Lithium-ion capacitors (LICs) are noticed as a new-type of energy storage device with both capacitive mechanism and battery mechanism. The LICs own outstanding power density and energy density. In our work, an LIC was constructed by using a simple method to prepare a bimetallic sulfide of CoMoS4 nanoparticles as the anode and a self-made biochar [fructus cannabis's shells (FCS)] with excellent specific surface area as the cathode. The CoMoS4//FCS LIC demonstrated that the range of energy density is from 10 to 41.9 W h/kg and the range of power density is from 75 to 3000 W/kg in the meantime, and it also demonstrated a remarkable cycling performance with the capacitance retention of 95% after 10 000 cycles of charging-discharging at 1 A/g. The designed CoMoS4//FCS LIC device exhibits a superior electrochemical performance because of the CoMoS4 loose porous structure leading to excellent dynamic performance, which is conducive to the diffusion of electrolyte and lithium ion transport, and good electric double layer performance of biochar with large specific surface area could be achieved. Therefore, this bimetallic sulfide is a promising active material for LICs, which could be applied to electric vehicles in the future.
Collapse
Affiliation(s)
- Yun-Kai Wang
- State
Key Laboratory of Advanced Processing and Recycling of Non-Ferrous
Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wei-Bin Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Non-Ferrous
Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yue Zhao
- State
Key Laboratory of Advanced Processing and Recycling of Non-Ferrous
Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Kai Li
- State
Key Laboratory of Advanced Processing and Recycling of Non-Ferrous
Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ling-Bin Kong
- State
Key Laboratory of Advanced Processing and Recycling of Non-Ferrous
Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- E-mail: . Phone: +86 931 2976579. Fax: +86 931 2976578 (L.-B.K.)
| |
Collapse
|