1
|
Abd Elkarim AS, Mohamed SH, Ali NA, Elsayed GH, Aly MS, Elgamal AM, Elsayed WM, El-Newary SA. The Phytochemical Profile of the Petroleum Ether Extract of Purslane Leaves and Its Anticancer Effect on 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 None (NNK)-Induced Lung Cancer in Rats. Int J Mol Sci 2024; 25:13024. [PMID: 39684736 DOI: 10.3390/ijms252313024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Lung cancer is a prevalent and very aggressive sickness that will likely claim 1.8 million lives by 2022, with an estimated 2.2 million additional cases expected worldwide. The goal of the current investigation was to determine whether petroleum ether extract of purslane leaf could be used to treat lung cancer induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 none (NNK) in rats. In the in vitro extract recorded, promising anticancer effects in A540 cell lines with IC50 were close to the reference drug, doxorubicin (14.3 and 13.8 μg/mL, respectively). A dose of 500 mg/kg/day orally for 20 weeks exhibited recovery effects on NNK-induced lung cancer with a good safety margin, where Intercellular Adhesion Molecule-1 (ICAM-1), the lung cancer biomarker, was significantly reduced by about 18.75% compared to cancer control. Purslane exhibited many anticancer mechanisms, including (i) anti-proliferation as a significant reduction in Ki67 level (20.42%), (ii) anti-angiogenesis as evident by a considerable decrease in Matrix metalloproteinase-9 (MMP-9) expression (79%), (iii) anti-inflammation as a remarked decline in Insulin-like growth factor 1 (IGF-1) expression (62%), (iv) pro-apoptotic effect as a significant activation in Forkhead box protein O1 (FOXO1) expression (262%), and (v) anti-oxidation as remarkable activation on antioxidant biomarkers either non-enzymatic or enzymatic concurrent with considerable depletion on oxidative stress biomarker, in comparison to cancer control. The histopathological examination revealed that Purslane extract showed markedly improved tissue structure and reduced pathological changes across all examined organs caused by NNK. The anti-lung cancer effect exhibited by the extract may be linked to the active ingredients of the extract that were characterized by LC-MS, such as α-linolenic acid, linoleic acid, palmitic acid, β-sitosterol, and alkaloids (berberine and magnoflorine).
Collapse
Affiliation(s)
- Asmaa S Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Safaa H Mohamed
- Hormones Department, National Research Centre, 33 El-Bouhoths St., Dokki, Giza 12622, Egypt
| | - Naglaa A Ali
- Hormones Department, National Research Centre, 33 El-Bouhoths St., Dokki, Giza 12622, Egypt
| | - Ghada H Elsayed
- Hormones Department, National Research Centre, 33 El-Bouhoths St., Dokki, Giza 12622, Egypt
- Stem Cells Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed S Aly
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Wael M Elsayed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Samah A El-Newary
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Verma R, Dash S, Ankita, Thakur S, Kumar R, Singh G, Kaur C. Genus Bauhinia (Fabaceae): A review from phytochemistry to pharmacology- Exploring traditional uses and toxicological insights across Asia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156246. [PMID: 39571414 DOI: 10.1016/j.phymed.2024.156246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The genus Bauhinia and its species has been known since ages by tribal people and medicinal practitioners in tropical and subtropical regions for the treatment of diabetes, diarrhea, cough, fever, stomach disorders, skin diseases, and other diseases. STUDY DESIGN Our aim was to collect and explore the literature available on the traditional applications and medicinal potential of genus Bauhinia across Asia, so that this review can be used as standard to analyze the immense potential of this genus and can be explored further for clinical use. METHODS The information was rigorously gathered from Google Scholar, Pub Med, Elsevier, Wiley Online Search, Science Direct, and other literature sources. RESULTS As per the literature, this genus possesses antimicrobial, antioxidant, nephroprotective, anticancer, hepatoprotective, antidiabetic, anti-inflammatory, and antidepressant activities both in vitro and in vivo, due to the presence of flavonoids, steroidal saponins, bauhinioxepins, chromanones, and phenolic compounds. CONCLUSION In this review, we have detailed for the first time the categorized information about traditional uses, geographical distribution, morphological features, phytochemistry, pharmacological, and toxicological effects, and patents associated with Bauhinia species. However, more research is needed to explore the mechanisms of action, pharmacokinetics of the phytoconstituents, and clinical evaluation for their future use in treating various ailments.
Collapse
Affiliation(s)
- Rupali Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Shubham Dash
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Ankita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Shorya Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab.
| |
Collapse
|
3
|
Guan L, Xia Y, Song P, Zhao H, Zhang S, Su W, Li A, Li W. Novel bibenzyl compound 8Ae induces apoptosis and inhibits glycolysis by detaching hexokinase 2 from mitochondria in A549 cells. Bioorg Med Chem 2024; 114:117955. [PMID: 39427530 DOI: 10.1016/j.bmc.2024.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
In this paper, we investigated the anticancer effect and the mechanism of our newly synthesized bibenzyl 8Ae against human lung cancer A549 cells. Compound 8Ae could induce apoptosis by inhibiting the glycolysis in A549 cells. Hexokinase 2 (HK2), the first key enzyme in glycolysis process, was significantly down-regulated by 8Ae. Besides, compound 8Ae induced HK2 dissociated from mitochondria to cytosol, which could be induced by inhibiting the phosphorylation of Akt. In addition, 8Ae could induce mitochondrial-mediated apoptosis, and mitochondrial membrane potential (MMP) was decreased. After 8Ae treatment, the Bax/Bcl-2 ratio was increased and cytochrome c (Cyt c) was release from mitochondria to cytosol. Molecular docking indicated that 8Ae have an interaction with HK2 by extending into acitve pockets of the protein to form stable hydrogen bonds. Additionally, 8Ae had significantly improved pharmacokinetic properties through the prediction, comparison, and analysis of the ADMET properties of 8Ae and moscatilin (MST). Taken together, 8Ae might inhibit glycolysis by stimulating the shedding of HK2 from mitochondria and promoting mitochondria-regulated apoptosis to inhibit the proliferation of A549 cells. This article provides a research basis for bibenzyl compounds as new small molecule drugs for lung cancer.
Collapse
Affiliation(s)
- Li Guan
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Yanxin Xia
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Pengfei Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiru Zhao
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Shengjie Zhang
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Wanzhen Su
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Aiyun Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Weize Li
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
4
|
Zhao Q, Pan Y, Zhang D, Zhou X, Sun L, Xu Z, Zhang Y. The active ingredient β-sitosterol in Ganoderma regulates CHRM2-mediated aerobic glycolysis to induce apoptosis of lung adenocarcinoma. Genes Genet Syst 2024:24-00108. [PMID: 39537174 DOI: 10.1266/ggs.24-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND β-sitosterol is a natural plant steroidal compound with anti-cancer properties against various tumors. This work attempts to explore the inhibitory effect of β-sitosterol on the progression of lung adenocarcinoma (LUAD) and further analyze its targets. METHODS In this work, we applied network pharmacology to obtain the components and targets of Ganoderma spore powder. The biological functions of β-sitosterol and CHRM2 were studied using the homograft mouse model and a series of in vitro experiments including quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB), CCK-8, flow cytometry, immunohistochemistry (IHC), and immunofluorescence (IF) experiments. The regulatory influence of β-sitosterol on the glycolysis pathway was validated by detecting glucose consumption and lactate production, as well as extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). RESULTS In this project, we unearthed that CHRM2 was a protein that directly binds to β-sitosterol. In vitro, CHRM2 overexpression repressed the apoptosis rate and expression of apoptosis-related proteins and promoted glycolysis, while the addition of lonidamine attenuated the inhibitory effect conferred by CHRM2 overexpression on LUAD apoptosis. Furthermore, β-sitosterol hindered glycolysis as well as the growth of tumors in vitro and in vivo. CHRM2 overexpression reversed the effect of β-sitosterol on the biological behavior of LUAD cells. CONCLUSION Our project emphasized that CHRM2 is a direct target of β-sitosterol in LUAD cells. β-sitosterol can repress the glycolysis pathway, exerting an anti-tumor effect. These findings can provide new evidence for supporting the potential use of β-sitosterol as a therapeutic agent for LUAD.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Yuting Pan
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Danjia Zhang
- Department of Traditional Chinese Medicine, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Xiaolian Zhou
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Liangyun Sun
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Zihan Xu
- MPA, Cornell University, Brooks School
| | | |
Collapse
|
5
|
Das R, Chatterjee DR, Kapoor S, Vyas H, Shard A. Novel sulfonamides unveiled as potent anti-lung cancer agents via tumor pyruvate kinase M2 activation. RSC Med Chem 2024; 15:3070-3091. [PMID: 39309364 PMCID: PMC11411637 DOI: 10.1039/d4md00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/06/2024] [Indexed: 09/25/2024] Open
Abstract
This rational pursuit led to the identification of a novel sulfonamide derivative as a potent anti-lung cancer (LC) compound. Considering these results, we synthesized 38 novel sulfonamide derivatives with diverse skeletal structures. In vitro cytotoxicity assays revealed a potent and selective antiproliferative effect against A549 cells after evaluating a panel of cancer cell lines. Compound 9b has emerged as a potent activator of tumor pyruvate kinase M2 (PKM2), a protein known to play a critical role in LC. Apoptosis assays and cell cycle analysis demonstrated early apoptosis and G2 phase arrest. In silico studies demonstrated interactions between compound 9b and the activator binding site of PKM2. Surface plasmon resonance (SPR) experiments strongly indicated that 9b has a high affinity (K d of 1.378 nM) for PKM2. Furthermore, the increase in reactive oxygen species and decrease in lactate concentration suggested that compound 9b has significant anticancer effects. Notably, the increase in particle size following treatment with 9b suggested the tetramerization of PKM2. This work provides insights that might advance efforts to develop effective non-platinum anticancer agents.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Het Vyas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| |
Collapse
|
6
|
Ali NA, Elsayed GH, Mohamed SH, Abd Elkarim AS, Aly MS, Elgamal AM, Elsayed WM, El-Newary SA. Chia Seed ( Salvia hispanica) Attenuates Chemically Induced Lung Carcinomas in Rats through Suppression of Proliferation and Angiogenesis. Pharmaceuticals (Basel) 2024; 17:1129. [PMID: 39338293 PMCID: PMC11435337 DOI: 10.3390/ph17091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/30/2024] Open
Abstract
In 2022, 2.5 million cases of lung cancer were diagnosed, resulting in 1.8 million deaths. These statistics have motivated us to introduce a new natural product which is feasible in lung cancer therapies. This comprehensive study was performed to study the effects of chia seed extracts (70% ethanol and petroleum ether) on lung cancer in vitro and in vivo models. The invitro cytotoxicity activity of the chia extracts was studied in lung cancer cell lines (A549 cells). After 48 h, chia alcohol and ether extracts showed more inhibitory influence (IC50, 16.08, and 14.8 µg/mL, respectively) on A549 cells compared to Dox (IC50, 13.6 µg/mL). In vivo, administration of chia alcohol and ether extracts (500 mg/kg/day, orally for 20 weeks) recovered 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer, as a significant reduction in the lung cancer biomarkers, including the relative weight of the lung (20.0 and 13.33%), ICAM(31.73 and 15.66%), and c-MYC (80 and 96%) and MMP9(60 and 69%) expression genes, and improvement in these changes were observed by histopathological examinations of the lung tissues compared to the lung control. Chia seeds fought lung cancer via suppression of proliferation, angiogenesis, inflammation, and activation apoptosis. These activities may be attributed to the chemical composition of chia, which is identified by LC-Mass, such as caffeic acid, vanillic acid, kaempferol-3-O-glucuronide, and taxifolin. Finally, we can conclude that chia seeds have an anti-lung cancer effect with a good safety margin.
Collapse
Affiliation(s)
- Naglaa A. Ali
- Hormones Department, National Research Centre, El-Bouhoths St., Dokki, Giza 12622, Egypt; (N.A.A.); (G.H.E.); (S.H.M.)
| | - Ghada H. Elsayed
- Hormones Department, National Research Centre, El-Bouhoths St., Dokki, Giza 12622, Egypt; (N.A.A.); (G.H.E.); (S.H.M.)
- Stem Cells Lab, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
| | - Safaa H. Mohamed
- Hormones Department, National Research Centre, El-Bouhoths St., Dokki, Giza 12622, Egypt; (N.A.A.); (G.H.E.); (S.H.M.)
| | - Asmaa S. Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Giza 12622, Egypt;
| | - Mohamed S. Aly
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Wael M. Elsayed
- Chemistry of Medicinal Plants Department, National Research Centre, Giza 12622, Egypt;
| | - Samah A. El-Newary
- Medicinal and Aromatic Plants Research Department, National Research Centre, El-Bouhoths St., Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Zhao Z, Hu C, Li L, Zhang J, Zhang L. Main chemical constituents and mechanism of anti-tumor action of Solanum nigrum L. Cancer Med 2024; 13:e7314. [PMID: 39155844 PMCID: PMC11331249 DOI: 10.1002/cam4.7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.
Collapse
Affiliation(s)
- Zhen‐duo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Hu
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM‐Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
8
|
Lu Y, Zhou H, Han C, Gong Y, Li Y, Xia Y, Liang B, Yang H, Wang Z. Enhanced therapeutic impact of Shikonin-encapsulated exosomes in the inhibition of colorectal cancer progression. NANOTECHNOLOGY 2024; 35:415101. [PMID: 38991510 DOI: 10.1088/1361-6528/ad61f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with high mortality rates and poor prognosis. Shikonin (SHK) has demonstrated extensive anti-tumor activity across various cancers, yet its clinical application is hindered by poor solubility, limited bioavailability, and high toxicity. This study aims to develop SHK-loaded exosomes (SHK-Exos) and assess their efficacy in CRC progression. Exosomes were isolated using ultracentrifugation and characterized via TEM, NTA, and western blotting. Their cellular internalization was confirmed through confocal microscopy post PKH67 labeling. Effects on cell behaviors were assessed using CCK-8 and Transwell assays. Cell cycle and apoptosis were analyzed via flow cytometry. A xenograft tumor model evaluatedin vivotherapeutic potential, and tumor tissues were examined using H&E staining andin vivoimaging. SHK-Exos demonstrated effective cell targeting and internalization in CRC cells.In vitro, SHK-Exos surpassed free SHK in inhibiting aggressive cellular behaviors and promoting apoptosis, whilein vivostudies showed substantial efficacy in reducing tumor growth with excellent tumor targeting and minimal toxicity. Employing SHK-Exos effectively impedes CRC progressionin vitroandin vivo, offering significant therapeutic potential. This research underscores the advantages of using autologous exosomes as a drug carrier, enhancing efficacy and reducing toxicity.
Collapse
Affiliation(s)
- Yuchang Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailun Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Changpeng Han
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yabin Gong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yubin Xia
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Biao Liang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Haojie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenyi Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Feng F, Hu P, Peng L, Xu L, Chen J, Chen Q, Zhang X, Tao X. Integrated network pharmacology and metabolomics to reveal the mechanism of Pinellia ternata inhibiting non-small cell lung cancer cells. BMC Complement Med Ther 2024; 24:263. [PMID: 38992647 PMCID: PMC11238457 DOI: 10.1186/s12906-024-04574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of bioactive compound-target gene-metabolic enzyme-metabolite interactions were constructed. In conclusion, this study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for identifying the potential mechanisms underlying the pharmacological effects of natural compounds.
Collapse
Affiliation(s)
- Fan Feng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Ping Hu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lei Peng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lisheng Xu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Jun Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Qiong Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingkui Tao
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China.
| |
Collapse
|
10
|
Kiruthiga C, Balan DJ, Prasath NH, Manikandakrishnan M, Jafni S, Prabhu NM, Pandian SK, Devi KP. Synergistic induction of apoptosis in lung cancer cells through co-delivery of PLGA phytol/α-bisabolol nanoparticles. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5131-5144. [PMID: 38240783 DOI: 10.1007/s00210-023-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 06/12/2024]
Abstract
This study explored the potential of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles to enhance the effectiveness of anticancer treatments through combination therapy with phytol and α-bisabolol. The encapsulation efficiency of the nanoparticles was investigated, highlighting the role of ionic interactions between the drugs and the polymer. Characterization of PLGA-Phy+Bis nanoparticles was carried out using DLS with zeta potential and HR-TEM for size determination. Spectrophotometric measurements evaluated the encapsulation efficiency, loading efficiency, and in vitro drug release. FTIR analysis assessed the chemical interactions between PLGA and the drug actives, ensuring nanoparticle stability. GC-MS was employed to analyze the chemical composition of drug-loaded PLGA nanocarriers. Cytotoxicity was evaluated via the MTT assay, while Annexin V-FITC/PI staining and western blot analysis confirmed apoptotic cell death. Additionally, toxicity tests were performed on L-132 cells and in vivo zebrafish embryos. The study demonstrates high encapsulation efficiency of PLGA-Phy+Bis nanoparticles, which exhibit monodispersity and sizes of 189.3±5nm (DLS) and 268±54 nm (HR-TEM). Spectrophotometric analysis confirmed efficient drug encapsulation and release control. FTIR analysis revealed nanoparticle structural stability without chemical interactions. MTT assay results demonstrated the promising anticancer potential of all the three nanoparticle types (PLGA-Phy, PLGA-Bis, and PLGA-Phy+Bis) against lung cancer cells. Apoptosis was confirmed through Annexin V-FITC/PI staining and western blot analysis, which also revealed changes in Bax and Bcl-2 protein expression. Furthermore, the nanoparticles exhibited non-toxicity in L-132 cells and zebrafish embryo toxicity tests. PLGA-Phy+Bis nanoparticles exhibited efficient encapsulation, controlled release, and low toxicity. Apoptosis induction in A549 cells and non-toxicity in healthy cells highlight their clinical potential.
Collapse
Affiliation(s)
| | | | - Nagaiah Hari Prasath
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Muthushanmugam Manikandakrishnan
- Disease Control and Prevention lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
11
|
Wu Z, Zhu Z, Fu L. Integrating GEO, network pharmacology, and in vitro assays to explore the pharmacological mechanism of Bruceae Fructus against laryngeal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4165-4181. [PMID: 38032489 PMCID: PMC11111496 DOI: 10.1007/s00210-023-02869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The goal of this study is to look into the pharmacological mechanism of Bruceae Fructus in conjunction with GEO, network pharmacology, and in vitro assays for the treatment of laryngeal cancer to provide theoretical support for its therapeutic use. The active components and matching targets of Bruceae Fructus were retrieved from the TCMSP database, while genes linked with laryngeal cancer were obtained from the GEO, GeneCards, DisGeNET, and DrugBank databases. Besides, the components and targets were supplemented by literatures in PubMed database. Cytoscape software was used to create the active ingredients-target network diagram. The String database was used to build the PPI network. Following that, the core targets were subjected to GO enrichment and KEGG pathway analysis using the DAVID database. Finally, AutoDock was used to perform molecular docking between the core components and the core targets. To investigate the biological effects of beta-sitosterol, the viability of laryngeal cancer cells was assessed after beta-sitosterol therapy using the MTS technique. Following that, how beta-sitosterol affected colony formation after 14 days of culture of treated cells was researched. Flow cytometry was utilized to detect apoptosis to examine the influence of beta-sitosterol on laryngeal cancer cell apoptosis, and then detected mRNA and protein expression levels of 10 key genes by RT-qPCR and Western Blot assay. There were 1258 laryngeal cancer-related genes and 15 Bruceae Fructus components, with beta-sitosterol and luteolin serving as key components. Bruceae Fructus' primary targets against laryngeal cancer were IL6, JUN, TNF, IL2, IL4, IFNG, RELA, TP53, CDKN1A, and AKT1. GO enrichment yielded 41 CC, 78 MF, and 383 BP. Platinum drug resistance, the PI3K-Akt signaling pathway, the p53 signaling pathway, apoptosis, the HIF-1 signaling pathway, and 147 additional pathways have been added to KEGG. The results of molecular docking revealed that the core components had a high affinity for the core target. The results of the cell experiment indicate that beta-sitosterol suppressed Hep-2 cell activity in a concentration-dependent manner. Besides, beta-sitosterol has powerful antiproliferative properties in Hep-2 cells. Flow cytometry results showed that beta-sitosterol promoted laryngeal cancer cell apoptosis in a concentration-dependent manner. The results of RT-qPCR and Western Blot assay showed that the mRNA and protein expression levels of TP53, JUN, TNF-α, CDKN1A, and IL-2 were significantly up-regulated after beta-sitosterol treatment, while the mRNA and protein expression levels of RELA, AKT1, IL-6, IFNG, and IL-4 were significantly down-regulated. This study integrating GEO, network pharmacology, and in vitro assays investigated the probable mechanism of Bruceae Fructus' anti-laryngeal cancer activity, which can give a theoretical foundation for additional future animal experiments.
Collapse
Affiliation(s)
- Zhongbiao Wu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China
| | - Zhongyan Zhu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China
| | - Liyuan Fu
- Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330003, Jiangxi, China.
| |
Collapse
|
12
|
Wang H, Liu J, Zhang Z, Peng J, Wang Z, Yang L, Wang X, Hu S, Hong L. β-Sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic Biol Med 2024; 214:137-157. [PMID: 38364944 DOI: 10.1016/j.freeradbiomed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound β-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zhi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Xinqi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Siyuan Hu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Li Hong
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| |
Collapse
|
13
|
Xie Y, Chen Z, Li S, Yan M, He W, Li L, Si J, Wang Y, Li X, Ma K. A network pharmacology- and transcriptomics-based investigation reveals an inhibitory role of β-sitosterol in glioma via the EGFR/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:223-238. [PMID: 38143380 PMCID: PMC10984875 DOI: 10.3724/abbs.2023251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/21/2023] [Indexed: 12/26/2023] Open
Abstract
Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. β-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of β-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that β-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, β-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of β-sitosterol on glioma. Afterward, the results show that β-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, β-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. β-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that β-sitosterol may be a promising therapeutic agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Zhijian Chen
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Shuang Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Li Li
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| |
Collapse
|
14
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
15
|
Li R, Wang M, Tian J, Liu M, Li G, Zhou X. Exploration of kiwi root on non-small cell lung cancer based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e36852. [PMID: 38181243 PMCID: PMC10766307 DOI: 10.1097/md.0000000000036852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Kiwi root is a Chinese herb clinically used in the treatment of lung neoplasm; however, the multi-target mechanism of kiwi root in the treatment of non-small cell lung cancer (NSCLC) remains to be elucidated. Thus, this study aimed to investigate the molecular mechanisms of kiwi root in the treatment of NSCLC through network pharmacology and molecular docking techniques. METHODS The active components and targets of kiwi root were obtained from the TCMSP database, and NSCLC-related targets were obtained from the GeneCards, OMIM, and DrugBank databases. The intersection targets of NSCLC and kiwi root were obtained from VENNY 2.1.0. Then, the common targets were imported into the STRING database, and by using the Cytoscape 3.7.1 software, drug-disease network diagrams were created. Afterwards, the DAVID database was utilized to perform bioinformatic annotation. Finally, molecular docking of key components and key targets was performed by Autodock Tools. RESULTS A total of 4083 NSCLC-related disease genes were collected from the GeneCards, OMIM,and DrugBank databases, and 177 non-duplicated drug targets were acquired from the TCMSP database. A total of 138 intersection target genes were obtained, in which TP53, AKT1, and TNF were the key targets. CONCLUSION Through network pharmacology techniques, the mechanism of kiwi root in the treatment of NSCLC has been uncovered and provides a theoretical basis for the clinical treatment of NSCLC with kiwi root, which requires further experimental validation.
Collapse
Affiliation(s)
- Ruochen Li
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mingxiao Wang
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jin Tian
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Minghui Liu
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gaigai Li
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xun Zhou
- Respiratory Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
16
|
Kiruthiga C, Niharika K, Devi KP. Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS. Anticancer Agents Med Chem 2024; 24:773-788. [PMID: 38415491 DOI: 10.2174/0118715206289038240214102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated. OBJECTIVE The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis. METHODS The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis. RESULTS The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses. CONCLUSION The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.
Collapse
Affiliation(s)
| | - Kambati Niharika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
17
|
Feng F, Hu P, Peng L, Chen J, Tao X. Mechanism Research of PZD Inhibiting Lung Cancer Cell Proliferation, Invasion, and Migration based on Network Pharmacology. Curr Pharm Des 2024; 30:1279-1293. [PMID: 38571356 PMCID: PMC11327771 DOI: 10.2174/0113816128296328240329032332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND A classic Chinese medicine decoction, Pinellia ternata (Thunb.) Breit.-Zingiber officinale Roscoe (Ban-Xia and Sheng-Jiang in Chinese) decoction (PZD), has shown significant therapeutic effects on lung cancer. OBJECTIVE This study aimed to explore and elucidate the mechanism of action of PZD on lung cancer using network pharmacology methods. METHODS Active compounds were selected according to the ADME parameters recorded in the TCMSP database. Potential pathways related to genes were identified through GO and KEGG analysis. The compoundtarget network was constructed by using Cytoscape 3.7.1 software, and the core common targets were obtained by protein-protein interaction (PPI) network analysis. Batch molecular docking of small molecule compounds and target proteins was carried out by using the AutoDock Vina program. Different concentrations of PZD water extracts (10, 20, 40, 80, and 160 μg/mL) were used on lung cancer cells. Moreover, MTT and Transwell experiments were conducted to validate the prominent therapeutic effects of PZD on lung cancer cell H1299. RESULTS A total of 381 components in PZD were screened, of which 16 were selected as bioactive compounds. The compound-target network consisting of 16 compounds and 79 common core targets was constructed. MTT experiment showed that the PZD extract could inhibit the cell proliferation of NCI-H1299 cells, and the IC50 was calculated as 97.34 ± 6.14 μg/mL. Transwell and wound-healing experiments showed that the PZD could significantly decrease cell migration and invasion at concentrations of 80 and 160 μg/mL, respectively. The in vitro experiments confirmed that PZD had significant therapeutic effects on lung cancer cells, mainly through the PI3K/AKT signaling pathway. CONCLUSION PZD could inhibit the cell proliferation, migration, and invasion of NCI-H1299 cells partially through the PI3K/AKT signaling pathway. These findings suggested that PZD might be a potential treatment strategy for lung cancer patients.
Collapse
Affiliation(s)
- Fan Feng
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
- Anhui Longruntang Biotechnology Co., Ltd, Anhui 234000, China
| | - Ping Hu
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Lei Peng
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Jun Chen
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Xingkui Tao
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| |
Collapse
|
18
|
Makran M, Garcia-Llatas G, Alegría A, Cilla A. Ethylcoprostanol modulates colorectal cancer cell proliferation and mitigates cytotoxicity of cholesterol metabolites in non-tumor colon cells. Food Funct 2023; 14:10829-10840. [PMID: 37982821 DOI: 10.1039/d3fo01868g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Sterols can be metabolized by gut microbiota. The cholesterol metabolites have been proposed as promoters of colorectal cancer (CRC), while the effect of plant sterol metabolites is unknown. This study aimed to evaluate the cytotoxicity of metabolites from cholesterol (coprostanol, cholestanol, coprostanone and cholestenone) and β-sitosterol (ethylcoprostanol) on human colon tumor (Caco-2) and non-tumor (CCD-18Co) cells at physiological concentrations (9-300 μM) and exposure time (24 h). Ethylcoprostanol reduced the tumor cell proliferation (MTT), showing in flow cytometry assays induction of apoptosis via production of reactive oxygen species (ROS) and ceramide. Transcriptomic analysis (qPCR) showed activation of the intrinsic apoptosis pathway (BAX/BCL2 ratio and CASP9 increased), accompanied by downregulation of the p21 gene. Cholesterol metabolites, mainly the most hydrophobic, induced apoptosis and G0/G1 phase arrest in non-tumor cells through overproduction of ROS. Both the intrinsic and extrinsic (CASP8 increased) apoptosis pathways occurred. In turn, a reduction in the expression of the cyclin E1 gene confirmed the cell cycle arrest. In addition, ethylcoprostanol protected non-tumor cells from the most cytotoxic cholesterol metabolite (cholestenone). In conclusion, ethylcoprostanol is a promising candidate as a therapeutic adjuvant in CRC, while cholesterol metabolites could act as CRC promoters through their cytotoxicity.
Collapse
Affiliation(s)
- Mussa Makran
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
19
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Aba PE, Ihedioha JI, Asuzu IU. A review of the mechanisms of anti-cancer activities of some medicinal plants-biochemical perspectives. J Basic Clin Physiol Pharmacol 2023; 34:419-428. [PMID: 34936737 DOI: 10.1515/jbcpp-2021-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Cancer is a disease resulting in unbridled growth of cells due to dysregulation in the balance of cell populations. Various management procedures in handling cases of cancer are not without their adverse side effects on the normal cells. Medicinal plants/herbs have been in use in the management of various ailments, including cancer, for a long time. Medicinal plants have been credited with wide safety margins, cost effectiveness, availability and diverse activities. This study reviewed various mechanisms of anti-cancer activities of some medicinal plants from a biochemical perspective. The mechanisms of anti-cancer activities of plant compounds addressed in this article include induction of apoptosis, anti-angiogenic effects, anti-metastasis, inhibition of cell cycle, inhibition of DNA destruction and effects on key enzymes, cytotoxic and anti-oxidant effects. The anti-cancer activities of some of the plants involve more than one mechanism.
Collapse
Affiliation(s)
- Patrick E Aba
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Isaac U Asuzu
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
21
|
Alshehri S, Nadeem A, Ahmad SF, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alqarni SA, Bakheet SA. Disequilibrium in the Thioredoxin Reductase-1/Thioredoxin-1 Redox Couple Is Associated with Increased T-Cell Apoptosis in Children with Autism. Metabolites 2023; 13:metabo13020286. [PMID: 36837907 PMCID: PMC9964134 DOI: 10.3390/metabo13020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric childhood disorder that affects social skill and language development, and is characterized by persistent stereotypic behaviors, restricted social interests, and impaired language/social skills. ASD subjects have dysregulated immune responses due to impairment in inflammatory and antioxidant signaling in immune cells, such as T cells. Thioredoxin reductase-1 (TrxR1) and thioredoxin-1 (Trx1) play a crucial role in the maintenance of redox equilibrium in several immune cells, including T cells. T-cell apoptosis plays a crucial role in the pathogenesis of several inflammatory diseases. However, it remains to be explored how the TrxR1/Trx1 redox couple affects T-cells apoptosis in ASD and typically developing control (TDC) groups. Therefore, this single-center cross-sectional study explored the expression/activity of TrxR1/Trx1, and Bcl2, 7-AAD/annexin V immunostaining in T cells of ASD (n = 25) and TDC (n = 22) groups. Further, effects of the LPS were determined on apoptosis in TDC and ASD T cells. Our data show that T cells have increased TrxR1 expression, while having decreased Trx1 expression in the ASD group. Further, TrxR enzymatic activity was also elevated in T cells of the ASD group. Furthermore, T cells of the ASD group had a decreased Bcl2 expression and an increased % of annexin V immunostaining. Treatment of T cells with LPS caused greater apoptosis in the ASD group than the TDC group, with same treatment. These data reveal that the redox couple TrxR1/Trx1 is dysregulated in T cells of ASD subjects, which is associated with decreased Bcl2 expression and increased apoptosis. This may lead to decreased survival of T cells in ASD subjects during chronic inflammation. Future studies should investigate environmental factors, such as gut dysbiosis and pollutants, that may cause abnormal immune responses in the T cells of ASD subjects due to chronic inflammation.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Tang HZ, Yang ZP, Lu S, Wang B, Wang YY, Sun XB, Qu JX, Rao BQ. Network pharmacology-based analysis of heat clearing and detoxifying drug JC724 on the treatment of colorectal cancer. World J Gastrointest Oncol 2023; 15:90-101. [PMID: 36684054 PMCID: PMC9850754 DOI: 10.4251/wjgo.v15.i1.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Heat-clearing and detoxifying drugs has protective effect on colorectal cancer (CRC). Given the complicated features of Traditional Chinese medicine formulas, network pharmacology is an effective approach for studying the multiple interactions between drugs and diseases.
AIM To systematically explore the anticancer mechanism of heat-clearing and detoxifying drug JC724.
METHODS This study obtained the active compounds and their targets in JC724 from Traditional Chinese Medicine System Pharmacology Database. In addition, the CRC targets were obtained from Drugbank, TTD, DisGeNET and GeneCards databases. We performed transcriptome analysis of differentially expressed genes in CRC treated with JC724. Venn diagram was used to screen the JC724-CRC intersection targets as candidate targets. Core targets were selected by protein-protein interaction network and herb ingredient-target-disease network analysis. The functional and pathway of core targets were analysed by enrichment analysis.
RESULTS We found 174 active ingredients and 283 compound targets from JC724. 940 CRC-related targets were reserved from the four databases and 304 CRC differentially expressed genes were obtained by transcriptome analysis. We constructed the network and found that the five core ingredients were quercetin, β Beta sitosterol, wogonin, kaempferol and baicalein. The core JC724-CRC targets were CYP1A1, HMOX1, CXCL8, NQO1 and FOSL1. JC724 acts on multiple signaling pathways associated with CRC, including the Nrf2 signaling pathway, oxidative stress, and the IL-17 signaling pathway.
CONCLUSION In this study, we systematically analyzed the active ingredients, core targets and main mechanisms of JC724 in the treatment of CRC. This study could bring a new perspective to the heat-clearing and detoxifying therapy of CRC.
Collapse
Affiliation(s)
- Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Xi-Bo Sun
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong Province, China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Gastrointestinal Surgery, Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
23
|
Sun J, Yu J, Niu X, Zhang X, Zhou L, Liu X, Zhang B, He K, Niu X, Ho KF, Cao J, Shen Z. Solid fuel derived PM 2.5 induced oxidative stress and according cytotoxicity in A549 cells: The evidence and potential neutralization by green tea. ENVIRONMENT INTERNATIONAL 2023; 171:107674. [PMID: 36463658 DOI: 10.1016/j.envint.2022.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is a well-known cytotoxic pollutant that capable to induce severe intracellular oxidative stress while the underlying mechanisms remain unclear. Herein, 4 types of PM2.5 derived from solid fuel burning were selected as stimuli in A549 cells exposure model to evaluate their effects on oxidative stress and inflammatory responses. Although resulting in different responses in cell viability, all PM2.5 exhibited over 50 % higher oxidative stress than control group, expression as intracellular reactive oxygen species, malondialdehyde and superoxide dismutase levels. The Pearson's correlation results indicated that cations (e.g., Ca2+), heavy metals (e.g., Cr and Pb), nPAHs (nitro-polycyclic aromatic hydrocarbons, e.g., 6-nitrochrysene) and oPAHs (oxygenated PAHs, e.g., 9-fluorenone) were the main functioning toxics (r > 0.6). A key finding was the dual-directional regulation function of ECG (epicatechin gallate), that is, it could either increase the low A549 cell viabilities in coal combustion PM2.5 group or reduce them in charcoal PM2.5 group (P < 0.05). The dual-directional effects were likely because ECG can activate Nrf2 oxidation signaling pathway then inhibit the inflammatory signaling pathway NF-κB accordingly. Therefore, evidences indicated cytotoxicity of solid fuel derived PM2.5 were mainly caused by oxidative stress, which was proved to be reversed by green tea, providing a potential therapy method to PM2.5 and other hazards.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinjin Yu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinya Zhang
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lili Zhou
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyao Liu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofeng Niu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
24
|
Tan S, Liu Q, Yang J, Cai J, Yu M, Ji Y. Macranthoidin B (MB) Promotes Oxidative Stress-Induced Inhibiting of Hepa1-6 Cell Proliferation via Selenoprotein. Biol Trace Elem Res 2023; 201:368-376. [PMID: 35080709 DOI: 10.1007/s12011-022-03120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The aim of this study was to investigate the role of selenoproteins in Macranthoidin B (MB) with regard to the inhibition of hepa1-6 cell proliferation. The CCK8 method was used to detect the inhibition rate in hepa1-6 cell of proliferation. The production of ROS, MDA, GSH levels, and GSH-Px and SOD activities was detected according to corresponding reagent kits. We determined the mRNA expressions of 25 selenoproteins in hepa1-6 cells via real-time quantitative PCR (qRT-PCR); moreover, the heat map and principal component analysis were used for further bioinformatics analysis. The results revealed that with an increasing concentration of MB, the inhibitory effect on hepa1-6 cell proliferation intensified. Compared with the control group, the treatment group showed significantly increased ROS levels, elevated MDA contents, and decreased GSH level, GSH-Px activity, and SOD activity. Increasing MB concentration treatment induced remarkable degradation of Txnrd1, Txnrd2, Txnrd3, Gpx1, Gpx2, Gpx3, Gpx6, Dio1, Dio2, Selt, Selp, Selh, Selk, Selw, Seln, and Dio3. Principal component analysis revealed that Txnrd 3, Selk, Selo, Selw, Selt, Dio2, Txnrd1, Dio3, Gpx6, and Dio1 were highly correlated with MB. In conclusion, MB dose dependently inhibited hepa1-6 cell proliferation and induced oxidative stress. Based on bioinformatics analysis, with MB treatment, Txnrd 3, Selk, Selo, Selw, Selt, Dio2, Txnrd1, Dio3, Gpx6, and Dio1 exhibited critical role in the inhibition of hepa1-6 cells proliferation. The functions of these selenoproteins were associated with oxidative stress.
Collapse
Affiliation(s)
- Siran Tan
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China.
| | - Yubin Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China.
| |
Collapse
|
25
|
Begum S, Jena S, Chand PK. Silver Nanocrystals Bio-Fabricated Using Rhizobium rhizogenes-Transformed In Vitro Root Extracts Demonstrate Health Proactive Properties. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
27
|
Peng X, Xia Y, Xie J, Liu H, Fan L, Yu C, Ni X. Mechanism of Thunberg Fritillaria in treating endometriosis based on network pharmacology and the effect of Peiminine on the MEK/ERK pathway. Am J Transl Res 2022; 14:6196-6209. [PMID: 36247281 PMCID: PMC9556459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/03/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To explore the mechanism of Thunberg Fritillaria in treating endometriosis (EMs) based on network pharmacology and the effect of Peiminine on the MEK/ERK pathway. METHODS We applied Chinese medicine system pharmacology analysis platform (TCMSP) database and literature search to screen the main chemical components of Fritillaria thunbergii Miq and created a Vanny map from the databases of TCMSP, GENECARDS, Online Mendelian Inheritance in Man (OMIM), and some others. The STRING database was used to construct the protein interaction network of Fritillaria thunbergii Miq and EMs. The overlapping targets and enriched pathways were discovered using the cells of the innate immune annotation database (DAVID) and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To test the mechanism of Peiminine, the active ingredients of Fritillaria thunbergii, in the therapy of EMs, we designed cell assays and animal research. EMs mouse models were treated with several therapies, including fibrosis inhibitor in Peiminine by utilizing Hematoxylin-eosin staining (HE staining), MASSON staining, Immunohistochemistry, Immunofluorescence, quantitative real-time PCR (qRT-PCR) experiment, and Western blotting test. We evaluated the anti-endometriotic effects of Peiminine using 12Z human endometriotic cells. Cell Counting Kit 8 was used to assess the vitality of 12z cells (CCK8). We evaluated the migration ability of 12z cells by cell scratch test. RESULTS The effective active ingredients of Fritillaria thunbergii Miq in the treatment of EMs are Pelargonidin, Beta-sitosterol syringaresinol, Peimisine Pelargonidin-3, 5-diglucoside Ziebeimine Zhebeiresinol Verticine Solatubin OSI-2040 Chaksine Peiminine Peiminoside Peiminoside_qt, and 6-Methoxyl-2-acetyl-3-methyl-1, 4-naphthoquinone-8-O-beta-D-glucopyranoside. The critical targets for Fritillaria thunbergii Miq treating EMs are NOS2/PTGS1/AR/PPARG/PTGS2/NCOA2/RXRA/PGR/NR3C1/NCOA1/SLC6A4/OPRM1/BCL2 and ESR1. The results of GO function and KEGG enrichment analysis showed that the role pathway was estrogen-related signaling and thyroid hormone-related signaling. The expression of E-cadherin was decreased in EMs while MEK1/2, P-ERK, N-cadherin and vimentin were all increased in MASSON, immunofluorescence, Real-time PCR and Western blotting. In epithelial 12Z cells, high concentrations of Peiminine can block cell activity and migration, which is directly related to blocking cell fibrosis. CONCLUSION Overall, this study partially verified the network pharmacological prediction that Peiminine regulates the MAPK pathway in inhibiting 12Z cell proliferation and migration, and finally protects against EMs.
Collapse
Affiliation(s)
- Xia Peng
- Department of Gynecology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Yue Xia
- Department of Gynecology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Jiani Xie
- Department of Gynecology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Honglin Liu
- Department of Gynecology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Limin Fan
- The Institute for Biomedical Engineering and Nano Science Tongji University School of MedicineNo. 1239, Siping Road, Shanghai 200092, China
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, Changhai Hospital Affiliated to Naval Medical UniversityShanghai 200071, China
| | - Xiaorong Ni
- Department of Gynecology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| |
Collapse
|
28
|
Rajamohan R, Parthipan P, Nithyananthan S, Lee YR, Subramania A. Polymer-based electrospun nanofibrous mats for the cytotoxic assay on liver cancer cell line with the Cardiospermum halicacabum leaf. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Characterization of Gels and Films Produced from Pinhão Seed Coat Nanocellulose as a Potential Use for Wound Healing Dressings and Screening of Its Compounds towards Antitumour Effects. Polymers (Basel) 2022; 14:polym14142776. [PMID: 35890552 PMCID: PMC9315714 DOI: 10.3390/polym14142776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The reuse of agro-industrial waste assumes great importance today. Pinhão is the seed of Araucaria angustifolia, which is native to the mountains of southern Brazil, Paraguay, and Argentina. The coat is a by-product of this seed and is rich in phenolic compounds. The present study aimed to use the residue as a precursor material for the production of nanocellulose through the mechanical defibrillation process and perform the characterization of the films and the gel to investigate the effect on the physical and regenerative properties when incorporated with polyvinyl alcohol (PVA). The modulus of elasticity was higher when the MFC of pinhão was added to the PVA. Film and gel had their cytotoxicity tested by MTT assay using 3T3 fibroblast and Schwann cancer cells, and a migration assay was also performed using the scratch test on HaCat keratinocyte cells. For the scratch test, film and gel samples with low concentration presented a complete scratch closure in 72 h. Molecular docking was performed and quercetin had the ideal interaction score values, so it was used with the PACAP protein which presented a slightly moderate interaction with the protein synthesis of Schwann cells, presenting compactness of the compound after 14 ns.
Collapse
|
30
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Eltamany EE, Goda MS, Nafie MS, Abu-Elsaoud AM, Hareeri RH, Aldurdunji MM, Elhady SS, Badr JM, Eltahawy NA. Comparative Assessment of the Antioxidant and Anticancer Activities of Plicosepalus acacia and Plicosepalus curviflorus: Metabolomic Profiling and In Silico Studies. Antioxidants (Basel) 2022; 11:antiox11071249. [PMID: 35883740 PMCID: PMC9311546 DOI: 10.3390/antiox11071249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a comparison between two mistletoe plants—P. acacia and P. curviflorus—regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 μg/mL) than P. acacia (IC50 = 34.12 μg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics—chiefly flavonoid derivatives, beside some triterpenes and sterols—in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Nermeen A. Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| |
Collapse
|
32
|
Rabiej-Kozioł D, Roszek K, Krzemiński MP, Szydłowska-Czerniak A. Phenolipids as new food additives: from synthesis to cell-based biological activities. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1365-1379. [PMID: 35696424 DOI: 10.1080/19440049.2022.2086711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increasing interest has been shown in phenolic compounds for enhancing food quality, but their hydrophilicity restricts application in lipophilic systems. Therefore, in this study, twelve hydroxycinnamates derivatives (alkyl and steryl esters of sinapic acid (SA), caffeic acid (CA), and ferulic acid [FA]) were synthesised and evaluated for antioxidant and cytotoxic characteristics. CA esters had the highest radical scavenging activity (RSA) analysed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Values of inhibitory concentration (IC50) of synthesised compounds were related to their structure and lipophilicity. The effect of these hydroxycinnamic acid esters on the antioxidant potential of real samples (rapeseed oil, margarine and mayonnaise) was estimated. None of the investigated derivatives significantly affected the viability of the model intestinal cells Caco2, while the octyl esters demonstrated a toxic effect at low concentrations. The synthesised esters exerted cytotoxic and anti-proliferative effects against transformed cell lines (HeLa and A549). Octyl esters were potent anticancer compounds on two human cancer cell lines. The synthesised phenolipids, as valuable and safe antioxidant additives, can find broader applications in the production of fat-based products to prevent oxidation processes, extend their shelf life and improve quality.
Collapse
Affiliation(s)
- Dobrochna Rabiej-Kozioł
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marek P Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
33
|
Exploring the Effect and Mechanism of Si-Miao-Yong-An Decoction on Abdominal Aortic Aneurysm Based on Mice Experiment and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766987. [PMID: 35685724 PMCID: PMC9173986 DOI: 10.1155/2022/4766987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a fatal disease characterized by high morbidity and mortality in old population. Globally, effective drugs for AAA are still limited. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese medicine (TCM) formula with a high medical value, was reported to be successfully used in an old AAA patient. Thus, we reason that SMYAD may serve as a potential anti-AAA regime. Objective The exact effects and detailed mechanisms of SMYAD on AAA were explored by using the experimental study and bioinformatics analysis. Methods Firstly, C57BL/6N mice induced by Bap and Ang II were utilized to reproduce the AAA model, and the effects of SMYAD were systematically assessed according to histology, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Then, network pharmacology was applied to identify the biological processes, pathways, and hub targets of SMYAD against AAA; moreover, molecular docking was utilized to identify the binding ability and action targets. Results In an animal experiment, SMYAD was found to effectively alleviate the degree of pathological expansion of abdominal aorta and reduce the incidence of Bap/Ang II-induced AAA, along with reducing the damage to elastic lamella, attenuating infiltration of macrophage, and lowering the circulating IL-6 level corresponding to the animal study, and network pharmacology revealed the detailed mechanisms of SMYAD on AAA that were related to pathways of inflammatory response, defense response, apoptotic, cell migration and adhesion, and reactive oxygen species metabolic process. Then, seven targets, IL-6, TNF, HSP90AA1, RELA, PTGS2, ESR1, and MMP9, were identified as hub targets of SMYAD against AAA. Furthermore, molecular docking verification revealed that the active compounds of SMYAD had good binding ability and clear binding site with core targets related to AAA formation. Conclusion SMYAD can suppress AAA development through multicompound, multitarget, and multipathway, which provides a research direction for further study.
Collapse
|
34
|
Liposomal β-Sitosterol Suppresses Metastasis of CT26/luc Colon Carcinoma via Inhibition of MMP-9 and Evoke of Immune System. Pharmaceutics 2022; 14:pharmaceutics14061214. [PMID: 35745788 PMCID: PMC9231002 DOI: 10.3390/pharmaceutics14061214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
β-sitosterol (SITO) has been reported with anticancer effects; however, with poor bioavailability. The current study aimed to investigate whether liposomal encapsulated β-sitosterol (LS) has a better inhibition effect on tumor metastasis than β-sitosterol in a CT26/luc lung metastasis mouse model and the possible underlying mechanism. LS was liposomal-encapsulated SITO and was delivered to mice by oral gavage. The cell viability was determined by the MTT assay, and invasiveness of the tumor cells and related protein expression were evaluated with the invasion assay and Western blotting. For therapeutic efficacy evaluation, male BALB/c mice were treated with PBS, SITO, and LS once a day for 7 days prior to intravenous injections of CT26/luc cells; treatments were continued twice a week post-cell inoculation throughout the entire experiment. Tumor growth inhibition was monitored by bioluminescent imaging (BLI). IL-12, IL-18, and IFN-γ in the intestinal epithelium were determined by ELISA. The results show that LS treatment had a better invasion inhibition with lower cytotoxicity than SITO when the same dose was utilized. Notably, mice treated with LS significantly exhibited fewer metastases to the lungs and other tissues/organs compared with the Control and SITO groups. Additionally, the IL-12, IL-18, and IFN-γ levels were significantly increased in the LS-treated mice compared with the Control and SITO groups. The underlying mechanism may be through the inhibition of MMP-9 and elicitation of the antitumoral Th1 immune response, such as increasing CD4+ and CD8+ T cells, IL-12, IL-18, and IFN-γ.
Collapse
|
35
|
Irtegun Kandemir S, Fidan HS, Yener I, Mete N, Ertas A, Topcu G, Kolak U. Investigation of cytotoxic and apoptotic effects of 63 compounds obtained from Salvia species: Promising anticancer agents. J Food Biochem 2022; 46:e14226. [PMID: 35608363 DOI: 10.1111/jfbc.14226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Since ancient time, Salvia L. species have been commonly used to treat colds, bronchitis, tuberculosis, heart diseases, and menstrual and digestive disorders in traditional medicine all around the world. They have been also used as tea and spice. Studies indicated that diterpenes and triterpenes isolated from Salvia species possess various pharmacological and biological effects such as anti-inflammatory, antiviral, cytotoxic, antioxidant, and hepatotoxic activities. Flavones were also shown to have antimicrobial, antioxidant, and cytotoxic potentials. Salvia extracts also exhibit anti-Alzheimer, antiseptic, cardiovascular, antihypertensive, and antituberculous effects. To investigate the effects of 63 secondary metabolites from Salvia species on cell viability and apoptosis, Salvia secondary metabolites including 25 phenolics, 4 fatty acids, 19 abietane diterpenoids, 12 triterpenoids, and three steroids were examined on healthy cell line (PDF), breast cancer (MCF-7), and colon cancer (HT-29) cell lines using MTT method. In addition, the effects of rosmarinic acid, 6,7-dehydroroyleanone, acetyl royleanone, ferruginol, carnosic acid, carnosol, cryptotanshinone, β-sitosterol, and ursolic acid on pro-apoptotic Bax and antiapoptotic Bcl-2 protein expression levels were investigated by Western Blot method. PRACTICAL APPLICATIONS: Phenolic compounds (apigenin, chrysin, and luteolin) and diterpenes (especially dihydrotanshinone I, carnosic acid, and carnosol), and almost all of the triterpenes exhibited high toxic effects on healthy cell line. Cytotoxic effects of cryptotanshinone, 12-hydroxy abieta-1,3,5(10),8,11,13-hexaene, 12-demethylmulticauline, 6,7-dehydroroyleanone, acetyl royleanone, ferruginol, ursolic acid, and 3-acetyl lupeol were relatively higher than their toxic effects. Acetyl royleanone, 6,7-dehydroroyleanone, carnosic acid, and cryptotanshinone were found to have anticancer potential based on their modulating effects on the expression levels of Bax and Bcl-2 proteins which play important roles in the regulation of apoptosis. The results of the present study showed that acetyl royleanone, cryptotanshinone, 6,7-dehydroroyleanone, carnosic acid, and cryptotanshinone have potential to be used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sevgi Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey.,Cancer Research Center, Dicle University, Diyarbakir, Turkey
| | - Hilal Saruhan Fidan
- Department of Biochemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Ismail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Nuriye Mete
- Department of Medicinal Biochemistry, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Abdulselam Ertas
- Cancer Research Center, Dicle University, Diyarbakir, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gulactı Topcu
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Ufuk Kolak
- Department of General and Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
Ferroptosis and Apoptosis Are Involved in the Formation of L-Selenomethionine-Induced Ocular Defects in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094783. [PMID: 35563172 PMCID: PMC9100823 DOI: 10.3390/ijms23094783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium is an essential trace element for humans and other vertebrates, playing an important role in antioxidant defense, neurobiology and reproduction. However, the toxicity of excessive selenium has not been thoroughly evaluated, especially for the visual system of vertebrates. In this study, fertilized zebrafish embryos were treated with 0.5 µM L-selenomethionine to investigate how excessive selenium alters zebrafish eye development. Selenium-stressed zebrafish embryos showed microphthalmia and altered expression of genes required for retinal neurogenesis. Moreover, ectopic proliferation, disrupted mitochondrial morphology, elevated ROS-induced oxidative stress, apoptosis and ferroptosis were observed in selenium-stressed embryos. Two antioxidants—reduced glutathione (GSH) and N-acetylcysteine (NAC)—and the ferroptosis inhibitor ferrostatin (Fer-1) were unable to rescue selenium-induced eye defects, but the ferroptosis and apoptosis activator cisplatin (CDDP) was able to improve microphthalmia and the expression of retina-specific genes in selenium-stressed embryos. In summary, our results reveal that ferroptosis and apoptosis might play a key role in selenium-induced defects of embryonic eye development. The findings not only provide new insights into selenium-induced cellular damage and death, but also important implications for studying the association between excessive selenium and ocular diseases in the future.
Collapse
|
37
|
Comparison between Traditional Chinese Medicine Constitution and Blood Biochemical Markers Associated with Left and Right Mammary Hyperplasia in Rural Areas of Southwest China. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9274060. [PMID: 35368942 PMCID: PMC8967519 DOI: 10.1155/2022/9274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
Background Hyperplasia of mammary glands (HMG) is the breast disease with the highest clinical incidence. Many traditional Chinese medicine (TCM) doctors suggest that the treatment of HMG should be based on the left and right breast pain difference. However, these views are based on case reports, and an objective basis has not been established for treatment according to left-side and right-side differences. Methods We enrolled 150 patients who met the clinical diagnostic criteria of HMG. The incidence bias was determined according to the score difference between bilateral breast pain and mass in patients with HMG. A left group, right group, and bilateral group were included, and TCM constitution was investigated in each group. Blood biochemical indicators were measured for 120 fasting patients. We conducted a network pharmacology study of the key herb qingpi and chenpi, which are used by TCM doctors to treat different lateral HMG. Results In patients with biased onset of HMG, the results showed that the frequency and constitution score of stagnant blood in the L group were higher than those of the R group, and the frequency and constitution score of phlegm-dampness in the R group were higher than those of the L group. Both the L and R groups had high proportion of stagnant Qi. The results indicated that the concentration of coagulation factor VIII (FVIII) was higher in the L group than that in the R group, and the concentration of lipoprotein a (Lp-α) was higher in the R group than that in the L group. The results showed that sinensetin and neohesperidin contained in qingpi might interfere with platelet activation, thrombogenesis, prolactin signaling pathway, and atherosclerosis process, in removing “blood stasis” and eventually treating the left-leaning group of HMG patients. Sitosterol and citromitin contained in chenpi could regulate lipid metabolism by interfering with regulation of lipolysis in adipocytes, salivary secretion, estrogen signaling pathway, and thyroid hormone signaling pathway. Chenpi could eliminate “phlegm turbidity” and treat HMG patients in the right-leaning group. Conclusions We preliminarily confirmed that the clinical pathogenesis of HMG is not a left-right equilibrium and TCM constitution, coagulation function, and lipid metabolism may be used as the objective basis for the difference between the left and right in HMG pathogenesis. For left-sided HMG patients, the doctor can consider qingpi, herb of activating blood and removing stasis, to treat HMG. However, for right-sided HMG, we think doctors should apply herb of activating Qi and eliminating phlegm, such as chenpi.
Collapse
|
38
|
Ou L, Honda A, Miyasaka N, Akaji S, Omori I, Ishikawa R, Li Y, Ueda K, Takano H. Application of three-dimensional Raman imaging to determination of the relationship between cellular localization of diesel exhaust particles and the toxicity. Toxicol Mech Methods 2021; 32:333-340. [PMID: 34794370 DOI: 10.1080/15376516.2021.2008569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A diesel exhaust particle (DEP) is a type of particulate matter that is easily produced from combustion in a diesel power engine. It has been reported that DEPs can cause short- and long-term health problems. This is because DEPs are complex mixtures that are highly inhalable through the airways due to their small particle size. However, the relationship between intracellular localization of DEPs after their deposition in the lungs and the subsequent biological responses remains to be clarified. This is due to difficulties in distinguishing particles that are inside the cells from those that are outside. In this study, A549 human lung epithelial cells were exposed to DEPs at concentrations of 0, 25, 75, or 200 µg/mL for different periods, after that particles in the A549 cells were analyzed by three-dimensional (3D) images obtained from a Raman microscope. The cytotoxic effects of DEPs on the A549 cells were investigated by measuring cell viability, the levels of intracellular reactive oxygen species (ROS) and cell death. The Raman microscopy revealed that the particles invaded the A549 cells, and at a concentration of 200 µg/mL, they markedly decreased cell viability, increased intracellular ROS production, triggered late apoptosis/necrosis and induced nuclear damage. These results suggest that intracellular DEPs exposed at a high concentration may be highly toxic and can impair the viability of A549 cells. Furthermore, the 3D images from the Raman microscopy can be used to evaluate intracellular particle dynamics.
Collapse
Affiliation(s)
- Langying Ou
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Akiko Honda
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Sakiko Akaji
- Graduate School of Engineering, Kyoto University, Japan
| | - Issei Omori
- Graduate School of Engineering, Kyoto University, Japan
| | - Raga Ishikawa
- Graduate School of Engineering, Kyoto University, Japan
| | - Yinpeng Li
- Graduate School of Engineering, Kyoto University, Japan
| | - Kayo Ueda
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| |
Collapse
|
39
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
40
|
Ditty MJ, Ezhilarasan D. β-sitosterol induces reactive oxygen species-mediated apoptosis in human hepatocellular carcinoma cell line. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:541-550. [PMID: 34804892 PMCID: PMC8588954 DOI: 10.22038/ajp.2021.17746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 01/27/2023]
Abstract
Objective: It is of interest to investigate the anti-proliferative effect of β-sitosterol (BS) on human hepatocellular carcinoma (HepG2) cell line. Materials and Methods: β-sitosterol treatments (0.6 and 1.2 mM/ml) were done in HepG2 and after 24 hr, cell viability was evaluated by MTT assay. Reactive oxygen species (ROS) accumulating potential of BS was assessed by dichloro-dihydro-fluorescein diacetate staining. Morphology related to apoptosis was investigated by acridine orange and ethidium bromide dual staining. Cytochrome c and caspase 3 expressions were evaluated by immunofluorescence and western blot analyses. Results: β-sitosterol induced cytotoxicity (p<0.001) and intracellular ROS in HepG2 cells in a dose-dependent manner. BS treatments accumulated induced intracellular ROS accumulation which led to membrane damage and mitochondrial toxicity. At the molecular level, BS treatments induced cytochrome c release from mitochondria and enhanced the protein expressions (p<0.05 vs 0.6 mM/ml and p<0.001 vs 1.2 mM/ml) of both caspase 3 and cleaved caspase 3. Conclusion: β-sitosterol induced ROS accumulation which plays a critical role in apoptosis via the intrinsic pathway in HepG2 cells. The present investigation paves the way for further in vivo studies.
Collapse
Affiliation(s)
- Mary J Ditty
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
41
|
Immunomodulatory Effects of a Concoction of Natural Bioactive Compounds-Mechanistic Insights. Biomedicines 2021; 9:biomedicines9111522. [PMID: 34829751 PMCID: PMC8615223 DOI: 10.3390/biomedicines9111522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Natural bioactive compounds derived from plant-based products are known for their biological immunomodulatory activities. They possess systemic pleiotropic effects, minimal side effects, and very low toxicities. Plant-based bioactive compounds have tremendous potential as natural therapeutic entities against various disease conditions and act as anti-inflammatory, antioxidant, anti-mutagenic, anti-microbial, anti-viral, anti-tumour, anti-allergic, neuroprotective, and cardioprotective agents. A herbal formulation extract including five biologically active compounds: Apigenin, Quercetin, Betulinic acid, Oleanolic acid, and β-Sitosterol can impart several immunomodulatory effects. In this review, we systematically present the impact of these compounds on important molecular signaling pathways, including inflammation, immunity, redox metabolism, neuroinflammation, neutropenia, cell growth, apoptosis, and cell cycle. The review corroborates the beneficial effect of these compounds and shows considerable potential to be used as a safer, more cost-effective treatment for several diseases by affecting the major nodal points of various stimulatory pathways.
Collapse
|
42
|
Akdeniz M, Yener I, Dincel D, Firat M, Karatas Degirmenci D, Ertas A. Determination of fingerprints contents of different extracts and parts of six endemic Salvia taxa by GC-MS: Source species for valuable compounds with drug or drug potential. Biomed Chromatogr 2021; 36:e5263. [PMID: 34647633 DOI: 10.1002/bmc.5263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Public use of Salvia species and their importance in the scientific world is continually increasing. It is known that this use and the importance of Salvia species are mostly due to the terpenoid compounds that they contain. In this context, the terpenoid-steroid-flavonoid contents of extracts of six endemic Salvia (S. kurdica, S. pseudeuphratica, S. rosifolia, S. siirtica, S. cerino-pruinosa var. cerino-pruinosa and S. cerino-pruinosa var. elazigensis) species prepared with different solvents were determined by gas chromatography-mass spectrometry. Within the framework of the ingredient analysis, content analysis of the ethanol extracts of the root, branch, leaf and flower parts of the species collected in the same period between 2015 and 2017 years was performed. In general, extracts prepared with chloroform and ethanol were found to contain a wide variety of compounds while petroleum ether extracts were found to contain much less varied compounds. In addition, in general, root extracts are richer in terpenoid compounds than aerial part extracts. Some species can be used as source species in terms of ferruginol, cryptanol, 6,7-dehydroroyleanone, lup-(20)29-ene-2α-hydroxy-3β-acetate, salvigenin and β-sitosterol contents (52,114.28, 75,979.08, 101,247.41, 40,071.29, 33,952.13 and 34,010.90 μg analyte/g extract, respectively).
Collapse
Affiliation(s)
- Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, Diyarbakir, Turkey
| | - Ismail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Demet Dincel
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Firat
- Department of Biology, Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey
| | | | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey.,Cancer Research Center, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
43
|
Guo S, Wang X, Wang L, Cheng G, Zhang M, Xing Y, Zhao X, Liu Y, Liu J. Inflammatory injury and mitophagy of the brain in chicken exposed to Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42353-42361. [PMID: 33813707 DOI: 10.1007/s11356-021-13675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to determine whether Cr(VI) can induce inflammatory injury in chicken brain and influence mitophagy and related mechanisms. A total of 120 hyline brown chickens (1 day old, 20±3g) were selected and randomly divided into four groups and given different doses of Cr(VI) (0, 10, 30, and 50 mg/kg) every day at 45 days. Results showed that excessive intake of Cr(VI) led to increased tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) levels and decreased interferon-gamma (IF-γ) level. Cr(VI) increased the production of mitochondrial reactive oxygen species (ROS) in chicken brain cells, causing the decline of mitochondrial membrane potential (MMP) and formation of autophagosomes for mitophagy. In addition, Cr(VI) promoted the translocation of Parkin to the mitochondrial outer membrane, increased LC3-II protein level, and inhibited p62 and TOM20 protein expression. In conclusion, excessive Cr(VI) intake can induce inflammatory injury and mitophagy in chicken brain.
Collapse
Affiliation(s)
- Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Guodong Cheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, China.
| |
Collapse
|
44
|
Study on the Molecular Mechanism of the Herbal Couple Sparganii Rhizoma-Curcumae Rhizoma in the Treatment of Lung Cancer Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6664489. [PMID: 34239587 PMCID: PMC8235983 DOI: 10.1155/2021/6664489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
Background Lung cancer has a poor prognosis and a high mortality rate, and patients may develop multidrug resistance. Sparganii Rhizoma-Curcumae Rhizoma (HCSC), the classic herbal drug combination of traditional Chinese medicine (TCM), is commonly used in treating tumors, but its molecular mechanism is still unclear. Method We explored the possible mechanisms underlying the antitumor effect of HCSC using network pharmacology. The bioactive components of HCSC and their targets were collected from the TCM Systems Pharmacology (TCMSP) database and PharmMapper. Gene Ontology (GO) and KEGG enrichment analyses were performed; the GeneMANIA platform was used for the functional enrichment analysis of the core targets and their neighboring genes. Molecular docking was performed between the bioactive components and core targets. HCSC freeze-dried powder was prepared, and the bioactive components were verified by liquid chromatography- (LC-) mass spectrometry (MS). Human lung adenocarcinoma H1975 cells were cultured to verify in vitro the molecular mechanism of action of HCSC in treating lung cancer, as predicted by network pharmacology. Finally, we used the Symmap database to predict the relationship between the herb and TCM syndrome. Result A total of seven bioactive components were identified by network pharmacological analysis. Through enrichment analyses, it was found that the mechanism of action mainly involved mitochondrial-mediated caspase-dependent cell apoptosis signaling pathways. The results of molecular docking showed that the bioactive components in HCSC have a good affinity with the target proteins (ALB, BCL2L1, ESR1, HRAS, MAP2K1, MAPK14, and SIRT1). LC-MS confirmed that formononetin and bisdemethoxycurcumin were present in the HCSC freeze-dried powder, consistent with the prediction. The results of in vitro experiments on NCI-H1975 cells confirmed that HCSC can upregulate the mitochondrial-mediated caspase-dependent apoptosis signaling pathway by inducing the cleavage of caspase-3, caspase-9, and PARP, consistent with the network pharmacology prediction. Further, the qi deficiency and blood stasis associated with TCM syndrome can be treated with HCSC.
Collapse
|
45
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
46
|
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Barkat RA, Gabr AA, Foda MA, Noreldin AE, Khafaga AF, El-Sabrout K, Elwan HAM, Tiwari R, Yatoo MI, Michalak I, Di Cerbo A, Dhama K. Potential role of important nutraceuticals in poultry performance and health - A comprehensive review. Res Vet Sci 2021; 137:9-29. [PMID: 33915364 DOI: 10.1016/j.rvsc.2021.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Antibiotics use in poultry as a growth promoter leads to the propagation of antibiotic-resistant microorganisms and incorporation of drug residues in foods; therefore, it has been restricted in different countries. There is a global trend to limit the use of antibiotics in the animal products. Prevention of the antibiotics use in the poultry diets led to the reduction in the growth performance. Consequently, there is a high demand for natural substances that lead to the same growth enhancement and beneficially affect poultry health. These constituents play essential roles in regulating the normal physiological functions of animals including the protection from infectious ailments. Nutraceuticals administration resulted beneficial in both infectious and noninfectious diseases. Being the natural components of diet, they are compatible with it and do not pose risks associated with antibiotics or other drugs. Nutraceuticals are categorized as commercial additives obtained from natural products as an alternative feed supplement for the improvement of animal welfare. This group includes enzymes, synbiotics, phytobiotics, organic acids and polyunsaturated fatty acids. In the present review, the summary of various bioactive ingredients that act as nutraceuticals and their mode of action in growth promotion and elevation of the immune system has been presented.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amr A Gabr
- Department of Physiology, Faculty of Veterinary Medicine, Cairo Unversity, Giza 1221, Egypt
| | - Manar A Foda
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Karim El-Sabrout
- Poultry production Department, Faculty of Agriculture, Alexandria University, Elshatby, Egypt
| | - Hamada A M Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 El-Minya, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, 190025 Srinagar, Jammu and Kashmir, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław 50-370, Poland
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
47
|
Subramaniam Y, Subban K, Chelliah J. A novel synergistic anticancer effect of fungal cholestanol glucoside and paclitaxel: Apoptosis induced by an intrinsic pathway through ROS generation in cervical cancer cell line (HeLa). Toxicol In Vitro 2021; 72:105079. [PMID: 33422634 DOI: 10.1016/j.tiv.2021.105079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In the search for efficient therapeutics with economically viable for cancer treatment, combination therapy has developed as a keystone in the pursuit of novel approaches for drug discovery. In this regard, we confirmed the presence of cholestanol glucoside (CG) in Lasiodiplodia theobromae culture filtrate and its production was estimated to be 20.01 mg/l. The purified fungal CG was obtained with a molecular mass of 550.18 m/z. The combination of CG and paclitaxel (PTX) was found to have potent cytotoxicity against HeLa cells. We revealed that the synergistic effect of CG and PTX induced apoptosis through the formation of nuclear fragments, DNA fragmentation and sub G1 cell cycle arrest. Further, it was proven that apoptosis took place by loss of the mitochondrial membrane potential (MMP) through reactive oxygen species (ROS) production and caspase 3/7 activity. Moreover, the data suggests that the synergistic effect of CG and PTX played a role in a mitochondrial intrinsic pathway through the apoptotic gene expression of Bax, caspase-9 and caspase-3. In addition, the down-regulation of Bcl-2 strongly described the induced apoptosis through an intrinsic pathway using the Western blot analysis. The conclusion of this study is that a combination of CG and PTX has synergistic apoptotic effects in HeLa cells, which provides a possible therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
| | - Kamalraj Subban
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
48
|
Ramakrishnamurthy S, Singaravelu G, Devadasan V, Prakasarao A. In vitro and In silico Analysis of the Anti-diabetic and Anti-microbial Activity of Cichorium intybus Leaf extracts. Curr Comput Aided Drug Des 2021; 17:173-186. [PMID: 31995018 DOI: 10.2174/1573409916666200129100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To screen the selected phytochemicals against diabetes by docking studies in comparison with experimental analysis. METHODS Ethanol crude extract was obtained from the leaves of C.intybus and its chemical compounds were identified using GC- MS. Docking studies were carried out for selected phytochemicals to find the binding affinity and H-bond interaction using Schrodinger suite. Dynamic simulations were carried out for protein-ligand complex up to 50ns using desmond OPLS AA forcefield and α- Amylase and α- Glucosidase assay were carried for the ethanolic extract to infer its inhibition. RESULTS Four compounds were chosen for induced fit docking based on the docking score and glide energy obtained from GLIDE-XP docking. The compounds were docked with the protein target human aldose reductase (PDB ID: 2FZD) for checking the anti-diabetic nature. The molecular dynamics simulations were carried out for the most favorable compounds and stability was checked during the simulations. The ethanol extract exhibits significant α-amylase and α-glucosidase inhibitory activities with an IC50 value of 38μg and 88μg dry extract, respectively, and well compared with standard acarbose drug. The antimicrobial activity was also carried out for various extracts (Chloroform, Ethyl acetate, and Ethanol) of the same (C. intybus) screened against four selected human pathogens. Compared to other solvent extracts, ethanol and chloroform extracts show better inhibition and their minimal inhibitory concentration (MIC) value has been calculated. CONCLUSION In silico studies and in vitro studies reveals that C. intybus plant compounds have more potent for treating diabetes.
Collapse
Affiliation(s)
| | - Ganesan Singaravelu
- Department of Medical Physics, Anna University, Chennai-600025, Tamil Nadu, India
| | - Velmurugan Devadasan
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai- 600025, India
| | - Aruna Prakasarao
- Department of Medical Physics, Anna University, Chennai-600025, Tamil Nadu, India
| |
Collapse
|
49
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
50
|
Lim HM, Park SH, Nam MJ. Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation. Hum Exp Toxicol 2020; 40:812-825. [DOI: 10.1177/0960327120969968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study was focused on investigating the anticancer potential of indole-3-carbinol (I3C) against lung cancer H1299 cells via an increase in ROS levels. To investigate the induction of growth arrest and/or cell death in H1299 cells, a cell cycle arrest assay, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) assay, and reactive oxygen species (ROS) detection assay were performed. Through the TUNEL assay, we detected I3C-induced DNA fragmentation. Fluorescence-activated cell sorting (FACS) analysis showed that I3C induced an increase in ROS levels and apoptotic rate in a dose- and time-dependent manner in H1299 cells. Western blotting demonstrated that activated forms of caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase (PARP) were increased in I3C-treated H1299 cells following treatment with I3C. Furthermore, protein expression levels of FOXO3, bim, bax, and phosphorylated ERK and JNK were increased, while those of pAkt, Bcl-xL, and Bcl-2 were decreased by I3C treatment of H1299 cells. To confirm the relationship between cell apoptosis and ROS generation, H1299 cells were treated with I3C simultaneously with N-acetylcysteine (NAC), and it was shown that ROS levels decreased and viability increased. Moreover, in western blot analysis, expression of anti-apoptotic proteins (thioredoxin1, peroxiredoxin-1, Bcl-2, and Bcl-xL) in I3C-treated cells was evidently downregulated and pro-apoptotic proteins (active ASK1 and cleaved PARP) were upregulated compared to cells co-treated with NAC. The study showed that I3C induced downregulation of ROS regulator proteins and elevation of ROS, thus activating apoptotic signaling cascades in human lung cancer H1299 cells.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong-si, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Gyeonggi-do, Republic of Korea
| |
Collapse
|