1
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
2
|
Savard MM, Martineau C, Laganière J, Bégin C, Marion J, Smirnoff A, Stefani F, Bergeron J, Rheault K, Paré D, Séguin A. Nitrogen isotopes in the soil-to-tree continuum - Tree rings express the soil biogeochemistry of boreal forests exposed to moderate airborne emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146581. [PMID: 33774298 DOI: 10.1016/j.scitotenv.2021.146581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic N emissions represent a potential threat for forest ecosystems, and environmental indicators that provide insight into the changing forest N cycle are needed. Tree ring N isotopic ratios (δ15N) appear as a contentious choice for this role as the exact mechanisms behind tree-ring δ15N changes seldom benefit from a scrutiny of the soil-to-tree N continuum. This study integrates the results from the analysis of soil chemistry, soil microbiome genomics, and δ15N values of soil N compounds, roots, ectomycorrhizal (EcM) fungi and recent tree rings of thirteen white spruce trees sampled in five stands, from two regions exposed to moderate anthropogenic N emissions (3.9 to 8.1 kg/ha/y) with distinctive δ15N signals. Our results reveal that airborne anthropogenic N with distinct δ15N signals may directly modify the NO3- δ15N values in surface soils, but not the ones of NH4+, the preferred N form of the studied trees. Hence, the tree-ring δ15N values reflect specific soil N conditions and assimilation modes by trees. Along with a wide tree-ring δ15N range, we report differences in: soil nutrient content and N transformation rates; δ15N values of NH4+, total dissolved N (TDN) and EcM mantle enveloping the root tips; and bacterial and fungal community structures. We combine EcM mantle and root δ15N values with fungal identification to infer that hydrophobic EcM fungi transfer N from the dissolved organic N (DON) pool to roots under acidic conditions, and hydrophilic EcM fungi transfer various N forms to roots, which also assimilate N directly under less acidic conditions. Despite the complexities of soil biogeochemical properties and processes identified in the studied sites, in the end, the tree-ring δ15N averages inversely correlate with soil pH and anthropogenic N inputs, confirming white spruce tree-ring δ15N values as a suitable indicator for environmental research on forest N cycling.
Collapse
Affiliation(s)
- Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Christine Martineau
- Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| | - Jérôme Laganière
- Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Joëlle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Anna Smirnoff
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, 960 Avenue Carling, Ottawa, ON K1A 0C6, Canada
| | - Jade Bergeron
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Karelle Rheault
- Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| | - David Paré
- Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| | - Armand Séguin
- Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| |
Collapse
|
3
|
Gerwing TG, Hawkes VC. Similarity analyses in restoration ecology and how to improve their utility. Restor Ecol 2021. [DOI: 10.1111/rec.13368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Travis G. Gerwing
- Department of Biology University of Victoria Victoria British Columbia Canada
| | - Virgil C. Hawkes
- LGL Limited Environmental Research Associates Sidney British Columbia Canada
| |
Collapse
|
4
|
Edge TA, Baird DJ, Bilodeau G, Gagné N, Greer C, Konkin D, Newton G, Séguin A, Beaudette L, Bilkhu S, Bush A, Chen W, Comte J, Condie J, Crevecoeur S, El-Kayssi N, Emilson EJS, Fancy DL, Kandalaft I, Khan IUH, King I, Kreutzweiser D, Lapen D, Lawrence J, Lowe C, Lung O, Martineau C, Meier M, Ogden N, Paré D, Phillips L, Porter TM, Sachs J, Staley Z, Steeves R, Venier L, Veres T, Watson C, Watson S, Macklin J. The Ecobiomics project: Advancing metagenomics assessment of soil health and freshwater quality in Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135906. [PMID: 31926407 DOI: 10.1016/j.scitotenv.2019.135906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.
Collapse
Affiliation(s)
- Thomas A Edge
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Donald J Baird
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | | | - Nellie Gagné
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Charles Greer
- National Research Council Canada, Montreal, Quebec, Canada
| | - David Konkin
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Glen Newton
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | - Lee Beaudette
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Satpal Bilkhu
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Alexander Bush
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Wen Chen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Jérôme Comte
- Environment and Climate Change Canada, Burlington, Ontario, Canada; Institut National de la Recherche Scientifique, Québec, Québec, Canada
| | - Janet Condie
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | | | | | - Erik J S Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Donna-Lee Fancy
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Iyad Kandalaft
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ian King
- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - David Kreutzweiser
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - David Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - John Lawrence
- Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Christine Lowe
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Oliver Lung
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | - Matthew Meier
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Nicholas Ogden
- Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - David Paré
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Lori Phillips
- Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Teresita M Porter
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada; Biodiversity Institute of Ontario, University of Guelph, Ontario, Canada
| | - Joel Sachs
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Zachery Staley
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Royce Steeves
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Lisa Venier
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Teodor Veres
- National Research Council Canada, Ottawa, Ontario, Canada
| | - Cynthia Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Susan Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - James Macklin
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Wildlife usage indicates increased similarity between reclaimed upland habitat and mature boreal forest in the Athabasca Oil Sands Region of Alberta, Canada. PLoS One 2019; 14:e0217556. [PMID: 31163043 PMCID: PMC6548362 DOI: 10.1371/journal.pone.0217556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
While there is no denying that oil sands development in the Athabasca Oil Sands Region (AOSR) has large impacts upon the habitat it disturbs, developers are legally required to return this land to “an equivalent land capability.” While still early in the process of reclamation, land undergoing reclamation offers an opportunity to study factors influencing reclamation success, as well as how reclaimed ecosystems function. As such, an Early Successional Wildlife Dynamics (ESWD) program was created to study how wildlife return to and use reclaimed upland boreal habitat in the AOSR. Wildlife data comprising 182 taxa of mammals, birds, and amphibians, collected between 2011 and 2017 and from five oil sands leases, were compared from multiple habitat types (burned [BRN], cleared [CLR], compensation lakes [COMP], logged [LOG], mature forest [MF], and reclaimed sites [REC]). Overall, similarity of wildlife communities in REC and MF plots varied greatly, even at 33 years since reclamation (31–62% with an average of 52%). However, an average community similarity of 52% so early in the successional process suggests that current reclamation efforts are progressing towards increased similarity compared to mature forest plots. Conversely, our data suggest that REC plots are recovering differently than plots impacted by natural (BRN) or other anthropogenic disturbances (LOG), which is likely due to differences associated with soil reconstruction and development on reclaimed plots. Regardless of the developmental trajectory of reclaimed habitats, progression towards increased wildlife community similarity at REC and MF plots is apparent in our data. While there is no expectation that reclaimed upland habitats will resemble or function identically to naturally occurring boreal forest, the degree of similarity observed in our study suggests that comparable ecological functionality is possible, increasing the probability that oil sands operators will be able to fulfill their regulatory requirements and duty to reclaim regarding wildlife and wildlife habitat.
Collapse
|
6
|
Scott N, Pec GJ, Karst J, Landhäusser SM. Additive or synergistic? Early ectomycorrhizal fungal community response to mixed tree plantings in boreal forest reclamation. Oecologia 2018; 189:9-19. [PMID: 30094634 DOI: 10.1007/s00442-018-4241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Ectomycorrhizal fungi are an important component to ecosystem function in the boreal forest. Underlying factors influencing fungal community composition and richness, such as host identity and soil type have been studied, but interactions between these factors have been less explored. Furthermore, mixed-species stands may have additive or synergistic effects on ectomycorrhizal fungi species richness, but this effect is challenging to test on natural sites due to difficulty in finding monospecific and mixed-species stands with similar site conditions and history. Forest reclamation areas can provide an opportunity to explore some of these fundamental questions, as site conditions and history are often known and managed, with the added benefit that knowledge emerging from these studies can be used to evaluate the recovery of degraded forest landscapes. Here, we compared the richness and composition of ectomycorrhizal fungi in young single- and mixed-species stands established on a reclamation area designed to inform strategies to restore upland boreal forests disturbed by oil sands mining. Seedlings of three host tree species (Populus tremuloides, Pinus banksiana, Picea glauca) were planted in single- and mixed-species stands on three different salvaged soils (forest floor material, peat, subsoil). After four growing seasons, there was no difference in total ectomycorrhizal fungi species richness and composition in mixed- versus combined single-species stands indicating that an additive effect of host tree species prevailed early in development. However, there were compositional shifts in fungal communities across both the host tree species and the salvaged soil type, with soil type being the strongest driver.
Collapse
Affiliation(s)
- Natalie Scott
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.
| | - Gregory J Pec
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
7
|
Coarse Woody Debris as a Land Reclamation Amendment at an Oil Sands Mining Operation in Boreal Alberta, Canada. SUSTAINABILITY 2018. [DOI: 10.3390/su10051640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|