1
|
Correia LC, Ferreira JV, de Lima HB, Silva GM, da Silva CHTP, de Molfetta FA, Hage-Melim LIS. Pharmacophore-based virtual screening from phytocannabinoids as antagonist r-CB1. J Mol Model 2022; 28:258. [PMID: 35978141 DOI: 10.1007/s00894-022-05219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals. Cannabis sativa is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes. The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety. In order to find new molecules from C. sativa phytocannabinoids, with the potential to interact peripherally with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking. The results obtained from the ZINC12 database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular dynamics (MD) studies disclose that both complexes were stable by analyzing the RMSD (root mean square deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity.
Collapse
Affiliation(s)
- Lenir C Correia
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Jaderson V Ferreira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Henrique B de Lima
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Guilherme M Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio A de Molfetta
- Laboratório de Modelagem Molecular, Federal University of Pará, Belém-PA, Brazil
| | - Lorane I S Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil.
| |
Collapse
|
2
|
You Y, Bai S, Ma Y, Liu C, Wang L. A Nanopipette Supported Oil/Water Interface Sensor for the Kinetics Analysis and Determination of Phenothiazine Derivatives. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010276. [PMID: 35011508 PMCID: PMC8746661 DOI: 10.3390/molecules27010276] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.
Collapse
|
4
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
5
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
6
|
Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food Chem Toxicol 2018; 121:173-193. [DOI: 10.1016/j.fct.2018.08.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
|
7
|
|
8
|
Jalaja R, Leela SG, Valmiki PK, Salfeena CTF, Ashitha KT, Krishna Rao VRD, Nair MS, Gopalan RK, Somappa SB. Discovery of Natural Product Derived Labdane Appended Triazoles as Potent Pancreatic Lipase Inhibitors. ACS Med Chem Lett 2018; 9:662-666. [PMID: 30034597 DOI: 10.1021/acsmedchemlett.8b00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity contributes to the genesis of many metabolic disorders including dyslipidemia, coronary heart disease (CHD), nonalcoholic fatty liver, type 2 diabetes, etc. Pancreatic lipase plays a vital role in food fat digestion and absorption. Therefore, to control obesity, inhibition of pancreatic lipase is the active therapy. Thus, novel natural product derived labdane appended triazoles with pancreatic lipase inhibition potential were designed and synthesized. Among these hybrids, 6b and 6f exhibited excellent inhibitory activity (IC50 0.75 ± 0.02 μM and 0.77 ± 0.01 μM), slightly better than that of the positive control Orlistat (IC50 0.8 ± 0.03 μM). Compounds 6c, 6e, and 6g-j inhibited the PL comparable to that of positive control. Interestingly none of the compounds showed cytotoxicity (Hep G2) in the concentration range from 0.5 to 100 μM. Overall results reveal the potential of labdane appended triazoles as antiobesity agents.
Collapse
Affiliation(s)
- Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Shyni G. Leela
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Praveen K. Valmiki
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Chettiyan Thodi F. Salfeena
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Kizhakkan T. Ashitha
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Venkata Rao D. Krishna Rao
- CSIR - Central Institute of Medicinal and Aromatic Plants, Research Centre, Bangalore - 560065, Karnataka, India
| | - Mangalam S. Nair
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
| | - Raghu K. Gopalan
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| | - Sasidhar B. Somappa
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram - 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram - 695 019, Kerala, India
| |
Collapse
|
9
|
Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Synthesis of Diverse Phenothiazines by Direct Thioamination of Arynes with S-(o-Bromoaryl)-S-methylsulfilimines and Subsequent Intramolecular Buchwald–Hartwig Amination. CHEM LETT 2018. [DOI: 10.1246/cl.180304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|