1
|
Seibt T, Wahida A, Hoeft K, Kemmner S, Linkermann A, Mishima E, Conrad M. The biology of ferroptosis in kidney disease. Nephrol Dial Transplant 2024; 39:1754-1761. [PMID: 38684468 DOI: 10.1093/ndt/gfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on one hand and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.
Collapse
Affiliation(s)
- Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Clinic of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
2
|
Berger M, Baliker M, Van Gelder T, Böhmig GA, Mannon RB, Kumar D, Chadban S, Nickerson P, Lee LA, Djamali A. Chronic Active Antibody-mediated Rejection: Opportunity to Determine the Role of Interleukin-6 Blockade. Transplantation 2024; 108:1109-1114. [PMID: 37941113 PMCID: PMC11042519 DOI: 10.1097/tp.0000000000004822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 11/10/2023]
Abstract
Chronic active antibody-mediated rejection (caAMR) is arguably the most important cause of late kidney allograft failure. However, there are no US Food and Drug Administration (FDA)-approved treatments for acute or chronic AMR and there is no consensus on effective treatment. Many trials in transplantation have failed because of slow and/or inadequate enrollment, and no new agent has been approved by the FDA for transplantation in over a decade. Several lines of evidence suggest that interleukin-6 is an important driver of AMR, and clazakizumab, a humanized monoclonal antibody that neutralizes interleukin-6, has shown promising results in phase 2 studies. The IMAGINE trial (Interleukin-6 Blockade Modifying Antibody-mediated Graft Injury and Estimated Glomerular Filtration Rate Decline) (NCT03744910) is the first to be considered by the FDA using a reasonably likely surrogate endpoint (slope of estimated glomerular filtration rate decline >1 y) for accelerated approval and is the only ongoing clinical trial for the treatment of chronic rejection. This trial offers us the opportunity to advance the care for our patients in need, and this article is a call to action for all transplant providers caring for patients with caAMR.
Collapse
Affiliation(s)
- Mel Berger
- Departments of Pediatrics and Pathology, Case Western Reserve University, Cleveland, OH
| | | | - Teun Van Gelder
- Department Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roslyn B. Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Deepali Kumar
- Department of Medicine, Division of Transplant Infectious Disease, Ajmera Transplant Centre, Toronto, ON, Canada
| | - Steve Chadban
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter Nickerson
- Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Laurie A. Lee
- Research and Development, Transplant Therapeutic Area, CSL Behring, King of Prussia, Pennsylvania, PA
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center, Portland, ME
| |
Collapse
|
3
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Pottebaum AA, January SE, Liu C, Lavine S, Schilling JD, Lavine KJ. Feasibility of Interleukin-6 Receptor Blockade in Cardiac Antibody-mediated Rejection. Transplantation 2024; 108:539-544. [PMID: 37638881 PMCID: PMC10798586 DOI: 10.1097/tp.0000000000004784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) remains a significant cause of heart transplant mortality with few effective therapies. METHODS This study aimed to describe initial experience of using interleukin-6 receptor blockade with tocilizumab in the treatment of acute cardiac AMR at Barnes-Jewish Hospital/Washington University Transplant Center from July 2017 to May 2021 (n = 7). Clinical, echocardiographic, and serum alloantibody data were analyzed before and after treatment. RESULTS All participants demonstrated marked improvement in functional status. Echocardiographic data following 4-6 mo of tocilizumab revealed significant improvements in biventricular systolic function for all participants. Consistent reductions in donor-specific HLA or angiotensin type I receptor antibodies were not observed, suggesting that tocilizumab may act downstream of antibody production. No patient experienced drug-related complications that necessitated discontinuation of therapy. CONCLUSIONS These findings provide initial insights into the safety and efficacy of interleukin-6 receptor blockade in the treatment of cardiac AMR and support the design of larger prospective studies.
Collapse
Affiliation(s)
| | | | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Steven Lavine
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Joel D Schilling
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
Wang W, Kang L, Li H, Sha X, Li J, He S. Identification of potential biomarkers associated with CD4 + T cell infiltration in myocardial ischemia-reperfusion injury using bioinformation analysis. J Thorac Dis 2023; 15:5613-5624. [PMID: 37969273 PMCID: PMC10636474 DOI: 10.21037/jtd-23-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is often part of clinical events such as cardiac arrest, resuscitation, and reperfusion after coronary artery occlusion. Recently, more and more studies have shown that the immune microenvironment is an integral part of ischemia-reperfusion injury (IRI), and CD4+ T-cell infiltration plays an important role, but there are no relevant molecular targets for clinical diagnosis and treatment. Methods The transcriptome data and matched group information were retrieved from the Gene Expression Omnibus (GEO) database. The ImmuCellAI-mouse (Immune Cell Abundance Identifier for mouse) algorithm was used to calculate each symbol's CD4+ T cell infiltration score. The time period with the greatest change in the degree of CD4+ T cell infiltration [ischemia-reperfusion 6 hours (IR6h)-ischemia-reperfusion 24 hours (IR24h)] was selected for the next analysis. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to screen out CD4+ T cell-related genes and from which the gene CLEC5A was screened for the highest correlation with CD4+ T cell infiltration. The potential regulatory mechanism of CD4+ T cells in MIRI was discussed through various enrichment analysis. Finally, we analyzed the expression and molecular function (MF) of CLEC5A and its related genes in MIRI. Results A total of 406 CD4+ T cell-related genes were obtained by intersecting the results of WGCNA and differential expression analysis. Functional enrichment analysis indicated that the CD4+ T cell-related genes were mainly involved in chemokine signaling pathway and cell cycle. By constructing a protein-protein interaction (PPI) network, a total of 12 hub genes were identified as candidate genes for further analysis. Through the correlation analysis between the 12 candidate genes found in the PPI network and CD4+ T cell infiltration fraction, we determined the core gene CLEC5A. Finally, a gene interaction network was constructed to decipher the biological functions of CLEC5A using GeneMANIA. Conclusions In this study, RNA sequencing (RNA-Seq) data at different time points after reperfusion were subjected to a series of bioinformatics methods such as PPI network, WGCNA module, etc., and CLEC5A, a pivotal gene associated with CD4+ T-cells, was found, which may serve as a new target for diagnosis or treatment.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Shandong University, Jinan, China
| | - Li Kang
- School of Public Health, Nantong University, Nantong, China
| | - Houqiang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyu Sha
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuai He
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
7
|
Jeyamogan S, Leventhal JR, Mathew JM, Zhang ZJ. CD4 +CD25 +FOXP3 + regulatory T cells: a potential "armor" to shield "transplanted allografts" in the war against ischemia reperfusion injury. Front Immunol 2023; 14:1270300. [PMID: 37868962 PMCID: PMC10587564 DOI: 10.3389/fimmu.2023.1270300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Despite the advances in therapeutic interventions, solid organ transplantation (SOT) remains the "gold standard" treatment for patients with end-stage organ failure. Recently, vascularized composite allotransplantation (VCA) has reemerged as a feasible treatment option for patients with complex composite tissue defects. In both SOT and VCA, ischemia reperfusion injury (IRI) is inevitable and is a predominant factor that can adversely affect transplant outcome by potentiating early graft dysfunction and/or graft rejection. Restoration of oxygenated blood supply to an organ which was previously hypoxic or ischemic for a period of time triggers cellular oxidative stress, production of both, pro-inflammatory cytokines and chemokines, infiltration of innate immune cells and amplifies adaptive alloimmune responses in the affected allograft. Currently, Food and Drug Administration (FDA) approved drugs for the treatment of IRI are unavailable, therefore an efficacious therapeutic modality to prevent, reduce and/or alleviate allograft damages caused by IRI induced inflammation is warranted to achieve the best-possible transplant outcome among recipients. The tolerogenic capacity of CD4+CD25+FOXP3+ regulatory T cells (Tregs), have been extensively studied in the context of transplant rejection, autoimmunity, and cancer. It was not until recently that Tregs have been recognized as a potential cell therapeutic candidate to be exploited for the prevention and/or treatment of IRI, owing to their immunomodulatory potential. Tregs can mitigate cellular oxidative stress, produce anti-inflammatory cytokines, promote wound healing, and tissue repair and prevent the infiltration of pro-inflammatory immune cells in injured tissues. By using strategic approaches to increase the number of Tregs and to promote targeted delivery, the outcome of SOT and VCA can be improved. This review focuses on two sections: (a) the therapeutic potential of Tregs in preventing and mitigating IRI in the context of SOT and VCA and (b) novel strategies on how Tregs could be utilized for the prevention and/or treatment of IRI.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Microsurgery and Pre-Clinical Research Core, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Betjes MGH, De Weerd A. Lowering maintenance immune suppression in elderly kidney transplant recipients; connecting the immunological and clinical dots. Front Med (Lausanne) 2023; 10:1215167. [PMID: 37502354 PMCID: PMC10368955 DOI: 10.3389/fmed.2023.1215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
The management of long-term immune suppressive medication in kidney transplant recipients is a poorly explored field in the area of transplant medicine. In particular, older recipients are at an increased risk for side effects and have an exponentially increased risk of infection-related death. In contrast, an aged immune system decreases the risk of acute T-cell-mediated rejection in older recipients. Recent advances in alloimmunity research have shown a rapid and substantial decline in polyfunctional, high-risk CD4+ T cells post-transplantation. This lowers the direct alloreactivity responsible for T-cell-mediated rejection, also known as donor-specific hyporesponsiveness. Chronic antibody-mediated rejection (c-aABMR) is the most frequent cause of kidney graft loss in the long term. However, in older adults, c-aABMR as a cause of graft loss is outnumbered by death with a functioning graft. In addition, DSA development and a diagnosis of c-aABMR plateau ~10 years after transplantation, resulting in a very low risk for rejection thereafter. The intensity of immune suppression regimes could likely be reduced accordingly, but trials in this area are scarce. Tacrolimus monotherapy for 1 year after transplantation seems feasible in older kidney transplant recipients with standard immunological risk, showing the expected benefits of fewer infections and better vaccination responses.
Collapse
|
9
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
10
|
Holmström EJ, Syrjälä SO, Dhaygude K, Tuuminen R, Krebs R, Nykänen A, Lemström KB. Severe primary graft dysfunction of the heart transplant is associated with increased plasma and intragraft proinflammatory cytokine expression. J Heart Lung Transplant 2023; 42:807-818. [PMID: 36754701 DOI: 10.1016/j.healun.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/11/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Heart transplant results have constantly improved but primary left ventricle graft dysfunction (LV-PGD) remains a devastating complication early after transplantation. Donor and recipient systemic inflammatory response may be involved in immune activation of the transplant, and LV-PGD development. Here, we investigated donor and recipient plasma and intragraft cytokine profiles preoperatively and during LV-PGD and searched for predictive markers for LV-PGD. METHODS Donor and recipient plasma samples (n = 74) and myocardial biopsies of heart transplants (n = 64) were analyzed. Plasma and intragraft cytokine levels were determined by multiplexed and next-generation sequencing platforms, respectively. The development of LV-PGD during the first 24 hours, and graft function and mortality up to 1 year after transplantation, were examined. RESULTS Severe LV-PGD, but not mild or moderate LV-PGD, was significantly associated with early mortality, plasma high-sensitivity troponin elevation, and an increase in intragraft and plasma proinflammatory cytokines during reperfusion. Preoperative donor and recipient plasma cytokine levels failed to predict LV-PGD. Cytokine network analysis identified interleukins -6, -8, -10, and -18 as key players during reperfusion. Prolonged cold and total ischemia time, and increased need for red blood cell transfusions during operation were identified as clinical risk factors for severe LV-PGD. CONCLUSIONS Severe LV-PGD was associated with a poor clinical outcome. Donor and recipient plasma cytokine profile failed to predict LV-PGD, but severe LV-PGD was associated with an increase in post-reperfusion intragraft and recipient plasma proinflammatory cytokines. Identified key cytokines may be potential therapeutic targets to improve early and long-term outcomes after heart transplantation.
Collapse
Affiliation(s)
- Emil J Holmström
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland.
| | - Simo O Syrjälä
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Department of Cardiothoracic Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Kishor Dhaygude
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Raimo Tuuminen
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Rainer Krebs
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | - Antti Nykänen
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Department of Cardiothoracic Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Karl B Lemström
- Translational Immunology Research Program, Transplantation Laboratory, University of Helsinki, Helsinki, Finland; Department of Cardiothoracic Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Khairallah P, Robbins-Juarez S, Patel S, Shah V, Toma K, Fernandez H, Dube GK, King K, Mohan S, Husain SA, Morris H, Crew RJ. Tocilizumab for the treatment of chronic antibody mediated rejection in kidney transplant recipients. Clin Transplant 2023; 37:e14853. [PMID: 36398915 DOI: 10.1111/ctr.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/28/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic active antibody-mediated rejection (CAAMR) constitutes a dominant form of late allograft failure. Several treatment strategies directed at CAAMR have been attempted but proven ineffective at delaying kidney function decline or reducing donor-specific antibodies (DSA). We describe our single-center experience using tocilizumab in patients with CAAMR. METHODS This is a retrospective analysis using electronic medical records. 38 kidney transplant recipients at Columbia University Irving Medical Center who had been prescribed tocilizumab and followed for at least 3 months between August 2013 through December 2019 were included. RESULTS Tocilizumab use was associated with a decrease in the rate of estimated glomerular filtration rate (eGFR) decline in the 6 months following treatment initiation as compared to the 3 months before tocilizumab was initiated (difference between slopes before and after initiation of treatment = 2.6 mL/min/1.73 m2 (SE = .8, p = .002) per month for up to 6 months following Tocilizumab initiation). Allograft biopsies showed significant improvement in interstitial inflammation scores (score 1(0,1) to 0 (0,1), p = .03) while other histologic scores remained stable. There was no significant change in proteinuria or DSA titers post-treatment with tocilizumab. CONCLUSIONS Treatment of CAAMR with tocilizumab was associated with a decrease in the rate of eGFR decline and a reduction in interstitial inflammation scores in patients with CAAMR.
Collapse
Affiliation(s)
| | - Shelief Robbins-Juarez
- Department of Internal Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Shefali Patel
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vaqar Shah
- Department of Medicine, SUNY University at Buffalo, Buffalo, New York, USA
| | - Katherine Toma
- Jersey Coast Nephrology and Hypertension Associates, Brick, New Jersey, USA
| | - Hilda Fernandez
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Geoffrey K Dube
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Kristen King
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sumit Mohan
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Syed Ali Husain
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Heather Morris
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Russell John Crew
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 2023; 19:23-37. [PMID: 36253509 PMCID: PMC9575643 DOI: 10.1038/s41581-022-00633-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Willem J. M. Mulder
- grid.6852.90000 0004 0398 8763Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.59734.3c0000 0001 0670 2351Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joren C. Madsen
- grid.32224.350000 0004 0386 9924Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA USA
| | - Mihai G. Netea
- grid.10417.330000 0004 0444 9382Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10388.320000 0001 2240 3300Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Miller CL, Madsen JC. Targeting IL-6 to prevent cardiac allograft rejection. Am J Transplant 2022; 22 Suppl 4:12-17. [PMID: 36453706 PMCID: PMC10191185 DOI: 10.1111/ajt.17206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
Abstract
Outcomes following heart transplantation remain suboptimal with acute and chronic rejection being major contributors to poor long-term survival. IL-6 is increasingly recognized as a critical pro-inflammatory cytokine involved in allograft injury and has been shown to play a key role in regulating the inflammatory and alloimmune responses following heart transplantation. Therapies that inhibit IL-6 signaling have emerged as promising strategies to prevent allograft rejection. Here, we review experimental and pre-clinical evidence that supports the potential use of IL-6 signaling blockade to improve outcomes in heart transplant recipients.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Tang PC, Haft JW, Lei I, Wang Z, Chen YE, Abou El Ela A, Wu X, Pitt B, Aaronson KD, Pagani FD. Impact of donor blood type on outcomes after prolonged allograft ischemic times. J Thorac Cardiovasc Surg 2022; 164:981-993.e8. [PMID: 33558115 PMCID: PMC11170339 DOI: 10.1016/j.jtcvs.2020.12.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The study objective was to determine the influence of allograft ischemic time on heart transplant outcomes among ABO donor organ types given limited prior reports of its survival impact. METHODS We identified 32,454 heart transplants (2000-2016) from the United Network for Organ Sharing database. Continuous and categoric variables were analyzed by parametric and nonparametric testing. Survival was determined using log-rank or Cox regression tests. Propensity matching adjusted for preoperative variables. RESULTS By comparing allograft ischemic time less than 4 hours (n = 6579) with 4 hours or more (n = 25,875), the hazard ratios for death at 15 years after prolonged ischemic time (≥4 hours) for blood types O, A, B, and AB were 1.106 (P < .001), 1.062 (P < .001), 1.059 (P = .062), and 1.114 (P = .221), respectively. Unadjusted data demonstrated higher mortality for transplantation of O versus non-O donor hearts for ischemic time 4 hours or more (hazard ratio, 1.164; P < .001). After propensity matching, O donor hearts continued to have worse survival if preserved for 4 hours or more (hazard ratio, 1.137, P = .008), but not if ischemic time was less than 4 hours (hazard ratio, 1.042, P = .113). In a matched group with 4 hours or more of ischemic time, patients receiving O donor organs were more likely to experience death from primary graft dysfunction (2.5% vs 1.7%, P = .052) and chronic allograft rejection (1.9% vs 1.1%, P = .021). No difference in death from primary graft dysfunction or chronic allograft rejection was seen with less than 4 hours of ischemic time (P > .150). CONCLUSIONS Compared with non-O donor hearts, transplantation with O donor hearts with ischemic time 4 hours or more leads to worse survival, with higher rates of primary graft dysfunction and chronic rejection. Caution should be practiced when considering donor hearts with the O blood type when anticipating extended cold ischemic times.
Collapse
Affiliation(s)
- Paul C Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich.
| | - Jonathan W Haft
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich; Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Ashraf Abou El Ela
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Xiaoting Wu
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Bertram Pitt
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| |
Collapse
|
15
|
Ravichandran R, Itabashi Y, Fleming T, Bansal S, Bowen S, Poulson C, Bharat A, Bremner R, Smith M, Mohanakumar T. Low-dose IL-2 prevents murine chronic cardiac allograft rejection: Role for IL-2-induced T regulatory cells and exosomes with PD-L1 and CD73. Am J Transplant 2022; 22:2180-2194. [PMID: 35603986 DOI: 10.1111/ajt.17101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
To determine the effects and immunological mechanisms of low-dose interleukin-2 (IL-2) in a murine model of chronic cardiac allograft rejection (BALB/c to C57BL/6) after costimulatory blockade consisting of MR1 (250 μg/ip day 0) and CTLA4-Ig (200 μg/ip day 2), we administered low-dose IL-2 (2000 IU/day) starting on posttransplant day 14 for 3 weeks. T regulatory (Treg) cell infiltration of the grafts was determined by immunohistochemistry; circulating exosomes by western blot and aldehyde bead flow cytometry; antibodies to donor MHC by immunofluorescent staining of donor cells; and antibodies to cardiac self-antigens (myosin, vimentin) by ELISA. We demonstrated that costimulation blockade after allogeneic heart transplantation induced circulating exosomes containing cardiac self-antigens and antibodies to both donor MHC and self-antigens, leading to chronic rejection by day 45. Treatment with low-dose IL-2 prolonged allograft survival (>100 days), prevented chronic rejection, and induced splenic and graft-infiltrating CD4+ CD25+ Foxp3 Treg cells by day 45 and circulating exosomes (Foxp3+) with PD-L1 and CD73. MicroRNA 142, associated with the TGFβ pathway, was significantly downregulated in exosomes from IL-2-treated mice. In conclusion, low-dose IL-2 delays rejection in a murine model of chronic cardiac allograft rejection and also induces graft-infiltrating Tregs and circulating exosomes with immunoregulatory molecules.
Collapse
Affiliation(s)
| | - Yoshihiro Itabashi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Sara Bowen
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christin Poulson
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ankit Bharat
- Department of surgery, Northwestern University, Chicago, Illinois, USA
| | - Ross Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | |
Collapse
|
16
|
Gentherapie der Transplantatvaskulopathie. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022. [DOI: 10.1007/s00398-022-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
18
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front Immunol 2022; 13:917972. [PMID: 35874716 PMCID: PMC9296838 DOI: 10.3389/fimmu.2022.917972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
Collapse
Affiliation(s)
- Andreas Schroeter
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian J. Roesel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yao Xiao
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
21
|
Guo Z, Zhao Q, Huang S, Huang C, Wang D, Yang L, Zhang J, Chen M, Wu L, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Sun C, Xiong W, Shen Y, Chen X, Xu J, Wang T, Ma Y, Hu A, Chen Y, Zhu X, Rong J, Cai C, Gong F, Guan X, Huang W, Ko DSC, Li X, Tullius SG, Huang J, Ju W, He X. Ischaemia-free liver transplantation in humans: a first-in-human trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 16:100260. [PMID: 34590063 PMCID: PMC8406025 DOI: 10.1016/j.lanwpc.2021.100260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Background Ischaemia-reperfusion injury is considered an inevitable component of organ transplantation, compromising organ quality and outcomes. Although several treatments have been proposed, none has avoided graft ischaemia and its detrimental consequences. Methods Ischaemia-free liver transplantation (IFLT) comprises surgical techniques enabling continuous oxygenated blood supply to the liver of brain-dead donor during procurement, preservation, and implantation using normothermic machine perfusion technology. In this non-randomised study, 38 donor livers were transplanted using IFLT and compared to 130 conventional liver transplants (CLT). Findings Two recipients (5•3%) in the IFLT group experienced early allograft dysfunction, compared to 50•0% in patients receiving conventional transplants (absolute risk difference, 44•8%; 95% confidence interval, 33•6-55•9%). Recipients of IFLT had significantly reduced median (IQR) peak aspartate aminotransferase levels within the first week compared to CLT recipients (365, 238-697 vs 1445, 791-3244 U/L, p<0•001); likewise, median total bilirubin levels on day 7 were significantly lower (2•34, 1•39-4•09 mg/dL) in the IFLT group than in the CLT group (5•10, 1•90-11•65 mg/dL) (p<0•001). Moreover, IFLT recipients had a shorter median intensive care unit stay (1•48, 0•75-2•00 vs 1•81, 1•00-4•58 days, p=0•006). Both one-month recipient (97•4% vs 90•8%, p=0•302) and graft survival (97.4% vs 90•0%, p=0•195) were better for IFLT than CLT, albeit differences were not statistically significant. Subgroup analysis showed that the extended criteria donor livers transplanted using the IFLT technique yielded faster post-transplant recovery than did the standard criteria donor livers transplanted using the conventional approach. Interpretation IFLT provides a novel approach that may improve outcomes, and allow the successful utilisation of extended criteria livers. Funding This study was funded by National Natural Science Foundation of China, Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, and Guangdong Provincial international Cooperation Base of Science and Technology. Panel: Research in context.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510080, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Wei Xiong
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuekun Shen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiang Chen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Tielong Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anaesthesia Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenqi Huang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dicken Shiu-Chung Ko
- Department of Surgery, Steward St. Elizabeth's Medical Centre, Tufts University School of Medicine, Boston, MA 02115, USA
| | - Xianchang Li
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
- Immunobiology and Transplant Science Centre, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiefu Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| |
Collapse
|
22
|
Koritzinsky EH, Tsuda H, Fairchild RL. Endogenous memory T cells with donor-reactivity: early post-transplant mediators of acute graft injury in unsensitized recipients. Transpl Int 2021; 34:1360-1373. [PMID: 33963616 PMCID: PMC8389524 DOI: 10.1111/tri.13900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
The pretransplant presence of endogenous donor-reactive memory T cells is an established risk factor for acute rejection and poorer transplant outcomes. A major source of these memory T cells in unsensitized recipients is heterologously generated memory T cells expressing reactivity to donor allogeneic MHC molecules. Multiple clinical studies have shown that the pretransplant presence of high numbers of circulating endogenous donor-reactive memory T cells correlates with higher incidence of acute rejection and decreased graft function during the first-year post-transplant. These findings have spurred investigation in preclinical models to better understand mechanisms underlying endogenous donor-reactive memory T-cell-mediated allograft injury in unsensitized graft recipients. These studies have led to the identification of unique mechanisms underlying the activation of these memory T cells within allografts at early times after transplant. In particular, optimal activation to mediate acute allograft injury is dependent on the intensity of ischaemia-reperfusion injury. Therapeutic strategies directed at the recruitment and activation of endogenous donor-reactive memory T cells are effective in attenuating acute injury in allografts experiencing increased ischaemia-reperfusion injury in preclinical models and should be translatable to clinical transplantation.
Collapse
Affiliation(s)
- Erik H. Koritzinsky
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hidetoshi Tsuda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
23
|
Zhao J, Jiang L, Uehara M, Banouni N, Al Dulaijan BS, Azzi J, Ichimura T, Li X, Jarolim P, Fiorina P, Tullius SG, Madsen JC, Kasinath V, Abdi R. ACTH treatment promotes murine cardiac allograft acceptance. JCI Insight 2021; 6:e143385. [PMID: 34236047 PMCID: PMC8410061 DOI: 10.1172/jci.insight.143385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4–Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Collapse
Affiliation(s)
- Jing Zhao
- Transplantation Research Center.,Renal Division, and
| | - Liwei Jiang
- Transplantation Research Center.,Renal Division, and
| | - Mayuko Uehara
- Transplantation Research Center.,Renal Division, and
| | - Naima Banouni
- Transplantation Research Center.,Renal Division, and
| | | | - Jamil Azzi
- Transplantation Research Center.,Renal Division, and
| | | | - Xiaofei Li
- Transplantation Research Center.,Renal Division, and
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fiorina
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,International Center for Type 1 Diabetes, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, and.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Reza Abdi
- Transplantation Research Center.,Renal Division, and
| |
Collapse
|
24
|
Lassiter R, Merchen TD, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol 2021; 12:671025. [PMID: 34305900 PMCID: PMC8293746 DOI: 10.3389/fimmu.2021.671025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Renal tubular epithelial cells (TECs) are the primary targets of ischemia-reperfusion injury (IRI) and rejection by the recipient's immune response in kidney transplantation (KTx). However, the molecular mechanism of rejection and IRI remains to be identified. Our previous study demonstrated that kynurenine 3-monooxygenase (KMO) and kynureninase were reduced in ischemia-reperfusion procedure and further decreased in rejection allografts among mismatched pig KTx. Herein, we reveal that TEC injury in acutely rejection allografts is associated with alterations of Bcl2 family proteins, reduction of tight junction protein 1 (TJP1), and TEC-specific KMO. Three cytokines, IFN γ , TNFα, and IL1β, reported in our previous investigation were identified as triggers of TEC injury by altering the expression of Bcl2, BID, and TJP1. Allograft rejection and TEC injury were always associated with a dramatic reduction of KMO. 3HK and 3HAA, as direct and downstream products of KMO, effectively protected TEC from injury via increasing expression of Bcl-xL and TJP1. Both 3HK and 3HAA further prevented allograft rejection by inhibiting T cell proliferation and up-regulating aryl hydrocarbon receptor expression. Pig KTx with the administration of DNA nanoparticles (DNP) that induce expression of indoleamine 2,3-dioxygenase (IDO) and KMO to increase 3HK/3HAA showed an improvement of allograft rejection as well as murine skin transplant in IDO knockout mice with the injection of 3HK indicated a dramatic reduction of allograft rejection. Taken together, our data provide strong evidence that reduction of KMO in the graft is a key mediator of allograft rejection and loss. KMO can effectively improve allograft outcome by attenuating allograft rejection and maintaining graft barrier function.
Collapse
Affiliation(s)
- Randi Lassiter
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Todd D. Merchen
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xuexiu Fang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Youli Wang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Abstract
Purpose of Review IL-6 is a pleiotropic, pro-inflammatory cytokine that plays an integral role in the development of acute and chronic rejection after solid organ transplantation. This article reviews the experimental evidence and current clinical application of IL-6/IL-6 receptor (IL-6R) signaling inhibition for the prevention and treatment of allograft injury. Recent Findings There exists a robust body of evidence linking IL-6 to allograft injury mediated by acute inflammation, adaptive cellular/humoral responses, innate immunity, and fibrosis. IL-6 promotes the acute phase reaction, induces B cell maturation/antibody formation, directs cytotoxic T-cell differentiation, and inhibits regulatory T-cell development. Importantly, blockade of the IL-6/IL-6R signaling pathway has been shown to mitigate its harmful effects in experimental studies, particularly in models of kidney and heart transplant rejection. Currently, available agents for IL-6 signaling inhibition include monoclonal antibodies against IL-6 or IL-6R and janus kinase inhibitors. Recent clinical trials have investigated the use of tocilizumab, an anti-IL-6R mAb, for desensitization and treatment of antibody-mediated rejection (AMR) in kidney transplant recipients, with promising initial results. Further studies are underway investigating the use of alternative agents including clazakizumab, an anti-IL-6 mAb, and application of IL-6 signaling blockade to clinical cardiac transplantation. Summary IL-6/IL-6R signaling inhibition provides a novel therapeutic option for the prevention and treatment of allograft injury. To date, evidence from clinical trials supports the use of IL-6 blockade for desensitization and treatment of AMR in kidney transplant recipients. Ongoing and future clinical trials will further elucidate the role of IL-6 signaling inhibition in other types of solid organ transplantation.
Collapse
|
26
|
van der List ACJ, Litjens NHR, Klepper M, Betjes MGH. Expression of Senescence Marker TIGIT Identifies Polyfunctional Donor-Reactive CD4+ T Cells Preferentially Lost After Kidney Transplantation. Front Immunol 2021; 12:656846. [PMID: 33995373 PMCID: PMC8119878 DOI: 10.3389/fimmu.2021.656846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Development of T-cell hyporesponsiveness to donor antigen may explain the substantial decreased risk for acute rejection in the years following kidney transplantation. The underlying mechanisms of donor-specific hyporesponsiveness (DSH) are largely unknown but may allow for lowering of immunosuppressive medication. Due to the onset of DSH being more rapid and pronounced in older recipients (+55 years), we hypothesized that immunosenescence/exhaustion of T lymphocytes would be a contributing factor. This study tested whether donor-reactive recipient T cells become hyporesponsive due to exhaustion from continuous stimulation by donor antigen. Circulating donor-reactive T cells of both young and elderly stable kidney transplant recipients (N=17) before and 3-5 years after transplantation were analyzed at the single cell level for expression of exhaustion markers by multi-parameter flow cytometry followed by unsupervised and unbiased clustering. Clusters containing cells of a particular expression profile with significant differential abundance after transplantation were identified and further analyzed. Unexpectedly, our results do not demonstrate an increase in exhausted donor antigen-reactive T cells post transplantation. Instead, we demonstrate a significant decrease in donor antigen-reactive CD4+ T cells expressing T cell immunoglobulin and ITIM domain (TIGIT) long after transplantation. Further analysis at earlier timepoints indicated that this decrease is already present at six months post transplantation. Characterization of these CD4+ T donor-reactive cells expressing TIGIT revealed them to have a predominantly central and effector memory T cell phenotype and a highly poly-functional cytokine expression profile. This study has therefore identified TIGIT as a marker for a previously undescribed polyfunctional donor-reactive CD4+ T cell population whose decline following kidney transplantation may explain development of DSH.
Collapse
Affiliation(s)
- Amy C J van der List
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Mariska Klepper
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
27
|
Lee JY, Arumugarajah S, Lian D, Maehara N, Haig AR, Suri RS, Miyazaki T, Gunaratnam L. Recombinant apoptosis inhibitor of macrophage protein reduces delayed graft function in a murine model of kidney transplantation. PLoS One 2021; 16:e0249838. [PMID: 33891625 PMCID: PMC8064555 DOI: 10.1371/journal.pone.0249838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Reperfusion injury following cold and warm ischemia (IRI) is unavoidable during kidney transplantation and contributes to delayed graft function (DGF) and premature graft loss. Death of tubular epithelial cells (TECs) by necrosis during IRI releases pro-inflammatory mediators (e.g. HMGB1), propagating further inflammation (necroinflammation) and tissue damage. Kidney Injury Molecule-1 (KIM-1) is a phagocytic receptor upregulated on proximal TECs during acute kidney injury. We have previously shown that renal KIM-1 protects the graft against transplant associated IRI by enabling TECs to clear apoptotic and necrotic cells, and that recognition of necrotic cells by KIM-1 is augmented in the presence of the opsonin, apoptosis inhibitor of macrophages (AIM). Here, we tested whether recombinant AIM (rAIM) could be used to mitigate transplant associated IRI. We administered rAIM or vehicle control to nephrectomised B6 mice transplanted with a single B6 donor kidney. Compared to grafts in vehicle-treated recipients, grafts from rAIM-treated mice exhibited significantly less renal dysfunction, tubular cell death, tissue damage, tubular obstruction, as well as local and systemic inflammation. Both mouse and human rAIM enhanced the clearance of necrotic cells by murine and human TECs, respectively in vitro. These data support testing of rAIM as a potential therapeutic agent to reduce DGF following kidney transplantation.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Natsumi Maehara
- Centre for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Aaron R. Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Faculty of Medicine, Division of Nephrology, McGill University, Montreal, Quebec, Canada
| | - Toru Miyazaki
- Centre for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Iske J, Elkhal A, Tullius SG. The Fetal-Maternal Immune Interface in Uterus Transplantation. Trends Immunol 2021; 41:213-224. [PMID: 32109373 DOI: 10.1016/j.it.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Uterus transplants (UTxs) have been performed worldwide. Overall frequencies have been low, but globally initiated UTx programs are expected to increase clinical implementation. The uterus constitutes a unique immunological environment with specific features of tissue renewal and a receptive endometrium. Decidual immune cells facilitate embryo implantation and placenta development. Although UTx adds to the complexity of immunity during pregnancy and transplantation, the procedure provides a unique clinical and experimental model. We posit that understanding the distinct immunological properties at the interface of the transplanted uterus, the fetus and maternal circulation might provide valuable novel insights while improving outcomes for UTx. Here, we discuss immunological challenges and opportunities of UTx affecting mother, pregnancy and healthy livebirths.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Yu S, Dangi A, Burnette M, Abecassis MM, Thorp EB, Luo X. Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. Am J Transplant 2021; 21:515-524. [PMID: 32659030 PMCID: PMC7855505 DOI: 10.1111/ajt.16197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
We have previously shown that acute cytomegalovirus (CMV) infection disrupts the induction of transplantation tolerance. However, what impact acute CMV infection would have on the maintenance of established tolerance and on subsequent recipient allo-sensitization is a clinically important unanswered question. Here we used an allogeneic murine islet transplantation tolerance model to examine the impact of acute CMV infection on: (a) disruption of established transplantation tolerance during tolerance maintenance; and (b) the possibility of recipient allo-sensitization by CMV-mediated disruption of stable tolerance. We demonstrated that acute CMV infection abrogated transplantation tolerance during the maintenance stage in 50%-60% recipients. We further demonstrated that acute CMV infection-mediated tolerance disruption led to recipient allo-sensitization by reverting the tolerant state of allo-specific T cells and promoting their differentiation to allo-specific memory cells. Consequently, a second same-donor islet allograft was rejected in an accelerated fashion by these recipients. Our study therefore supports close monitoring for allo-sensitization in previously tolerant transplant recipients in whom tolerance maintenance is disrupted by an episode of acute CMV infection.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
30
|
Van Loon E, Lerut E, Senev A, Coemans M, Pirenne J, Monbaliu D, Jochmans I, Sainz Barriga M, De Vusser K, Van Craenenbroeck AH, Sprangers B, Emonds MP, Kuypers D, Naesens M. The Histological Picture of Indication Biopsies in the First 2 Weeks after Kidney Transplantation. Clin J Am Soc Nephrol 2020; 15:1484-1493. [PMID: 32778537 PMCID: PMC7536761 DOI: 10.2215/cjn.04230320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES In preclinical studies, ischemia-reperfusion injury and older donor age are associated with graft inflammation in the early phase after transplantation. In human kidney transplantation, impaired allograft function in the first days after transplantation is often adjudicated to donor- and procedure-related characteristics, such as donor age, donor type, and ischemia times. DESIGN , setting, participants, & measurementsIn a cohort of 984 kidney recipients, 329 indication biopsies were performed within the first 14 days after transplantation. The histologic picture of these biopsies and its relationship with alloimmune risk factors and donor- and procedure-related characteristics were studied, as well as the association with graft failure. Multivariable Cox models were applied to quantify the cause-specific hazard ratios for early rejection and early inflammatory scores, adjusted for potential confounders. For quantification of hazard ratios of early events for death-censored graft failure, landmark analyses starting from day 15 were used. RESULTS Early indication biopsy specimens displayed microvascular inflammation score ≥2 in 30% and tubulointerstitial inflammation score ≥2 in 49%. Rejection was diagnosed in 186 of 329 (57%) biopsies and associated with the presence of pretransplant donor-specific HLA antibodies and the number of HLA mismatches, but not nonimmune risk factors in multivariable Cox proportional hazards analysis. In multivariable Cox proportional hazards analysis, delayed graft function, the graft dysfunction that prompted an early indication biopsy, HLA mismatches, and pretransplant donor-specific HLA antibodies were significantly associated with a higher risk for death-censored graft failure, whereas early acute rejection was not. CONCLUSIONS Indication biopsies performed early after kidney transplantation display inflammatory changes related to alloimmune risk factors. Nonimmune risk factors for ischemia-reperfusion injury, such as cold and warm ischemia time, older donor age, and donor type, were not identified as strong risk factors for early inflammation after human kidney transplantation.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Mauricio Sainz Barriga
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, Leuven, Belgium
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Molecular Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium .,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Abstract
Although kidney oxygen tensions are heterogenous, and mostly below renal vein level, the nephron is highly dependent on aerobic metabolism for active tubular transport. This renders the kidney particularly susceptible to hypoxia, which is considered a main characteristic and driver of acute and chronic kidney injury, albeit the evidence supporting this assumption is not entirely conclusive. Kidney transplants are exposed to several conditions that may interfere with the balance between oxygen supply and consumption, and enhance hypoxia and hypoxic injury. These include conditions leading to and resulting from brain death of kidney donors, ischemia and reperfusion during organ donation, storage and transplantation, postoperative vascular complications, vasoconstriction induced by immunosuppression, and impaired perfusion resulting from interstitial edema, inflammation, and fibrosis. Acute graft injury, the immediate consequence of hypoxia and reperfusion, results in delayed graft function and increased risk of chronic graft failure. Although current strategies to alleviate hypoxic/ischemic graft injury focus on limiting injury (eg, by reducing cold and warm ischemia times), experimental evidence suggests that preconditioning through local or remote ischemia, or activation of the hypoxia-inducible factor pathway, can decrease hypoxic injury. In combination with ex vivo machine perfusion such approaches hold significant promise for improving transplantation outcomes.
Collapse
Affiliation(s)
- Christian Rosenberger
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Wang F, Wei F, Liu H, Wang X, Wang W, Ouyang Y, Liu J, Chen D, Zang Y. Association of the IL-6 Rs1800796 SNP with Concentration/dose Ratios of Tacrolimus and Donor Liver Function after Transplantation. Immunol Invest 2020; 50:939-948. [PMID: 32674627 DOI: 10.1080/08820139.2020.1793775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Wang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feili Wei
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Wang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Wang
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Yabo Ouyang
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Jianyu Liu
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dexi Chen
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Minami K, Bae S, Uehara H, Zhao C, Lee D, Iske J, Fanger MW, Reder J, Morrison I, Azuma H, Wiens A, Van Keuren E, Houser B, El-Khal A, Kang PM, Tullius SG. Targeting of intragraft reactive oxygen species by APP-103, a novel polymer product, mitigates ischemia/reperfusion injury and promotes the survival of renal transplants. Am J Transplant 2020; 20:1527-1537. [PMID: 31991042 PMCID: PMC8609414 DOI: 10.1111/ajt.15794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 01/25/2023]
Abstract
Inflammatory responses associated with ischemia/reperfusion injury (IRI) play a central role in alloimmunity and transplant outcomes. A key event driving these inflammatory responses is the burst of reactive oxygen species (ROS), with hydrogen peroxide (H2 O2 ) as the most abundant form that occurs as a result of surgical implantation of the donor organ. Here, we used a syngeneic rat renal transplant and IRI model to evaluate the therapeutic properties of APP-103, a polyoxalate-based copolymer molecule containing vanillyl alcohol (VA) that exhibits high sensitivity and specificity toward the production of H2 O2 . We show that APP-103 is safe, and that it effectively promotes kidney function following IRI and survival of renal transplants. APP-103 reduces tissue injury and IRI-associated inflammatory responses in models of both warm ischemia (kidney clamping) and prolonged cold ischemia (syngeneic renal transplant). Mechanistically, we demonstrate that APP-103 exerts protective effects by specifically targeting the production of ROS. Our data introduce APP-103 as a novel, nontoxic, and site-activating therapeutic approach that effectively ameliorates the consequences of IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Koichiro Minami
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | - Hirofumi Uehara
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Chen Zhao
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, U.S.A
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Jasper Iske
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Lower Saxony, Germany
| | | | - Jake Reder
- Celdara Medical, LLC, Lebanon, NH, U.S.A
| | | | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Astrid Wiens
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA. USA
| | - Edward Van Keuren
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, U.S.A
| | | | - Abdala El-Khal
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | - Stefan G. Tullius
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| |
Collapse
|
34
|
Vascularized composite allotransplantation versus solid organ transplantation: innate-adaptive immune interphase. Curr Opin Organ Transplant 2020; 24:714-720. [PMID: 31577596 DOI: 10.1097/mot.0000000000000705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA), a life-enhancing treatment for patients with complex tissue defects, trauma or illness, expounds upon the foundation of solid organ transplantation (SOT), the gold standard in end-stage organ failure. As innate and adaptive immunity remain the fundamental concern, this review highlights divergent immunobiology responses in VCA and SOT recipients. RECENT FINDINGS Host innate immune activation drives peritransplant tissue ischemia-reperfusion injury (IRI). Despite the direct relationship between ischemia-reperfusion (IR)-stress and cell-mediated acute rejection, the mechanism of how IRI may affect VCA loss needs investigation. With skin grafts being highly immunogenic, the incidence of cell-mediated rejection is higher in VCA than SOT; whereas ex-vivo perfusion may exert cytoprotection against IRI in VCA and SOT. New treatment concepts, such as topical immunosuppression or cell-based tolerogenic therapies, may avoid systemic immunosuppression in VCA. Although antibody-mediated rejection is relatively rare in VCA and its disease seems to be distinct from that in SOT, little is known as to whether and how IRI may influence humoral immune rejection cascade in VCA or SOT. SUMMARY Further understanding of the innate-adaptive immune crosstalk should contribute to much needed development of novel therapies to improve VCA outcomes, based on strategies established in SOT.
Collapse
|
35
|
Jordan SC, Ammerman N, Choi J, Kumar S, Huang E, Toyoda M, Kim I, Wu G, Vo A. Interleukin-6: An Important Mediator of Allograft Injury. Transplantation 2020; 104:2497-2506. [DOI: 10.1097/tp.0000000000003249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Uehara M, Bahmani B, Jiang L, Jung S, Banouni N, Kasinath V, Solhjou Z, Jing Z, Ordikhani F, Bae M, Clardy J, Annabi N, McGrath MM, Abdi R. Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS NANO 2019; 13:12393-12407. [PMID: 31518498 PMCID: PMC7247279 DOI: 10.1021/acsnano.9b05115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammation occurring within the transplanted organ from the time of harvest is an important stimulus of early alloimmune reactivity and promotes chronic allograft rejection. Chronic immune-mediated injury remains the primary obstacle to the long-term success of organ transplantation. However, organ transplantation represents a rare clinical setting in which the organ is accessible ex vivo, providing an opportunity to use nanotechnology to deliver therapeutics directly to the graft. This approach facilitates the directed delivery of immunosuppressive agents (ISA) to target local pathogenic immune responses prior to the transplantation. Here, we have developed a system of direct delivery and sustained release of mycophenolate mofetil (MMF) to treat the donor organ prior to transplantation. Perfusion of a donor mouse heart with MMF-loaded PEG-PLGA nanoparticles (MMF-NPs) prior to transplantation abrogated cardiac transplant vasculopathy by suppressing intragraft pro-inflammatory cytokines and chemokines. Our findings demonstrate that ex vivo delivery of an ISA to donor organs using a nanocarrier can serve as a clinically feasible approach to reduce transplant immunity.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhao Jing
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Martina M. McGrath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
37
|
Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL, Balamurugan AN, Ansite JD, Wilhelm JJ, Yang A, Zhang Y, Palani NP, Abrahante JE, Burlak C, Miller SD, Luo X, Hering BJ. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10:3495. [PMID: 31375697 PMCID: PMC6677762 DOI: 10.1038/s41467-019-11338-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation. Injection of donor apoptotic cells induces graft tolerance in mice. Here the authors combine this approach with short immunosuppressive therapy to achieve long-term tolerance to allogeneic islets and restoration of normoglycemia in diabetic nonhuman primates, and delineate cellular and molecular correlates of tolerance induction.
Collapse
Affiliation(s)
- Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sabarinathan Ramachandran
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Saeed Daneshmandi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David Heller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wilma Lucia Suarez-Pinzon
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Appakalai N Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jeffrey D Ansite
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy Yang
- Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nagendra P Palani
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunology Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Duke Transplant Center, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Sci Rep 2019; 9:6535. [PMID: 31024011 PMCID: PMC6484015 DOI: 10.1038/s41598-019-42349-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A primary goal in the management of burn wounds is early wound closure. The use of skin allografts represents a lifesaving strategy for severe burn patients, but their ultimate rejection limits their potential efficacy and utility. IL-6 is a major pleiotropic cytokine which critically links innate and adaptive immune responses. Here, we devised anti-IL-6 receptor eluting gelatin methacryloyl (GelMA) biomaterials (GelMA/anti-IL-6), which were implanted at the interface between the wound beds and skin allografts. Our visible light crosslinked GelMA/anti-IL-6 immunomodulatory biomaterial (IMB) demonstrated a stable kinetic release profile of anti-IL-6. In addition, the incorporation of anti-IL-6 within the GelMA hydrogel had no effect on the mechanical properties of the hydrogels. Using a highly stringent skin transplant model, the GelMA/anti-IL-6 IMB almost doubled the survival of skin allografts. The use of GelMA/anti-IL-6 IMB was far superior to systemic anti-IL-6 receptor treatment in prolonging skin allograft survival. As compared to the untreated control group, skin from the GelMA/anti-IL-6 IMB group contained significantly fewer alloreactive T cells and macrophages. Interestingly, the environmental milieu of the draining lymph nodes (DLNs) of the mice implanted with the GelMA/anti-IL-6 IMB was also considerably less pro-inflammatory. The percentage of CD4+ IFNγ+ cells was much lower in the DLNs of the GelMA/anti-IL-6 IMB group in comparison to the GelMA group. These data highlight the importance of localized immune delivery in prolonging skin allograft survival and its potential utility in treating patients with severe burns.
Collapse
|
39
|
|
40
|
Chun N, Coca SG, He JC. A protective role for microRNA-688 in acute kidney injury. J Clin Invest 2018; 128:5216-5218. [PMID: 30418172 DOI: 10.1172/jci124923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) sets off a devastating cascade of events, leading to cell death and possible organ failure. Treatments to limit I/R-associated damage are lacking, and the pathways that drive injury are poorly understood. In this issue of the JCI, Wei and colleagues identify microRNA-668 (miR-668) as a protective factor in acute kidney injury (AKI). miR-668 was shown to repress mitochondrial fission-associated protein MTP18, thereby inhibiting pathogenic mitochondrial fragmentation. In murine models of I/R-induced AKI, treatment with a miR-668 mimetic reduced mitochondrial fragmentation and improved renal function. Moreover, HIF-1α was shown to be required for miR-688 expression in response to I/R. Importantly, Wei et al. show miR-668 upregulation in a cohort of human patients with AKI. Together, these results identify a HIF-1α/miR-668/MTP18 axis that may have potential as a therapeutic target for AKI.
Collapse
Affiliation(s)
- Nicholas Chun
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven G Coca
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters Veterans Affair Medical Center, New York, New York, USA
| |
Collapse
|