1
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Shi B, Zhu C, Wang X, Qi Y, Hu J, Liu X, Wang J, Hao Z, Zhao Z, Zhang X. microRNA Temporal-Specific Expression Profiles Reveal longissimus dorsi Muscle Development in Tianzhu White Yak. Int J Mol Sci 2024; 25:10151. [PMID: 39337635 PMCID: PMC11432130 DOI: 10.3390/ijms251810151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown. In this study, we performed RNA sequencing (RNA-Seq) on Tianzhu white yak longissimus dorsi muscle tissue obtained from calves (6 months of age, M6, n = 6) and young (30 months of age, M30, n = 6) and adult yak (54 months of age, M54, n = 6) to identify which miRNAs are differentially expressed and to investigate their temporal expression profiles, establishing a regulatory network of miRNAs associated with the development of muscle and adipose. The results showed that 1191 miRNAs and 22061 mRNAs were screened across the three stages, of which the numbers of differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) were 225 and 450, respectively. The expression levels of the nine DE miRNAs were confirmed using a reverse transcription quantitative PCR (RT-qPCR) assay, and the trend of the assay results was generally consistent with the trend of the transcriptome profiles. Based on the expression trend, DE miRNAs were categorized into eight different expression patterns. Regarding the expression of DE miRNAs in sub-trends Profile 1 and Profile 2 (p < 0.05), the gene expression patterns were upregulated (87 DE miRNAs). Gene ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses showed that the identified DE miRNAs and DE mRNAs were enriched in pathway entries associated with muscle and intramuscular fat (IMF) growth and development. On this basis, we constructed a DE miRNA-mRNA interaction network. We found that some DE mRNAs of interest overlapped with miRNA target genes, such as ACSL3, FOXO3, FBXO30, FGFBP4, TSKU, MYH10 (muscle development), ACOX1, FADS2, EIF4E2, SCD1, EL0VL5, and ACACB (intramuscular fat deposition). These results provide a valuable resource for further studies on the molecular mechanisms of muscle tissue development in yak and also lay a foundation for investigating the interactions between genes and miRNAs.
Collapse
Affiliation(s)
- Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zhao X, Qiu Y, Meng F, Zhuang Z, Ruan D, Wu J, Ma F, Zheng E, Cai G, Yang J, Yang M, Wu Z. Genome-wide association studies for loin muscle area, loin muscle depth and backfat thickness in DLY pigs. Anim Genet 2024; 55:134-139. [PMID: 38098441 DOI: 10.1111/age.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/04/2024]
Abstract
This study aimed at identifying genes associated with loin muscle area (LMA), loin muscle depth (LMD) and backfat thickness (BFT). We performed single-trait and multi-trait genome-wide association studies (GWASs) after genotyping 685 Duroc × (Landrace × Yorkshire) (DLY) pigs using the Geneseek Porcine 50K SNP chip. In the single-trait GWASs, we identified two, eight and two significant SNPs associated with LMA, LMD and BFT, respectively, and searched genes within the 1 Mb region near the significant SNPs with relevant functions as candidate genes. Consequently, we identified one (DOCK5), three (PID1, PITX2, ELOVL6) and three (CCR1, PARP14, CASR) promising candidate genes for LMA, LMD and BFT, respectively. Moreover, the multi-trait GWAS identified four significant SNPs associated with the three traits. In conclusion, the GWAS analysis of LMA, LMD and BFT in a DLY pig population identified several associated SNPs and candidate genes, further deepening our understanding of the genetic basis of these traits, and they may be useful for marker-assisted selection to improve the three traits in DLY pigs.
Collapse
Affiliation(s)
- Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fanming Meng
- State Key Laboratory of Livestock and Poultry Breeding/Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fucai Ma
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ming Yang
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| |
Collapse
|
4
|
Fei X, Jin M, Yuan Z, Li T, Lu Z, Wang H, Lu J, Quan K, Yang J, He M, Wang T, Wang Y, Wei C. MiRNA-Seq reveals key MicroRNAs involved in fat metabolism of sheep liver. Front Genet 2023; 14:985764. [PMID: 36968587 PMCID: PMC10035661 DOI: 10.3389/fgene.2023.985764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is a genetic difference between Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism. Previous studies have mainly focused directly on sheep tail fat, which is not the main organ of fat metabolism. The function of miRNAs in sheep liver fat metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the differences in fat metabolism of sheep. In our study, Hu sheep was in a control group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid were used to predict the target genes of DE miRNAs, obtaining 3,404 target genes. A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-regulated and 295 target genes of down-regulated miRNAs, respectively. oar-miR-432 was one of the most up-regulated miRNAs between Hu sheep and Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432. Furthermore, functional validation using the dual-luciferase reporter assay indicated that the up-regulated miRNA; oar-miR-432 potentially targeted sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into preadipocytes resulted in inhibited expression of SIRT1. This is the first time reported that the expression of SIRT1 gene was regulated by oar-miR-432 in fat metabolism of sheep liver. These results could provide a meaningful theoretical basis for studying the fat metabolism of sheep.
Collapse
Affiliation(s)
- Xiaojuan Fei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meilin Jin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huihua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing, China
| | - Kai Quan
- College of Animals Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, TianShui Normal University, Tianshui, China
| | - Yuqin Wang
- College of Animals Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| | - Caihong Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| |
Collapse
|
5
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
6
|
miR-27a Regulates Sheep Adipocyte Differentiation by Targeting CPT1B Gene. Animals (Basel) 2021; 12:ani12010028. [PMID: 35011132 PMCID: PMC8749678 DOI: 10.3390/ani12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The content of intramuscular fat (IMF) is the main determinant of the nutritional and economic value of sheep meat. Therefore, lipid synthesis in sheep longissimus lumborum (LL) has become an important research focus. MicroRNA-27a (miR-27a) has been shown to play a crucial role in the proliferation and differentiation of adipocyte progenitor cells. In this study, we revealed that miR-27a significantly inhibited the formation of lipid droplets by targeting CPT1B to inhibit genes involved in lipid synthesis including PPAR γ, SCD, LPL, and FABP4. Here, we constructed a miR-27a-CPT1B regulatory network map, which revealed the interaction between miR-27a and CPT1B in lipid synthesis in ovine preadipocytes. Abstract MiRNAs are vital regulators and play a major role in cell differentiation, biological development, and disease occurrence. In recent years, many studies have found that miRNAs are involved in the proliferation and differentiation of adipocytes. The objective of this study was to evaluate the effect of miR-27a and its target gene CPT1B on ovine preadipocytes differentiation in Small-tailed Han sheep (Ovis aries). Down-regulation of miR-27a significantly promoted the production of lipid droplets, while overexpression of miR-27a led to a reduction in lipid droplet production. In addition, inhibition of miR-27a led to a significant increase in the expression of genes involved in lipid synthesis, including PPAR γ, SCD, LPL, and FABP4. Target Scan software predicted that CPT1B is a new potential target gene of miR-27a. Further experiments revealed that CPT1B gene expression and protein levels were negatively correlated with miR-27a expression. Overexpression of miR-27a led to a significant decrease in CPT1B mRNA levels and inhibited the accumulation of lipid droplets and vice versa. Moreover, overexpression of CPT1B promoted the synthesis of lipid droplets in ovine preadipocytes. Furthermore, luciferase reporter assays confirmed CPT1B to be a miR-27a direct target gene. This study confirmed that miR-27a increases the expression of genes related to lipid synthesis in ovine preadipocytes by targeting CPT1B, thereby promoting the synthesis of lipid droplets. The results of this study can be used to be exploited in devising novel approaches for improving the IMF content of sheep.
Collapse
|
7
|
Wu H, Pula T, Tews D, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Roos J. microRNA-27a-3p but Not -5p Is a Crucial Mediator of Human Adipogenesis. Cells 2021; 10:cells10113205. [PMID: 34831427 PMCID: PMC8625276 DOI: 10.3390/cells10113205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology. Both strands of miR-27a, miR-27a-3p and -5p, were downregulated during the adipogenic differentiation of Simpson–Golabi–Behmel syndrome (SGBS) cells, human multipotent adipose-derived stem cells (hMADS), and human primary adipose-derived stromal cells (hASCs). Using miRNA-mimic transfection, we observed that miR-27a-3p is a crucial regulator of adipogenesis, while miR-27a-5p did not alter the differentiation capacity in SGBS cells. In silico screening predicted lipoprotein lipase (LPL) and peroxisome proliferator activated receptor γ (PPARγ) as potential targets of miR-27a-3p. The downregulation of both genes was verified in vitro, and the interaction of miR-27-3p with target sites in the 3′ UTRs of both genes was confirmed via a miRNA-reporter-gene assay. Here, the knockdown of LPL did not interfere with adipogenic differentiation, while PPARγ knockdown decreased adipogenesis significantly, suggesting that miR-27-3p exerts its inhibitory effect on adipogenesis by repressing PPARγ. Taken together, we identified and validated a crucial role for miR-27a-3p in human adipogenesis played by targeting the essential adipogenic transcription factor PPARγ. Though we confirmed LPL as an additional target of miR-27a-3p, it does not appear to be involved in regulating human adipogenesis. Thereby, our findings call the conclusions drawn from previous studies, which identified LPL as a crucial regulator for murine and human adipogenesis, into question.
Collapse
Affiliation(s)
- Hang Wu
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Taner Pula
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06103 Nice, France;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
- Correspondence: ; Tel.: +49-731-500-57255
| |
Collapse
|
8
|
Goto S, Ichihara G, Katsumata Y, Ko S, Anzai A, Shirakawa K, Endo J, Kataoka M, Moriyama H, Hiraide T, Kitakata H, Kobayashi T, Fukuda K, Sano M. Time-Series Transcriptome Analysis Reveals the miR-27a-5p-Ppm1l Axis as a New Pathway Regulating Macrophage Alternative Polarization After Myocardial Infarction. Circ J 2021; 85:929-938. [PMID: 33658455 DOI: 10.1253/circj.cj-20-0783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Timely differentiation of monocytes into M2-like macrophages is important in the cardiac healing process after myocardial infarction (MI), but molecular mechanisms governing M2-like macrophage differentiation at the transcriptional level after MI have not been fully understood. METHODS AND RESULTS A time-series microarray analysis of mRNAs and microRNAs in macrophages isolated from the infarcted myocardium was performed to identify the microRNAs involved in regulating the process of differentiation to M2-like macrophages. Correlation analysis revealed 7 microRNAs showing negative correlations with the progression of polarity changes towards M2-like subsets. Next, correlation coefficients for the changes in expression of mRNAs and miRNAs over time were calculated for all combinations. As a result, miR-27a-5p was extracted as a possible regulator of the largest number of genes in the pathway for the M2-like polarization. By selecting mouse mRNAs and human mRNAs possessing target sequences of miR-27a-5p and showing expression patterns inversely correlated with that of miR-27a-5p, 8 potential targets of miR-27a-5p were identified, includingPpm1l. Using the mouse bone marrow-derived macrophages undergoing differentiation into M2-like subsets by interleukin 4 stimulation, we confirmed that miR-27a-5p suppressed M2-related genes by negatively regulatingPpm1lexpression. CONCLUSIONS Ppm1land miR-27a-5p may be the key molecules regulating M2-like polarization, with miR-27a-5p inhibiting the M2-like polarization through downregulation ofPpm1lexpression.
Collapse
Affiliation(s)
- Shinichi Goto
- Department of Cardiology, Keio University School of Medicine
| | - Genki Ichihara
- Department of Cardiology, Keio University School of Medicine
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine
- Institute for Integrated Sports Medicine, Keio University School of Medicine
| | - Seien Ko
- Department of Cardiology, Keio University School of Medicine
| | - Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine
| | | | - Jin Endo
- Department of Cardiology, Keio University School of Medicine
| | | | | | | | - Hiroki Kitakata
- Department of Cardiology, Keio University School of Medicine
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine
| |
Collapse
|
9
|
Wang W, Li X, Ding N, Teng J, Zhang S, Zhang Q, Tang H. miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4. BMC Genet 2020; 21:33. [PMID: 32171241 PMCID: PMC7073017 DOI: 10.1186/s12863-020-0836-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previously, we showed that miR-34a was less abundant in liver tissue from pigs with higher backfat thickness, compared to pigs with lower backfat thickness. The purpose of this present study was to explore the role of miR-34a in adipogenesis. RESULT Bioinformatics analysis identified Acyl-CoA synthetase long chain family member 4 (ACSL4) as a putative target of miR-34a. Using a luciferase reporter assay, we verified that miR-34a binds the ACSL4 mRNA at the 3'UTR. To examine the role of the miR-34a-ACSL4 interaction in IMF deposition in the pig, mRNA and protein expression of the ACSL4 gene was measured in primary intramuscular preadipocytes transfected with miR-34a mimic and inhibitor. Our results showed that ACSL4 is expressed throughout the entire differentiation process in pig preadipocytes, similar to the lipogenesis-associated genes PPARγ and aP2. Transfection with miR-34a mimic reduced lipid droplet formation during adipogenesis, while miR-34a inhibitor increased lipid droplet accumulation. Transfection with miR-34a mimic also reduced the mRNA and protein expression of ACSL4 and lipogenesis genes, including PPARγ, aP2, and SREBP-1C, but increased the expression of steatolysis genes such as ATGL and Sirt1. In contrast, the miR-34a inhibitor had the opposite effect on gene expression. Further, knockdown of ACSL4 decreased lipid droplet accumulation. CONCLUSIONS Our results support the hypothesis that miR-34a regulates intramuscular fat deposition in porcine adipocytes by targeting ACSL4.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Xiuxiu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Ning Ding
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Shen Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Tai’an City, 271018 Shandong Province China
| |
Collapse
|
10
|
Wang L, Zhang S, Zhang W, Cheng G, Khan R, Junjvlieke Z, Li S, Zan L. miR-424 Promotes Bovine Adipogenesis Through an Unconventional Post-Transcriptional Regulation of STK11. Front Genet 2020; 11:145. [PMID: 32194625 PMCID: PMC7064614 DOI: 10.3389/fgene.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Adipose tissue is the largest energy reservoir and secretory organ in the animal body, and is essential for maintaining normal physiological functions and metabolic balance. MicroRNAs regulate the process of adipogenic differentiation through post-transcriptional regulatory mechanisms. In the present study, miR-424 was upregulated during bovine adipocyte differentiation both in vivo and in vitro. The overexpression and interference of miR-424 exhibited the positive regulatory role in the differentiation of bovine adipocytes. Furthermore, miR-424 directly binds to the three prime untranslated region (3' UTR) of serine/threonine kinase 11 (STK11, also called LKB1), a master upstream gene in the AMP-activated protein kinase (AMPK) cascade, and up-regulates its expression. Functional studies showed that the knockdown of STK11 attenuated the pro-adipogenic effect of miR-424. Post-transcriptional regulation of STK11 by miR-424 was mediated potentially in an RNA binding protein (RBP) binding site-dependent manner. In conclusion, our study shows that miR-424 promotes bovine adipogenesis through an unconventional post-transcriptional regulation of STK11, which may serve as a potential target for the regulation of bovine adipogenesis and the improvement of livestock breeding efficiency.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Cai C, Min S, Yan B, Liu W, Yang X, Li L, Wang T, Jin A. MiR-27a promotes the autophagy and apoptosis of IL-1β treated-articular chondrocytes in osteoarthritis through PI3K/AKT/mTOR signaling. Aging (Albany NY) 2019; 11:6371-6384. [PMID: 31460867 PMCID: PMC6738432 DOI: 10.18632/aging.102194] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder, which involves articular cartilage degeneration as well as joint inflammatory reactions. The recent studies have identified microRNA (miRNA) as one of the epigenetic mechanisms for the regulation of gene expression. Here we aim to reveal the role of miRNA in the regulation of gene expression in articular chondrocytes and its significance in the OA pathogenesis. In the present study, miRNA profiling was performed using OA cartilage and normal healthy cartilage tissues. As compared to their levels in normal cells and tissues, miR-27a expression was found to be upregulated in OA cartilage and IL-1β-treated articular chondrocytes. TUNEL staining, as well as flow cytometry with Annexin V-FITC/PI double labeling indicated that miR-27a inhibition reduced the apoptosis of IL-1β-treated articular chondrocytes. Bioinformatics prediction and the dual-luciferase reporter assay indicated that miR-27a targeted the 3'-UTR of the PI3K gene to silence it. The PI3K mRNA level in OA cartilage and IL-1β-treated articular chondrocytes was also downregulated, comparing with normal cells and tissues. Transfection of chondrocytes transfected with the miR-27a inhibitor upregulated the PI3K expression. This study demonstrated miR-27a is a regulator of the PI3K-Akt-mTOR axis in human chondrocytes and could participate in OA pathogenesis.
Collapse
Affiliation(s)
- Chen Cai
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaoxiong Min
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Yan
- Department of Spine Surgery, The Third Affliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yang
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liuxun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Anmin Jin
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Wang Y, Tang K, Zhang W, Guo W, Wang Y, Zan L, Yang W. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS One 2019; 14:e0214144. [PMID: 31009469 PMCID: PMC6476475 DOI: 10.1371/journal.pone.0214144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367-54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenli Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
13
|
Li C, Qin F, Xue M, Lei Y, Hu F, Xu H, Sun G, Wang T, Guo M. miR-429 and miR-424-5p inhibit cell proliferation and Ca 2+ influx by downregulating CaSR in pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2018; 316:C111-C120. [PMID: 30462536 DOI: 10.1152/ajpcell.00219.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic free Ca2+ concentration is a key factor in pulmonary vasoconstriction and vascular remodeling of pulmonary artery smooth muscle cells (PASMCs). These processes contribute to pulmonary arterial hypertension and are influenced by expression of calcium-sensing receptor (CaSR). Although regulation of CaSR expression is precisely controlled, the contribution of microRNAs (miR) is incompletely understood. Here, we demonstrate that miR-429, miR-424-5p, miR-200b-3p, and miR-200c-3p regulate CaSR by targeting specific 3'-untranslated region, suggesting that these miRNAs function as CaSR inhibitors in PASMCs. Moreover, miR-429 and miR-424-5p inhibit proliferation of PASMCs by downregulating CaSR, resulting in reduced Ca2+ influx under both normoxia and hypoxia. These findings indicate miR-429 and miR-424-5p target CaSR and may function as Ca2+ influx suppressors in pulmonary arterial hypertension-associated diseases.
Collapse
Affiliation(s)
- Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| | - Fang Qin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| | - Mengmeng Xue
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| | - Yucong Lei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| | - Fen Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , People's Republic of China
| | - Hui Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , People's Republic of China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, Hubei , People's Republic of China
| |
Collapse
|
14
|
Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, Puerta-González A, Bermúdez-Santana CI, Gallego-Gómez JC. Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res 2018; 259:68-76. [PMID: 30367889 DOI: 10.1016/j.virusres.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022]
Abstract
The most life-threatening effect of the Dengue virus (DENV) infection is an acute destabilization of the microvascular endothelial cell (MEC) barrier leading to plasma leakage, hypovolemic shock and haemorrhage. However, the underlying cellular mechanisms responsible for the dysfunction of MECs are not well understood. To identify potential cellular processes altered during DENV infection of MECs, expression profiles of cytokines/growth factors and microRNAs were measured by Luminex assay and next generation sequencing, respectively. Synchronously DENV2-infected MECs increase the secretion of IL-6, IL-8, FGF-2, GM-CSF, G-CSF, TGF-α, GRO, RANTES, MCP-1 and MCP-3. Conditioned media of infected MECs increased the migration of non-infected MECs. Furthermore, six miRNAs deregulated at 24 hpi were predicted to regulate host genes involved in cell migration and vascular developmental processes such as angiogenesis. These in silico analyses provide insights that support that DENV promotes an acute migratory phenotype in MECs that contributes to the vascular destabilization observed in severe dengue cases.
Collapse
Affiliation(s)
- Diego Alejandro Álvarez-Díaz
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| | - Aimer Alonso Gutiérrez-Díaz
- RNómica Teórica y Computacional - Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | - Elizabeth Orozco-García
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| | - Andrés Puerta-González
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia; RNómica Teórica y Computacional - Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | | | - Juan Carlos Gallego-Gómez
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| |
Collapse
|