1
|
Yang Z, Tian X, Shu W, Yang Y, Xu J, Kan S. Combined toxicity of polyethylene microplastics and nickel oxide nanoparticle on earthworm (Eisenia andrei): oxidative stress responses, bioavailability and joint effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34910-34921. [PMID: 38713352 DOI: 10.1007/s11356-024-33512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
The co-occurrence of heavy metals and microplastics (MPs) is an emerging issue that has attracted considerable attention. However, the interaction of nickel oxide nanoparticle (nano-NiO) combined with MPs in soil was poorly researched. Here, experiments were conducted to study the influence of nano-NiO (200 mg/kg) and polyethylene (PE) MPs with different concentrations (0.1, 1, and 10%) and sizes (13, 50, and 500 µm) on earthworms for 28 days. Compared to control, the damage was induced by PE and nano-NiO, which was evaluated by biomarker Integrated Biomarker Response index: version 2 (IBRv2) based on six biomarkers including SOD, POD, CAT, MDA, AChE, Na+/K+-ATPase and cellulase. The majority of the chosen biomarkers showed significant but complicated responses with increasing contaminant concentrations after 28 days of exposure. Moreover, the joint effect was assessed as antagonism by the effect addition index (EAI). Overall, this work expands our understanding of the combined toxicity of PE and nano-NiO in soil ecosystems.
Collapse
Affiliation(s)
- Zaifu Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.
| | - Xinyue Tian
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Wenjun Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Yiran Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Jingyao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Simeng Kan
- China Huadian Corporation LTD, Chengdu, China
| |
Collapse
|
2
|
Campani T, Casini S, Maccantelli A, Tosoni F, D'Agostino A, Caliani I. Oxidative stress and DNA alteration on the earthworm Eisenia fetida exposed to four commercial pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35969-35978. [PMID: 38743332 PMCID: PMC11136830 DOI: 10.1007/s11356-024-33511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.
Collapse
Affiliation(s)
- Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Andrea Maccantelli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Filippo Tosoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco, 7, 53100, Siena, Italia
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
3
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Liang X, Li Y, Zheng Z, Tian F, Du Y, Yang Y, Wang M, Zhang Y. Effects of mixed application of avermectin, imidacloprid and carbendazim on soil degradation and toxicity toward earthworms. Sci Rep 2023; 13:14115. [PMID: 37644051 PMCID: PMC10465560 DOI: 10.1038/s41598-023-41206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The application of pesticides in mixtures often exerts multiple pressures on agricultural soils in the short term. Therefore, it is necessary to assess the effects of mixed application on the environmental behavior and ecotoxicity of pesticides in soil. In this study, we assessed the effects of three common pesticides through mixed application on soil degradation and toxicity toward the earthworm Eisenia fetida. Compared with the degradation half-lives (DT50) the single pesticide, the DT50 values of avermectin, imidacloprid and carbendazim in the binary mixtures were similar. However, their DT50 values in the ternary mixtures were approximately 1.5 times longer than those in the individual applications, enhancing their stable in soil after two or three applications. The ternary mixtures of the pesticides showed significantly synergistic toxicity toward E. fetida, while their binary mixtures exhibited a changing interaction throughout the entire effect level range. The ternary mixtures activated higher SOD and CAT activities in E. fetida than the individual treatments, confirming their synergistic effects. By conducting avoidance tests with E. fetida, ternary toxic interactions were effectively assessed within a relatively short testing period. In summary, the three pesticides in ternary mixtures exhibited longer degradation half-lives and synergistic toxicity toward earthworms compared to individual or binary mixtures.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Yufei Li
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Zhao Zheng
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Fang Tian
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Yannan Du
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Ye Yang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Meng Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China.
| | - Yu Zhang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China.
| |
Collapse
|
5
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
6
|
Ahmadpour M, Wang W, Sinkakarimi MH, Ahmadpour M, Hosseini SH. Joint toxicity of cadmium and fenpyroximate on two earthworms: Interspecific differences, subcellular partitioning and biomarker responses. CHEMOSPHERE 2023:139329. [PMID: 37364643 DOI: 10.1016/j.chemosphere.2023.139329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cadmium (Cd) and fenpyroximate are common soil contaminants found together in the field, but their combined toxicity to terrestrial invertebrates has not been studied. Therefore, earthworms Aporrectodea jassyensis and E. fetida were exposed into Cd (5, 10, 50 and 100 μg/g) and fenpyroximate (0.1, 0.5, 1, and 1.5 μg/g) and their mixture, and multiple biomarker responses (mortality, catalase (CAT), superoxide dismutase (SOD), total antioxidant activity (TAC), lipid peroxidation (MDA), protein content, weight loss and subcellular partitioning) were determined to estimate health status and mixture effect. MDA, SOD, TAC, and weight loss were significantly correlated with Cd in total internal and debris (p < 0.01). Fenpyroximate altered the subcellular distribution of Cd. It appears that maintaining Cd in a non-toxic form was the earthworms' primary Cd detoxification strategy. CAT activity was inhibited by Cd, fenpyroximate, and their combined presence. BRI values for all treatments indicated a major and severe alteration in earthworm's health. The combined toxicity of Cd and fenpyroximate was greater than the toxicity of either substance alone. According to EAI, all combined treatments exhibited a clear antagonistic effect. In general, the sensitivity of A. jassyensis was greater than that of E. fetida.
Collapse
Affiliation(s)
- Mousa Ahmadpour
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jingsu, 210037, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jingsu, 210037, China
| | - Mohammad Hosein Sinkakarimi
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; Department of Environmental Sciences, Faculty of Marine and Environmental Sciences, University of Mazandaran, CP: 47416-13534, Babolsar, Iran.
| | - Mohsen Ahmadpour
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; Department of Environmental Sciences, Faculty of Marine and Environmental Sciences, University of Mazandaran, CP: 47416-13534, Babolsar, Iran
| | - Seyed Hamid Hosseini
- Research Center for the Caspian Region, University of Mazandaran, CP: 47416-13534, Babolsar, Iran; College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Yang Y, Li L, Luo Z, Zhao Y, Mu Y, Zhang Q. Enantioselective Oxidative Stress and DNA Damage Induced by Rac- and S-metolachlor on the Earthworm Eisenia fetida. TOXICS 2023; 11:246. [PMID: 36977011 PMCID: PMC10058842 DOI: 10.3390/toxics11030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Metolachlor is a widely used chiral herbicide. However, information on its enantioselective toxicity to earthworms, an important soil organism, remains limited. Herein, the effects of Rac- and S-metolachlor on oxidative stress and DNA damage in Eisenia fetida were investigated and compared. Moreover, the degradation of both herbicides in the soil was also determined. The results showed that reactive oxygen species (ROS) in E. fetida were more easily induced by Rac-metolachlor than S-metolachlor at a higher concentration (above 16 µg/g). Similarly, the effects of Rac-metolachlor on superoxide dismutase (SOD) activity and DNA damage in E. fetida were more significant than those of S-metolachlor at the same exposure concentration and time. Rac- and S-metolachlor did not result in severe lipid peroxidation. The toxic effects of both herbicides on E. fetida gradually decreased after 7 days as the exposure was prolonged. At the same concentration, S-metolachlor degrades faster than Rac-metolachlor. These results suggest that Rac-metolachlor has a greater effect on E. fetida than S-metolachlor, providing a significant reference for the rational use of metolachlor.
Collapse
Affiliation(s)
- Yong Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Li
- Comprehensive Law Enforcement Team of Ecological Environment Protection, Rizhao Bureau of Ecological Environment, Rizhao 276826, China
| | - Zhaozhen Luo
- Junan County Agriculture and Rural Bureau, Linyi 276600, China
| | - Yuqiang Zhao
- Junan County Wanghailou State-owned Forest Farm, Linyi 276600, China
| | - Yalin Mu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Lopes Alves PR, de Araújo RS, Ogliari Bandeira F, Matias WG. Individual and combined toxicity of imidacloprid and two seed dressing insecticides on collembolans Folsomia candida. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:166-179. [PMID: 36756738 DOI: 10.1080/15287394.2023.2174464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to examine the chronic toxicity of imidacloprid (IMI), clothianidin (CLO) and fipronil (FIP) as a single exposure, as well as binary mixtures of IMI with CLO or FIP toward collembolans Folsomia candida, which are fauna present in the soil. Chronic toxicity assays were performed following an ISO guideline in a Tropical Artificial Soil (TAS), and the influence on the number and growth of the juveniles produced were determined. The range of nominal concentrations used in the tests with the individual compounds was 0.08-1.28 mg/kg (IMI), 0.079-1.264 mg/kg (FIP) and 0.007-0.112 mg/kg (CLO), whereas the mixture assays were performed with half the value used in the tests with individual compounds. Based upon single exposures, IMI produced a similar impact of reducing reproduction by 50% (EC50 ranging from 0.74 to 0.85 mg/kg) compared to FIP (EC50 = 0.78 mg/kg), whereas CLO was the most toxic to F. candida (EC50 = 0.08 mg/kg). Their mixtures generally resulted in a diminished effect on reproduction, as evidenced by the higher EC50 values. In contrast, in the case of the IMI+FIP combination at high concentrations at the EC50 level, a synergistic effect on toxicity was observed. The single exposure to the three insecticides and the mixture of IMI-FIP also decreased the size of generated juveniles, which was evidenced by the reduction in the proportion of large juveniles and increased proportion of small juveniles. However, both binary mixtures (IMI-FIP and IMI-CLO) presented antagonistic effects as evidenced by less than expected reductions in growth. Data on the toxic effects of IMI in a mixture with other seed dressing insecticides to collembolans provides useful information to environmental risk assessors by diminishing the uncertainties on the ecological risk of exposure to pesticides, enabling soil management degradation by utilizing multiple insecticides.
Collapse
Affiliation(s)
| | | | - Felipe Ogliari Bandeira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - William Gerson Matias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Bao X, Xu W, Cui J, Yan Z, Wang J, Chen X, Meng Z. NMR-based metabolomics approach to assess the ecotoxicity of prothioconazole on the earthworm (Eisenia fetida) in soil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105320. [PMID: 36740340 DOI: 10.1016/j.pestbp.2022.105320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide. In recent years, studies have confirmed that it exerts adverse effects on various species, including aquatic organisms, mammals, and reptiles. However, the toxicological effects of PTC on soil organisms are poorly understood. Here, we investigated the toxic effects, via oxidative stress and metabolic responses, of PTC on earthworms (Eisenia fetida). PTC exposure can induce significant changes in oxidative stress indicators, including the activities of superoxide dismutase (SOD) and catalase (CAT) and the content of glutathione (GSH), which in turn affect the oxidative defense system of earthworms. In addition, metabolomics revealed that PTC exposure caused significant changes in the metabolic profiles of earthworms. The relative abundances of 16 and 21 metabolites involved in amino acids, intermediates of the tricarboxylic acid (TCA) cycle and energy metabolism were significantly altered after 7 and 14 days of PTC exposure, respectively. Particularly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple different metabolic pathways could be disturbed after 7 and 14 days of PTC exposure. Importantly, these alterations in oxidative stress and metabolic responses in earthworms reveal that the effects of PTC on earthworms were time dependent, and vary with exposure time. In conclusion, this study highlights that the effects of PTC on soil organisms are of serious concern.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wangjin Xu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Guangling, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
10
|
The Survival Response of Earthworm ( Eisenia fetida L.) to Individual and Binary Mixtures of Herbicides. TOXICS 2022; 10:toxics10060320. [PMID: 35736928 PMCID: PMC9227884 DOI: 10.3390/toxics10060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Frequent use of herbicides may impose a risk on non-target species. The objective was to test the combined toxic effect of binary herbicide mixtures—metribuzin:halosulfuron and metribuzin:flumioxazin—on non-target earthworms in two test systems: filter paper and a soil toxicity test system. The joint action experiments were independently run twice to substantiate the findings. The most potent individual herbicide was metribuzin, with a 50% lethal concentration (LC50) of 17.17 µg ai. cm−2 at 48 h in the filter paper test. The toxicity of the individual herbicides on the filter paper test was ranked as metribuzin>halosulfuron>flumioxazin. In the soil test, metribuzin and halosulfuron had high toxicity with an LC50 of 8.48 and 10.08 mg ai. kg−1, respectively, on day 14. Thus, the individual herbicide ranking did not change between the filter paper and artificial soil tests. The herbicide’s mixed effect in both test systems showed a consistent antagonistic effect relative to a Concentration Addition reference model. It indicates that the mixtures retracted the herbicide’s action in the earthworms.
Collapse
|
11
|
Li M, Ma X, Wang Y, Saleem M, Yang Y, Zhang Q. Ecotoxicity of herbicide carfentrazone-ethyl towards earthworm Eisenia fetida in soil. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109250. [PMID: 34826613 DOI: 10.1016/j.cbpc.2021.109250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
Herbicides pose a potential threat to the soil biodiversity and health. Carfentrazone-ethyl (CE), a triazolinones herbicide, is increasingly used in agricultural production. Its non-target toxic effects on soil microorganisms and soil enzymes are reported recently. However, the sublethal toxicity of CE on soil invertebrates like earthworms is not yet known. Therefore, in this work, the sublethal toxic effects of CE (0.05, 0.5, and 5.0 μg/g in soil) on the soil earthworm (Eisenia fetida) were evaluated using a battery of biomarkers including reactive oxygen species (ROS), enzyme (superoxide dismutase-SOD, catalase-CAT, peroxidase-POD, and glutathione S-transferase-GST) activities, malondialdehyde (MDA) contents, histopathological and DNA damage. Results indicated that CE increased ROS contents, enzyme activities, and MDA contents in the short-time (14 d), thus, causing a slight oxidative stress to E. fetida. However, the toxic effects of CE on earthworms gradually disappeared after 14 days. The CE did not cause histopathological and DNA damage in earthworms. Integrated Biological Response index (IBR) indicated that both concentration and exposure time of CE regulated its sublethal toxicity on earthworms. In conclusion, herbicide CE is safe to soil invertebrate earthworms when applied at the recommended doses. Our results contribute to the current understanding of CE effects on soil earthworms, and can be useful in developing soil health strategies under agrochemical use.
Collapse
Affiliation(s)
- Mengyao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinxin Ma
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanru Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Yong Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
12
|
Xu Q, Shao X, Shi Y, Qian L, Zhou X, Qin W, Zhang M. Is selenium beneficial or detrimental to earthworm? Growth and metabolism responses of Eisenia Fetida to Na 2SeO 3 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150770. [PMID: 34624283 DOI: 10.1016/j.scitotenv.2021.150770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Se unevenly distributed in soils due to variations of geology and anthropogenic input, which results in different effects on earthworms. The effects of Se were characterized by analyzing the growth and metabolism responses of earthworms after exposure to three different concentrations of Na2SeO3. The results showed that except the possible growth promotion at 5 mg/kg, low and middle-level exposure to Na2SeO3 (0.3-10 mg/kg) did not significantly affect the growth of earthworms. While a significant inhibition effect on growth was observed in the high-level exposure group (30-70 mg/kg). There was an inflection point for Se performing promotion to inhibition effects on earthworm growth. To investigate the metabolic response of earthworms, a novel HPLC-ESI-MS (High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry) method was used to determine sensitive biomarkers. Selenium exposure significantly altered the metabolism of seven essential amino acids, namely tyrosine, leucine, phenylalanine, valine, alanine, glycine, and lysine, and two selenoamino acids, namely selenomethionine and methylselenocysteine. The overall metabolism level of earthworms was not affected at low exposure concentrations, but was affected at medium and high exposure concentrations. The metabolic pathways that integrated the selenocompound metabolism and the tricarboxylic acid cycle from the perspective of energy supply and demand were affected by Na2SeO3 exposure. The derived reactive oxygen species at high exposure concentrations were probably the reason for the growth inhibition effect of Se on earthworms. This study provides biochemical insights into the effects of Na2SeO3 on earthworms and suggests that an Se concentration of about 2.3 mg/kg is appropriate for soil organism health.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyou Qin
- School of Biotechnology and Health Science, Wuyi University, Jiangmen City, Guangdong, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Luo Q, Li Y, Wu Z, Wang X, Wang C, Shan Y, Sun L. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. SuZhou). CHEMOSPHERE 2021; 277:130347. [PMID: 33780681 DOI: 10.1016/j.chemosphere.2021.130347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
This study investigated physiological and biochemical changes in pakchoi at different growth stages (25 and 50 d) under different tris-(1-chloro-2-propyl) phosphate (TCIPP) treatments (10, 100, 500, and 1000 μg kg-1). The uptake and accumulation of TCIPP by pakchoi and variation of TCIPP speciation in soil were also determined. TCIPP decreased the length and fresh weight of pakchoi root compared with those in blank controls, and this effect was significant when the concentration of TCIPP was higher than 100 μg kg-1. The fresh weight of pakchoi stems and leaves, the chlorophyll content, and the activities of superoxide dismutase, peroxidase, and catalase in the leaves first increased and then decreased with increasing TCIPP concentration. The inflection point of the variation in these indices was 100 μg kg-1 TCIPP in soil. The contents of proline and malondialdehyde increased continuously with increasing TCIPP concentration. The uptake of TCIPP by pakchoi increased linearly with increasing TCIPP concentration, and the highest TCIPP concentrations in the roots, stems, and leaves were 275.9, 80.0, and 2126.3 μg kg-1, respectively. TCIPP was easily transferred from the roots to leaves of pakchoi, with translocation factor of up to 12.6. The content of bioavailable TCIPP in soil was high, accounting for 46.5%. Planting pakchoi could significantly reduce the content of bioavailable TCIPP, with removal rate of 39.9%-54.1%. After 50 d of planting pakchoi, the removal rate of TCIPP in soil (10.4%-18.6%) was significantly higher than that in the control without plant, but the contribution of phytoextraction was small, accounting for 2.62%-26.6%.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China.
| | - Yujie Li
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Zhongping Wu
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xiaoxu Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Congcong Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Yue Shan
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Lina Sun
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
14
|
Başalan Över S, Guven C, Taskin E, Çakmak A, Piner Benli P, Sevgiler Y. Effects of Different Ammonia Levels on Tribenuron Methyl Toxicity in Daphnia magna. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:46-57. [PMID: 33864096 DOI: 10.1007/s00244-021-00841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The present study investigates the toxicity of the herbicide tribenuron methyl (TBM) as an anthropogenic agent and ammonia as an abiotic factor on Daphnia magna at environmentally relevant concentrations. These stressors may coexist in surface waters in agricultural regions. To achieve this objective, D. magna were exposed to TBM at a nominal concentration of 0.81 μg/L in association with a low ammonia (LA) concentration of 0.65 mg/L and a high ammonia (HA) concentration of 1.61 mg/L in acute toxicity tests of 96-h duration and chronic toxicity tests of 21-day duration. The D. magna also were exposed to TBM, HA, and LA singly. The D. magna were analysed for various biomarkers of sublethal toxicity. Glutathione peroxidase (GPx), glutathione S-transferase (GST), cholinesterase (ChE) enzyme activities, and levels of thiobarbituric acid reactive substances (TBARS) and total protein were determined spectrophotometrically. Mitochondrial membrane potential (MMP) was analysed by microscopy with fluorescence staining. Cytochrome c and 5' AMP-activated protein kinase (AMPK) were analysed by Western blotting. Morphometric properties were examined microscopically. This is the first study in which AMPK, an indicator of intracellular energy, was measured in D. magna. GST and ChE enzyme activities and TBARS and total protein levels did not change during acute exposures (i.e., 96 h) in all treatments. GPx activity increased in D. magna from the HA + TBM treatment compared with single-exposure groups. The level of cytochrome c protein was elevated in D. magna from the LA and LA + TBM treatments. AMPK protein levels increased in all treatments with daphnids, except in the LA group. MMP was depolarised in D. magna from all treatments, whereas the most notable change was observed in HA + TBM mixture group in chronic exposures. The results show that GST and ChE may not be sensitive biomarkers for evaluating the sublethal toxic effects to D. magna exposed to environmentally relevant concentrations of ammonia and TBM. Acute and chronic exposure to ammonia and TBM probably caused an energetic crisis in D. magna. Therefore, AMPK and MMP are promising biomarkers for these toxicants.
Collapse
Affiliation(s)
- Sevgi Başalan Över
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, 02040, Adıyaman, Turkey
| | - Celal Guven
- Department of Biophysics, Faculty of Medicine, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Eylem Taskin
- Department of Physiology, Faculty of Medicine, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Arif Çakmak
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, 02040, Adıyaman, Turkey
| | - Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Çukurova University, Adana, Turkey
| | - Yusuf Sevgiler
- Department of Biology, Faculty of Science and Letters, Adıyaman University, 02040, Adıyaman, Turkey.
| |
Collapse
|
15
|
Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K. Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 2021; 37:76. [PMID: 33786661 DOI: 10.1007/s11274-021-03040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The earthworms are important soil invertebrates and play a crucial role in pedogenesis. The application of pesticides and prolonged exposure to pesticides causes mortality of earthworms apart from profoundly affecting the resident gut microbiome. The microbiome plays a significant effect on the metabolic processes associated with earthworms. The pesticide Chlorpyrifos (CPF) was studied for its toxicity on Eudrilus euginae by toxicity studies. The LC50 value of filter paper contact test and acute toxicity test was 3.8 mg/mL and 180 mg/kg. The prolonged exposure of earthworms to pesticide on reproductive toxicity resulted in the mortality of earthworms and absence of cocoon formation. Further, the effects of CPF on the whole gut microbiome of E. euginae was analyzed using a long amplicon Nanopore sequencing. Results indicated no fluctuations with Firmicutes and Bacteroidetes, that were found to be dominant at bacterial phyla level while at the genus level, remarkable differences were noticed. Clostridium dominated the earthworm gut prior to CPF exposure while Bacillus dominated after exposure. Similarly, the fungal members such as Ascomycota and Basidiomycota were observed to dominate the gut of earthworm at the phyla level before and after exposure to CPF. In contrast, Clavispora (65%) was the dominant genus before CPF exposure and Taloromyces (42%) dominated after the CPF exposure. Our study demonstrates the effect of CPF on the mortality of E. euginae while the amplicon sequencing established the unique microbiome of the gut in response to the CPF exposure.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - Mariyam Fathima Jaffar
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Shruthi Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, India
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India.
| |
Collapse
|
16
|
Gomes SIL, Ammendola A, Casini S, Amorim MJB. Toxicity of fungicides to terrestrial non-target fauna - Formulated products versus active ingredients (azoxystrobin, cyproconazole, prothioconazole, tebuconazole) - A case study with Enchytraeus crypticus (Oligochaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142098. [PMID: 32911151 DOI: 10.1016/j.scitotenv.2020.142098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Despite the high usage of pesticides in current agricultural practices, its effects to humans and to the environment (non-target species) are a continuous concern. Soil dwelling organisms are among the first in line of exposure to pesticides, however their risks are often based on the pure active ingredient (a.i.) and not on the commercial formulated products (FPs) actually applied in the fields. In the present study, we investigated the effects of two fungicide FPs versus its a.i. (s): Amistar® XTRA and the respective a.i. (s) azoxystrobin and cyproconazole, and Prosaro® 250 EC and the respective a.i. (s) prothioconazole and tebuconazole, to the non-target soil oligochaete Enchytraeus crypticus. The standard Enchytraeid Reproduction Test was used to assess effects on survival and reproduction. Results showed that Amistar was more toxic than Prosaro, particularly for reproduction (EC50 = 161 mg Amistar/kg soil, EC50 = 350 mg Prosaro/kg soil). For both FPs, reproductive effects were mainly related to one of its a.i. (s) (azoxystrobin [EC50 = 37 mg azosxystrobin/kg soil] for Amistar, and tebuconazole [EC50 = 41 mg tebuconazole/kg soil] for Prosaro), while lethal effects were not predicted by the toxicity of its a.i. (s) (particularly in the case of Prosaro, which was more toxic than its a.i. (s)). These findings highlight the need to further explore the toxicity data of the FPs compared to the a.i. (s), aiming to predict a more realistic environmental hazard of pesticides.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Anna Ammendola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Sun T, Miao J, Saleem M, Zhang H, Yang Y, Zhang Q. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122941. [PMID: 32492617 DOI: 10.1016/j.jhazmat.2020.122941] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole is a widely used fungicide that may impair soil health. Presently, limited information is available on the bioremediation of tebuconazole-contaminated soil using biochar as a carrier for bacteria. In this study, we firstly isolated a tebuconazole-degrading strain and identified it as Alcaligenes faecalis WZ-2. Then, we used wheat straw-derived biochar as carrier to capture strain WZ-2 to assemble microorganism-immobilized composite. Finally, we investigated the effects of strain WZ-2 and biochar-immobilized WZ-2 on tebuconazole biodegradation, microbial enzyme activities and community composition in the contaminated soil. Results showed that, as compared to control, the strain WZ-2 and biochar-immobilized WZ-2 accelerated the degradation of tebuconazole, while reducing the half-life of tebuconazole from 40.8 to 18.7 and 13.3 days in soil, respectively. However, biochar alone than control slightly retarded the degradation of tebuconazole in soil. Though tebuconazole (10 mg/kg) negatively affected the soil enzyme activities (urease, dehydrogenase, and invertase) and microbiome community structure, the biochar-immobilized WZ-2 not only accelerated the degradation of tebuconazole but also restored native soil microbial enzyme activities and microbiome community composition. Our results suggest that a compatible combination of bacteria with biochar is an attractive and efficient approach for remediation of pesticide-contaminated soil and improvement of soil biological health.
Collapse
Affiliation(s)
- Tong Sun
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jingbo Miao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36101, USA
| | - Haonan Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
18
|
Abstract
The continuous cropping (CC) of major agricultural, horticultural, and industrial crops is an established practice worldwide, though it has significant soil health-related concerns. However, a combined review of the effects of CC on soil health indicators, in particular omics ones, remains missing. The CC may negatively impact multiple biotic and abiotic indicators of soil health, fertility, and crop yield. It could potentially alter the soil biotic indicators, which include but are not limited to the composition, abundance, diversity, and functioning of soil micro- and macro-organisms, microbial networks, enzyme activities, and soil food web interactions. Moreover, it could also alter various soil abiotic (physicochemical) properties. For instance, it could increase the accumulation of toxic metabolites, salts, and acids, reduce soil aggregation and alter the composition of soil aggregate-size classes, decrease mineralization, soil organic matter, active carbon, and nutrient contents. All these alterations could accelerate soil degradation. Meanwhile, there is still a great need to develop quantitative ranges in soil health indicators to mechanistically predict the impact of CC on soil health and crop yield gaps. Following ecological principles, we strongly highlight the significance of inter-, mixture-, and rotation-cropping with cover crops to sustain soil health and agricultural production.
Collapse
|
19
|
Vischetti C, Casucci C, De Bernardi A, Monaci E, Tiano L, Marcheggiani F, Ciani M, Comitini F, Marini E, Taskin E, Puglisi E. Sub-Lethal Effects of Pesticides on the DNA of Soil Organisms as Early Ecotoxicological Biomarkers. Front Microbiol 2020; 11:1892. [PMID: 33013727 PMCID: PMC7461845 DOI: 10.3389/fmicb.2020.01892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
This review describes the researches performed in the last years to assess the impact of pesticide sub-lethal doses on soil microorganisms and non-target organisms in agricultural soil ecosystems. The overview was developed through the careful description and a critical analysis of three methodologies based on culture-independent approaches involving DNA extraction and sequencing (denaturing gradient gel electrophoresis, DGGE; next-generation sequencing, NGS) to characterize the microbial population and DNA damage assessment (comet assay) to determine the effect on soil invertebrates. The examination of the related published articles showed a continuous improvement of the possibility to detect the detrimental effect of the pesticides on soil microorganisms and non-target organisms at sub-lethal doses, i.e., doses which have no lethal effect on the organisms. Considering the overall critical discussion on microbial soil monitoring in the function of pesticide treatments, we can confirm the usefulness of PCR-DGGE as a screening technique to assess the genetic diversity of microbial communities. Nowadays, DGGE remains a preliminary technique to highlight rapidly the main differences in microbial community composition, which is able to give further information if coupled with culture-dependent microbiological approaches, while thorough assessments must be gained by high-throughput techniques such as NGS. The comet assay represents an elective technique for assessing genotoxicity in environmental biomonitoring, being mature after decades of implementation and widely used worldwide for its direct, simple, and affordable implementation. Nonetheless, in order to promote the consistency and reliability of results, regulatory bodies should provide guidelines on the optimal use of this tool, strongly indicating the most reliable indicators of DNA damage. This review may help the European Regulation Authority in deriving new ecotoxicological endpoints to be included in the Registration Procedure of new pesticides.
Collapse
Affiliation(s)
- Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Elga Monaci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Enrica Marini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| |
Collapse
|
20
|
Bourdineaud JP. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug Chem Toxicol 2020; 45:698-721. [PMID: 32543998 DOI: 10.1080/01480545.2020.1770781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In France, the implementation of mutant herbicide-tolerant crops and the use of the related herbicides - sulfonylureas and imidazolinones - have triggered a strong societal reaction illustrated by the intervening actions of environmentalist groups illegally mowing such crops. Trials are in progress, and therefore should be addressed the questions of the environmental risks and the toxicity of these herbicides for the animals and humans consuming the products derived from these plants. Regulatory authorities have allowed these mutant and herbicide-tolerant plants arguing that the herbicides against which they resist only target an enzyme found in 'weeds' (the acetolactate synthase, ALS), and that therefore all organisms lacking this enzyme would be endowed with immunity to these herbicides. The toxicological literature does not match with this argument: 1) Even in organisms displaying the enzyme ALS, these herbicides impact other molecular targets than ALS; 2) These herbicides are toxic for animals, organisms that do not possess the enzyme ALS, and especially invertebrates, amphibians and fish. In humans, epidemiological studies have shown that the use and handling of these toxins are associated with a significantly increased risk of colon and bladder cancers, and miscarriages. In agricultural soils, these herbicides have a persistence of up to several months, and water samples have concentrations of some of these herbicides above the limit value in drinking water.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, CNRS, University of Bordeaux, Pessac, France.,CRIIGEN, Paris, France
| |
Collapse
|
21
|
Vermiremediation of Biomixtures from Biobed Systems Contaminated with Pesticides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biobeds bioremediation systems are effectively used for minimizing pesticide point-source contamination. For keeping the biobed effectiveness, its biomixture needs to be replaced every so often. The exhausted biomixtures can contain pesticide residues and so they require a special treatment before being discharged into the environment. In this study, we explore the potential of vermiremediation for cleaning up biobed biomixtures contaminated with pesticides. Two biomixtures composed of soil:peat:straw (P) and soil:vermicompost of wet olive cake: olive tree pruning (O), contaminated with high loads of four pesticides, were used. Vermicomposting was carried out by Eisenia fetida earthworms for 12 weeks. Results showed that 50% and 70% of the earthworms colonized the contaminated P and O biomixtures, respectively, but the number of alive earthworms decreased with time just as their weight. The colonization of biomixtures did not significantly affect the dissipation of imidacloprid and tebuconazole, but increased 1.4 fold the dissipation of oxyfluorfen in both biomixtures and that of diuron in biomixture P. Although the presence of high loads of pesticides and the composition of the biomixtures limited the vermiremediation, satisfactory results were obtained for diuron and oxyfluorfen. Complementing vermiremediation with other remediation practices could improve the efficiency of this technology.
Collapse
|
22
|
Zhang R, Zhou Z, Zhu W. Evaluating the effects of the tebuconazole on the earthworm, Eisenia fetida by H-1 NMR-Based untargeted metabolomics and mRNA assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110370. [PMID: 32151865 DOI: 10.1016/j.ecoenv.2020.110370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Tebuconazole, a widely used fungicide, can severely disrupt the reproductive process of various organisms. In this study, we investigated the subacute effects of tebuconazole on the earthworm to fully understand its toxic implications. Herein, untargeted metabolomics, mRNA assay and biochemical approaches were adopted to evaluate the subacute effects of Eisenia fetida earthworms, when exposed to tebuconazole at three different concentrations (0.5, 5 and 50 mg/kg) for seven days. SOD enzyme activity test displayed that tebuconazole exposure interfered with the earthworms' ROS. ANN mRNA expression was down-regulated after tebuconazole exposure. 1H nuclear magnetic resonance (1H-NMR)-based untargeted metabolomics study showed that 5 mg/kg tebuconazole exposure interfered with earthworms' metabolism. Twelve significantly changed metabolites were identified. The pathway analyses indicate that tebuconazole can disrupt the earthworm's metabolism, particularly in the AMP pathway, which impact the reproduction. This may explain the tebuconazole's mechanism of action behind the down-regulation of the expression of ANN mRNA, which is related to the earthworm's reproductive process. We comprehensively evaluated the mRNA expression, enzyme activity, and metabolomics, and acquired sufficient information for evaluating the toxicity of tebuconazole.
Collapse
Affiliation(s)
- Renke Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Zhang Q, Liu H, Saleem M, Wang C. Biotransformation of chlorothalonil by strain Stenotrophomonas acidaminiphila BJ1 isolated from farmland soil. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190562. [PMID: 31827822 PMCID: PMC6894561 DOI: 10.1098/rsos.190562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Chlorothalonil is a widely used fungicide, but the contamination of soil and water environments by this chemical causes potential threats to biodiversity. Given the metabolic potential of soil microorganisms, there is a need for developing microbiological approaches to degrade persistent compounds, such as chlorothalonil, in contaminated sites. Here in this study, we isolated a bacterial strain (namely, BJ1) capable of degrading chlorothalonil from a chlorothalonil-contaminated farmland soil in the Shandong Province, China. Using 16S rDNA gene sequencing, morphological and biological characteristics, we identified the strain BJ1 as Stenotrophomonas acidaminiphila. The strain BJ1 uses chlorothalonil as a sole carbon source. At initial concentrations of 50, 100, 200 and 300 mg l-1, it degraded 91.5%, 89.4%, 86.5% and 83.5% of chlorothalonil after 96 h of inoculation under optimum conditions (30°C and pH 7.0). Two metabolites, methyl-2,5,6-trichloro-3-cyano-4-methoxy-benzoate and methyl-3-cyano-2,4,5,6-tetrachlorobenzoate, were detected and identified based on HPLC-MS analysis, which suggests that the strain BJ1 metabolized chlorothalonil through the hydroxylation of chloro-group and hydration of cyano-group. The results of this study highlight the great potential for this bacterium to be used in chlorothalonil pollution remediation.
Collapse
Affiliation(s)
- Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Hongyu Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Caixia Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
24
|
Zhang Q, Saleem M, Wang C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:52-58. [PMID: 30927727 DOI: 10.1016/j.scitotenv.2019.03.364] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The plant-derived biochars act as soil conditioners, and thus may influence biological interactions in the soil environment. However, their unintended negative and positive effects on soil organisms remain largely understudied. Therefore, we investigated the effect of 0, 1, 3, and 10% of wheat straw-derived biochar amendments on earthworm (Eisenia foetida) activity in the soil contaminated with and/or without pesticide mesotrione (10 mg/kg dry soil) after 28 days of incubation. The pesticide mesotrione did not affect earthworm growth or reproduction; however, it induced oxidative stress and DNA damage. Although biochar application significantly decreased the concentration of mesotrione in earthworms, it delayed the degradation of pesticide in the soil environment. Compared to zero amendment, the amendment of 1 and 3% of biochar significantly increased (P < 0.05) the earthworm weight and reduced the toxicity effects of mesotrione on earthworms. However, the application of 10% biochar significantly decreased (P < 0.05) earthworm growth and caused DNA damage even in the absence of mesotrione. This study suggests that it is necessary to investigate the effects of different levels of biochar amendments on earthworms and other soil organisms in agricultural fields to develop a broader understanding about the use of biochar and its consequences on soil health.
Collapse
Affiliation(s)
- Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Caixia Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
25
|
Kayumov AR, Solovyev DA, Bobrov DE, Rizvanov AA. Current Approaches to the Evaluation of Soil Genotoxicity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Meng L, Sun T, Li M, Saleem M, Zhang Q, Wang C. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:75-83. [PMID: 30597319 DOI: 10.1016/j.ecoenv.2018.12.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 05/27/2023]
Abstract
The herbicide "fomesafen" causes phytotoxicity to the rotational wheat crop and may reduce its yield. Considering that biochar may improve remediation and biophysical conditions of the contaminated soil environments to benefit plant growth. Here, we investigated the impacts of three levels of the wheat straw-derived biochar (1%, 2%, and 4% (w/w)) on growth, physiological properties, and rhizosphere microbial communities of the wheat (Triticum aestivum) seedlings under the fomesafen stress using high-throughput sequencing. The results showed that biochar amended into soil significantly reduced the uptake of wheat to fomesafen and thereby eliminate its toxicity to wheat seedlings. Moreover, biochar increased the abundance and diversity of plant beneficial bacterial and fungal taxa in the rhizosphere of wheat seedlings. Compared with the three addition amounts, amendment with 2% of biochar has the best effects to reduce the toxicity of fomesafen on wheat seedlings and maintain the balance of soil microbial community structure in soil contaminated with fomesafen (1.0 mg kg-1). Overall, our results suggest that the level of biochar application influences the structure and diversity of soil microbiome (and mycobiome) and plant performance under abiotic stress conditions.
Collapse
Affiliation(s)
- Lulu Meng
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Tong Sun
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Mengyao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Caixia Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
27
|
Assessment of acute toxicity and biochemical responses to chlorpyrifos, cypermethrin and their combination exposed earthworm, Eudrilus eugeniae. Toxicol Rep 2019; 6:288-297. [PMID: 30989054 PMCID: PMC6447753 DOI: 10.1016/j.toxrep.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
In the present study, co-exposed administered pesticides induced a higher level of toxicity to Eudrilus eugeniae. Statistically significant changes were observed after 48 h exposure of CPF, cypermethrin and combination of the two, reflects the synergistic cumulative impact on the AChE and oxidative stress parameters in dose- dependent manner. Significant changes were observed in different body segments (Pre-Clitellar, Clitellar and Post-Clitellar) of earthworm in tissue specific pattern.
Recurrent application of chemical pesticides in the agricultural fields have adverse impact on flora and fauna of soil ecosystem. Earthworms immensely contribute in increasing the fertility of soil. They may act as a bioindicator for the ecotoxicological analysis of pesticide induced soil pollution. Earthworms, Eudrilus eugeniae were exposed to different concentrations of pesticides chlorpyrifos (OP), cypermethrin (a pyrethroid) and their combination for 48 h by paper contact toxicity method. The LC50 for commercial grade of chlorpyrifos, cypermethrin and combined pesticides were determined as 0.165, 0.066 and 0.020 μg/cm2, respectively. To assess the sub-lethal effect of these pesticides, E. eugeniae were exposed to 5% and 10% of LC50 of the pesticides for 48 h. Variation in morpho-behavioural changes such as coiling, clitellar swelling, mucus release, bleeding and body fragmentation in earthworms were observed after exposure of both pesticides and their combination. Various biochemical estimations such as specific activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione -S-transferase (GST); levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were carried out in different body segments. Significant changes in these stress markers were observed at low and high sub-acute concentration of pesticides exposed earthworm, Eudrilus eugeniae. Such changes indicate potential health risk to E. eugeniae if exposed to the high concentrations of these pesticides accumulated in soil.
Collapse
|
28
|
Mesak C, de Campos RP, de Melo MA, de Oliveira Mendes B, Malafaia G. Behavioral response and dynamics of Eisenia fetida hemocytes exposed to environmentally relevant concentration of sulfentrazone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30728-30736. [PMID: 30220066 DOI: 10.1007/s11356-018-3175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Although the toxicity of the pesticide sulfentrazone in some aquatic organisms is known, its effects on edaphic organisms such as earthworms remain completely unknown. Thus, we aimed at evaluating the behavior and immune response of Eisenia fetida exposed to sulfentrazone at environmentally relevant concentrations (EC). E. fetida representatives exposed to this contaminant (for 48 h) were divided in the following groups: environmental concentration (EC1x: 318 ng sulfentrazone/g of dry weight soil) and EC100x (concentration 100 times higher than in EC1x). Based on the avoidance test results, earthworms responded to this pesticide and proved the toxicity of sulfentrazone. The observed immune response induction was expressed by increased granulocytes presenting phagocytic vacuoles and agglomerations/encapsulations, mainly in animals belonging to groups EC1x and EC100x. However, the reduced frequency of plasmocytes in these animals' hemolymphs suggested that the phagocytic immune response was not efficient to assure 100% survival. Our study is the first to report sulfentrazone toxicity in an edaphic organism, at environmental concentration.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Raphael Pires de Campos
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Marcela Amaral de Melo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|