1
|
Galán MF, Serrano J, Jarque EC, Borrego-Varillas R, Lucchini M, Reduzzi M, Nisoli M, Brahms C, Travers JC, Hernández-García C, San Roman J. Robust Isolated Attosecond Pulse Generation with Self-Compressed Subcycle Drivers from Hollow Capillary Fibers. ACS PHOTONICS 2024; 11:1673-1683. [PMID: 38645995 PMCID: PMC11027177 DOI: 10.1021/acsphotonics.3c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.
Collapse
Affiliation(s)
- Marina Fernández Galán
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Javier Serrano
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Enrique Conejero Jarque
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Rocío Borrego-Varillas
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo Lucchini
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Maurizio Reduzzi
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Mauro Nisoli
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Christian Brahms
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - John C. Travers
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - Carlos Hernández-García
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Julio San Roman
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| |
Collapse
|
2
|
Rupprecht P, Magunia A, Aufleger L, Ott C, Pfeifer T. Flexible experimental platform for dispersion-free temporal characterization of ultrashort pulses. OPTICS EXPRESS 2023; 31:39821-39831. [PMID: 38041296 DOI: 10.1364/oe.503731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 12/03/2023]
Abstract
The precise temporal characterization of laser pulses is crucial for ultrashort applications in biology, chemistry, and physics. Especially in femto- and attosecond science, diverse laser pulse sources in different spectral regimes from the visible to the infrared as well as pulse durations ranging from picoseconds to few femtoseconds are employed. In this article, we present a versatile temporal-characterization apparatus that can access these different temporal and spectral regions in a dispersion-free manner and without phase-matching constraints. The design combines transient-grating and surface third-harmonic-generation frequency-resolved optical gating in one device with optimized alignment capabilities based on a noncollinear geometry.
Collapse
|
3
|
Matselyukh DT, Despré V, Golubev NV, Kuleff AI, Wörner HJ. Decoherence and Revival in Attosecond Charge Migration Driven by Non-adiabatic Dynamics. NATURE PHYSICS 2022; 18:1206-1213. [PMID: 36524215 PMCID: PMC7613930 DOI: 10.1038/s41567-022-01690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/24/2022] [Indexed: 06/17/2023]
Abstract
Attosecond charge migration is a periodic evolution of the charge density at specific sites of a molecule on a time scale defined by the energy intervals between the electronic states involved. Here, we report the observation of charge migration in neutral silane (SiH4) in 690 as, its decoherence within 15 fs, and its revival after 40-50 fs, using X-ray attosecond transient absorption spectroscopy. We observe the migration of charge as pairs of quantum beats with a characteristic spectral phase in the transient spectrum, in agreement with theory. The decay and revival of the degree of electronic coherence is found to be a result of both adiabatic and non-adiabatic dynamics in the populated Rydberg and valence states. The experimental results are supported by fully quantum-mechanical ab-initio calculations that include both electronic and nuclear dynamics, which additionally support the experimental evidence that conical intersections can mediate the transfer of electronic coherence from an initial superposition state to another one involving a different lower-lying state.
Collapse
Affiliation(s)
| | - Victor Despré
- Theoretische Chemie, Physikalisch-Chemisches Institut (PCI), Universität Heidelberg, 69120 Heidelberg, Germany
| | - Nikolay V. Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Alexander I. Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut (PCI), Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Galán MF, Conejero Jarque E, San Roman J. Optimization of pulse self-compression in hollow capillary fibers using decreasing pressure gradients. OPTICS EXPRESS 2022; 30:6755-6767. [PMID: 35299454 DOI: 10.1364/oe.451264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The improvement of techniques for the generation of near-infrared (NIR) few-cycle pulses is paving the way for new scenarios in time-resolved spectroscopy and the generation of ultrashort extreme-ultraviolet pulses through high-harmonic generation. In this work, we numerically study how to optimize the self-compression of NIR pulses using decreasing pressure gradients in hollow capillary fibers (HCFs). We identify a moderate nonlinear regime in which sub-cycle pulses are obtained with very good temporal quality from an input 30 fs pulse centered at a 800 nm wavelength and coupled as the fundamental mode of an argon-filled HCF fully evacuated at the output end. Surprisingly, we observe that there is a relatively broad region of parameters for which the optimum self-compression takes place, defined by a simple relation between the input pulse energy and the initial gas pressure.
Collapse
|
5
|
Fernández Galán M, Conejero Jarque E, San Roman J. Pulse self-compression down to the sub-cycle regime in hollow capillary fibers with decreasing pressure gradients. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226608003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We theoretically demonstrate an enhancement in the generation of clean, near-infrared sub-cycle laser pulses by soliton self-compression in gas-filled hollow capillary fibers using decreasing pressure gradients. Furthermore, we identify the optimal input parameters for high quality compression and the main advantages of this promising technique which paves the way towards ultrafast vacuum experiments.
Collapse
|
6
|
Cao H, Nagymihaly RS, Khodakovskiy N, Pajer V, Bohus J, Lopez-Martens R, Borzsonyi A, Kalashnikov M. Sub-7 fs radially-polarized pulses by post-compression in thin fused silica plates. OPTICS EXPRESS 2021; 29:5915-5922. [PMID: 33726123 DOI: 10.1364/oe.416201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We experimentally demonstrate the post-compression of radially polarized 25 fs pulses at 800 nm central wavelength in a multiple thin plate arrangement for the first time, to the best of our knowledge. Sub-7 fs pulses with 90 µJ energy were obtained after dispersion compensation, corresponding to a compression factor of more than 3.5. Preservation of radial polarization state was confirmed by polarized intensity distribution measurements. Linear projections of the radially polarized pulses were also fully characterized in the temporal domain.
Collapse
|
7
|
Crego A, Jarque EC, San Roman J. Ultrashort visible energetic pulses generated by nonlinear propagation of necklace beams in capillaries. OPTICS EXPRESS 2021; 29:929-937. [PMID: 33726318 DOI: 10.1364/oe.411338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The generation of ultrashort visible energetic pulses is investigated numerically by the nonlinear propagation of infrared necklace beams in capillaries. We have developed a (3+1)D model that solves the nonlinear propagation equation, including the complete spatio-temporal dynamics and the azimuthal dependence of these structured beams. Due to their singular nonlinear propagation, the spectrum broadening inside the capillary extends to the visible region in a controlled way, despite the high nonlinearity, avoiding self-focusing. The results indicate that the features of these necklace beams enable the formation of visible pulses with pulse duration below 10 fs and energies of 50 μJ by soliton self-compression dynamics for different gas pressures inside the capillary.
Collapse
|
8
|
Balla P, Bin Wahid A, Sytcevich I, Guo C, Viotti AL, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L'Huillier A, Arnold CL, Hartl I, Heyl CM. Postcompression of picosecond pulses into the few-cycle regime. OPTICS LETTERS 2020; 45:2572-2575. [PMID: 32356848 DOI: 10.1364/ol.388665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrate postcompression of 1.2 ps laser pulses to 13 fs via gas-based multipass spectral broadening. Our results yield a single-stage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power. The employed scheme represents a route toward compact few-cycle sources driven by industrial-grade Yb:YAG lasers at high average power.
Collapse
|
9
|
Detection and elimination of pulse train instabilities in broadband fibre lasers using dispersion scan. Sci Rep 2020; 10:7242. [PMID: 32350325 PMCID: PMC7190630 DOI: 10.1038/s41598-020-64109-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/31/2020] [Indexed: 11/25/2022] Open
Abstract
We use self-calibrating dispersion scan to experimentally detect and quantify the presence of pulse train instabilities in ultrashort laser pulse trains. We numerically test our approach against two different types of pulse instability, namely second-order phase fluctuations and random phase instability, where the introduction of an adequate metric enables univocally quantifying the amount of instability. The approach is experimentally demonstrated with a supercontinuum fibre laser, where we observe and identify pulse train instabilities due to nonlinear propagation effects under anomalous dispersion conditions in the photonic crystal fibre used for spectral broadening. By replacing the latter with an all-normal dispersion fibre, we effectively correct the pulse train instability and increase the bandwidth of the generated coherent spectrum. This is further confirmed by temporal compression and measurement of the output pulses down to 15 fs using dispersion scan.
Collapse
|
10
|
Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau JP, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T, Lopez-Martens R. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. LIGHT, SCIENCE & APPLICATIONS 2020; 9:47. [PMID: 32218918 PMCID: PMC7089946 DOI: 10.1038/s41377-020-0280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/01/2023]
Abstract
The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Collapse
Affiliation(s)
- Marie Ouillé
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
- Ardop Engineering, Cité de la Photonique, 11 Avenue de la Canteranne, bât. Pléione, 33600 Pessac, France
| | - Aline Vernier
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Frederik Böhle
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Maïmouna Bocoum
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Aurélie Jullien
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Magali Lozano
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Jean-Philippe Rousseau
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Zhao Cheng
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Dominykas Gustas
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Andreas Blumenstein
- Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Peter Simon
- Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Stefan Haessler
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Jérôme Faure
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Tamas Nagy
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - Rodrigo Lopez-Martens
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| |
Collapse
|
11
|
Crego A, Conejero Jarque E, San Roman J. Influence of the spatial confinement on the self-focusing of ultrashort pulses in hollow-core fibers. Sci Rep 2019; 9:9546. [PMID: 31267002 PMCID: PMC6606594 DOI: 10.1038/s41598-019-45940-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
The collapse of a laser beam propagating inside a hollow-core fiber is investigated by numerically solving different nonlinear propagation models. We have identified that the fiber confinement favors the spatial collapse, especially in case of pulses with the input peak power close to the critical value. We have also observed that when using pulses in the femtosecond range, the temporal dynamics plays an important role, activating the spatial collapse even for pulses with input peak powers below the critical value. The complex self-focusing dynamics observed in the region below the critical power depends on the temporal evolution of the pulse and, also, on the interaction between the different spatial modes of the hollow-core fiber.
Collapse
Affiliation(s)
- Aurora Crego
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, University of Salamanca, Salamanca, E-37008, Spain.
| | - Enrique Conejero Jarque
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, University of Salamanca, Salamanca, E-37008, Spain
| | - Julio San Roman
- Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, University of Salamanca, Salamanca, E-37008, Spain
| |
Collapse
|