1
|
Romanyuk O, Stehlík Š, Zemek J, Aubrechtová Dragounová K, Kromka A. Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:590. [PMID: 38607124 PMCID: PMC11013481 DOI: 10.3390/nano14070590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative analysis of the graphitization process in various types of hydrogenated NDs, considering differences in ND size and quality. We prepared three types of hydrogenated NDs: high-pressure high-temperature NDs (HPHT ND-H; 0-30 nm), conventional detonation nanodiamonds (DND-H; ~5 nm), and size- and nitrogen-reduced hydrogenated nanodiamonds (snr-DND-H; 2-3 nm). The samples underwent annealing in an ultra-high vacuum and sputtering by Ar cluster ion beam (ArCIB). Samples were investigated by in situ X-ray photoelectron spectroscopy (XPS), in situ ultraviolet photoelectron spectroscopy (UPS), and Raman spectroscopy (RS). Our investigation revealed that the graphitization temperature of NDs ranges from 600 °C to 700 °C and depends on the size and crystallinity of the NDs. Smaller DND particles with a high density of defects exhibit a lower graphitization temperature. We revealed a constant energy difference of 271.3 eV between the sp-peak in the valence band spectra (at around 13.7 eV) and the sp3 component in the C 1s core level spectra (at 285.0 eV). The identification of this energy difference helps in calibrating charge shifts and serves the unambiguous identification of the sp3 bond contribution in the C 1s spectra obtained from ND samples. Results were validated through reference measurements on hydrogenated single crystal C(111)-H and highly-ordered pyrolytic graphite (HOPG).
Collapse
Affiliation(s)
- Oleksandr Romanyuk
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (Š.S.); (J.Z.); (K.A.D.); (A.K.)
| | - Štěpán Stehlík
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (Š.S.); (J.Z.); (K.A.D.); (A.K.)
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic
| | - Josef Zemek
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (Š.S.); (J.Z.); (K.A.D.); (A.K.)
| | - Kateřina Aubrechtová Dragounová
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (Š.S.); (J.Z.); (K.A.D.); (A.K.)
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic; (Š.S.); (J.Z.); (K.A.D.); (A.K.)
| |
Collapse
|
2
|
Ficek M, Cieślik M, Janik M, Brodowski M, Sawczak M, Bogdanowicz R, Ryl J. Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Mikrochim Acta 2023; 190:410. [PMID: 37736868 PMCID: PMC10516795 DOI: 10.1007/s00604-023-05991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.
Collapse
Affiliation(s)
- Mateusz Ficek
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Cieślik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Monika Janik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Mateusz Brodowski
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mirosław Sawczak
- Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Ryl
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
3
|
Wójcik B, Zawadzka K, Jaworski S, Kutwin M, Sosnowska M, Ostrowska A, Grodzik M, Małolepszy A, Mazurkiewicz-Pawlicka M, Wierzbicki M. Dependence of diamond nanoparticle cytotoxicity on physicochemical parameters: comparative studies of glioblastoma, breast cancer, and hepatocellular carcinoma cell lines. Nanotoxicology 2023:1-28. [PMID: 37262345 DOI: 10.1080/17435390.2023.2218925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Reports on the cytotoxicity of diamond nanoparticles (ND) are ambiguous and depend on the physicochemical properties of the material and the tested cell lines. Thus, the aim of this research was to evaluate the influence of thirteen types of diamond nanoparticles, differing in production method, size, and surface functional groups, on their cytotoxicity against four tumor cell lines (T98G, U-118 MG, MCF-7, and Hep G2) and one non-tumor cell line (HFF-1). In order to understand the dependence of diamond nanoparticles on physicochemical properties, the following parameters were analyzed: viability, cell membrane damage, morphology, and the level of intracellular general ROS and mitochondrial superoxide. The performed analyses revealed that all diamond nanoparticles showed no toxicity to MCF-7, Hep G2, and HFF-1 cells. In contrast, the same nanomaterials were moderately toxic for the glioblastoma T98G and U-118 MG cell lines. In general, the effect of the production method did not influence ND toxicity. Some changes in cell response after treatment with modified nanomaterials were observed, with the presence of carboxyl groups having a more detrimental effect than the presence of other functional groups. Although nanoparticles of different sizes caused similar toxicity, nanomaterials with bigger particles caused a more pronounced effect.
Collapse
Affiliation(s)
- Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | | | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, University of Life Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Wierzbicki M, Zawadzka K, Wójcik B, Jaworski S, Strojny B, Ostrowska A, Małolepszy A, Mazurkiewicz-Pawlicka M, Sawosz E. Differences in the Cell Type-Specific Toxicity of Diamond Nanoparticles to Endothelial Cells Depending on the Exposure of the Cells to Nanoparticles. Int J Nanomedicine 2023; 18:2821-2838. [PMID: 37273285 PMCID: PMC10237202 DOI: 10.2147/ijn.s411424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Diamond nanoparticles are considered to be one of the most cytocompatible carbon nanomaterials; however, their toxicity varies significantly depending on the analysed cell types. The aim was to investigate the specific sensitivity of endothelial cells to diamond nanoparticles dependent on exposure to nanoparticles. Methods Diamond nanoparticles were characterized with Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Toxicity of diamond nanoparticles was assessed for endothelial cells (HUVEC), human mammary epithelial cells (HMEC) and HS-5 cell line. The effect of diamond nanoparticles on the level of ROS, NO, NADPH and protein synthesis of angiogenesis-related proteins of endothelial cells was evaluated. Results and Discussion Our studies demonstrated severe cell type-specific toxicity of diamond nanoparticles to endothelial cells (HUVEC) depending on nanoparticle surface interaction with cells. Furthermore, we have assessed the effect on cytotoxicity of the bioconjugation of nanoparticles with a peptide containing the RGD motive and a serum protein corona. Our study suggests that the mechanical interaction of diamond nanoparticles with the endothelial cell membranes and the endocytosis of nanoparticles lead to the depletion of NADPH, resulting in an intensive synthesis of ROS and a decrease in the availability of NO. This leads to severe endothelial toxicity and a change in the protein profile, with changes in major angiogenesis-related proteins, including VEGF, bFGF, ANPT2/TIE-2, and MMP, and the production of stress-related proteins, such as IL-6 and IL-8. Conclusion We confirmed the presence of a relationship between the toxicity of diamond nanoparticles and the level of cell exposure to nanoparticles and the nanoparticle surface. The results of the study give new insights into the conditioned toxicity of nanomaterials and their use in biomedical applications.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, 00-654, Poland
| | | | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
5
|
Guo X, You Y, Bao A, Jia P, Xiong J, Li J. Recent Progress of Nanodiamond Film in Controllable Fabrication and Field Emission Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:577. [PMID: 36770538 PMCID: PMC9920309 DOI: 10.3390/nano13030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The interest in the field electron emission cathode nanomaterials is on the rise due to the wide applications, such as electron sources, miniature X-ray devices, display materials, etc. In particular, nanodiamond (ND) film is regarded as an ideal next-generation cathode emitter in the field emission devices, due to the low or negative electron affinity, small grain size, high mechanical hardness, low work function, and high reliability. Increasing efforts are conducted on the investigation of the emission structures, manufacturing cost, and field emission properties improvement of the ND films. This review aims to summarize the recent research, highlight the new findings, and provide a roadmap for future developments in the area of ND film electron field emitter. Specially, the optimizing methods of large-scale, high-quality, and cost-effective synthesis of ND films are discussed to achieve more stable surface structure and optimal physical properties. Additionally, the mainstream strategies applied to produce high field emission performance of ND films are analyzed in detail, including regulating the grain size/boundary, hybrid phase carbon content, and doping element/type of ND films; meanwhile, the problems existing in the related research and the outlook in this area are also discussed.
Collapse
Affiliation(s)
- Xin Guo
- National Key Laboratory for Electronic Measurement Technology, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Yajun You
- National Key Laboratory for Electronic Measurement Technology, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Aida Bao
- National Key Laboratory for Electronic Measurement Technology, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Pinggang Jia
- National Key Laboratory for Electronic Measurement Technology, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Jijun Xiong
- National Key Laboratory for Electronic Measurement Technology, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Junshuai Li
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
6
|
Bhogale D, Mazahir F, Yadav AK. Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders. Mol Neurobiol 2022; 59:4806-4824. [PMID: 35618981 DOI: 10.1007/s12035-022-02882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrate the blood brain barrier. On long-term use, they may cause CNS toxicity due to accumulation in the brain. So nanodiamonds could prove as a promising approach in the brain targeting of the bioactive and to treat many neurological disorders such as Alzheimer's disease, Parkinson's disease, brain tumor (glioblastoma), HIV, amyotrophic multiple sclerosis, Huntington disease, stroke (cerebrovascular attack), batten disease, schizophrenia, epilepsy, and bacterial infections (encephalitis, sepsis, and meningitis) due to their ability to penetrate the blood-brain barrier and owing to their excellent surface properties, i.e., nano size and high surface area, ease of functionalization, multiple drug binding, and biocompatibility; they can be useful for brain targeted drug delivery with minimal side effects.
Collapse
Affiliation(s)
- Deepali Bhogale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
7
|
Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. NANOMATERIALS 2021; 12:nano12010064. [PMID: 35010014 PMCID: PMC8746347 DOI: 10.3390/nano12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Diamond electrodes have long been a well-known candidate in electrochemical analyte detection. Nano- and micro-level modifications on the diamond electrodes can lead to diverse analytical applications. Doping of crystalline diamond allows the fabrication of suitable electrodes towards specific analyte monitoring. In particular, boron-doped diamond (BDD) electrodes have been reported for metal ions, anions, biomolecules, drugs, beverage hazards, pesticides, organic molecules, dyes, growth stimulant, etc., with exceptional performance in discriminations. Therefore, numerous reviews on the diamond electrode-based sensory utilities towards the specified analyte quantifications were published by many researchers. However, reviews on the nanodiamond-based electrodes for metal ions and anions are still not readily available nowadays. To advance the development of diamond electrodes towards the detection of diverse metal ions and anions, it is essential to provide clear and focused information on the diamond electrode synthesis, structure, and electrical properties. This review provides indispensable information on the diamond-based electrodes towards the determination of metal ions and anions.
Collapse
|
8
|
Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications-A Review. NANOMATERIALS 2021; 11:nano11061628. [PMID: 34205801 PMCID: PMC8235799 DOI: 10.3390/nano11061628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Nanofluids have opened the doors towards the enhancement of many of today's existing thermal applications performance. This is because these advanced working fluids exhibit exceptional thermophysical properties, and thus making them excellent candidates for replacing conventional working fluids. On the other hand, nanomaterials of carbon-base were proven throughout the literature to have the highest thermal conductivity among all other types of nanoscaled materials. Therefore, when these materials are homogeneously dispersed in a base fluid, the resulting suspension will theoretically attain orders of magnitude higher effective thermal conductivity than its counterpart. Despite this fact, there are still some challenges that are associated with these types of fluids. The main obstacle is the dispersion stability of the nanomaterials, which can lead the attractive properties of the nanofluid to degrade with time, up to the point where they lose their effectiveness. For such reason, this work has been devoted towards providing a systematic review on nanofluids of carbon-base, precisely; carbon nanotubes, graphene, and nanodiamonds, and their employment in thermal systems commonly used in the energy sectors. Firstly, this work reviews the synthesis approaches of the carbon-based feedstock. Then, it explains the different nanofluids fabrication methods. The dispersion stability is also discussed in terms of measuring techniques, enhancement methods, and its effect on the suspension thermophysical properties. The study summarizes the development in the correlations used to predict the thermophysical properties of the dispersion. Furthermore, it assesses the influence of these advanced working fluids on parabolic trough solar collectors, nuclear reactor systems, and air conditioning and refrigeration systems. Lastly, the current gap in scientific knowledge is provided to set up future research directions.
Collapse
Affiliation(s)
- Naser Ali
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Ammar M. Bahman
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
| | - Nawaf F. Aljuwayhel
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
- Correspondence:
| | - Shikha A. Ebrahim
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
| | - Sayantan Mukherjee
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India;
| | - Ali Alsayegh
- School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Cranfield MK43 0AL, UK;
| |
Collapse
|
9
|
Itasaka H, Liu M, Kojima R, Yoshikawa T, Nishikawa M, Nishi M, Hamamoto K. Single-particle Observation of Detonation Nanodiamonds by Tip-enhanced Raman Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Itasaka
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Ming Liu
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Ryota Kojima
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Taro Yoshikawa
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masahiro Nishikawa
- Incubation Research Center, Innovation and Business Development Headquarters, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masayuki Nishi
- Department of Mechanical and Electrical System Engineering, Faculty of Engineering, Kyoto University of Advanced Science, 18 Yamanouchi Gotanda-cho, Ukyo-ku, Kyoto 615-8577, Japan
| | - Koichi Hamamoto
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| |
Collapse
|
10
|
Douda J, González-Vargas CR, Mota-Díaz II, Basiuk EV, Hernández-Contreras XA, Fuentes-García JA, Bornacelli J, Torres-Torres C. Photoluminescent properties of liposome-encapsulated amine-functionalized nanodiamonds. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abc1c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
In the present work, amine-functionalized nanodiamonds (NDs) have been encapsulated in liposomes and studied in order to observe the modification of their photoluminescence properties. NDs were functionalized with aromatic amines such as 1-aminopyrene and 2-aminofluorene, and the aliphatic amine 1-octadecylamine. Morphology, structural and optical properties of NDs and amine-modified NDs were analyzed by transmission electron microscopy, atomic force microscopy, scanning electron microscopy, and photoluminescence. The amine-functionalized NDs were successfully encapsulated in lecithin liposomes prepared by the green and conventional methods. The obtained results show significant changes in photoluminescent properties of functionalized NDs, and were more potentialized after liposome encapsulation. Our findings could be applied in the development of new kinds of water-dispersible fluorescent hybrids, liposome-NDs, with the capability of drug encapsulation for use in diagnostics and therapy (theragnostic liposomes). All-optical sensors with possibilities for tailoring their response for other biomedical applications can be also contemplated.
Collapse
|
11
|
Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts 2020. [DOI: 10.3390/catal10121402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The quest for active, yet “green” non-toxic catalysts is a continuous challenge. In this work, covalently linked hybrid porphyrin–nanodiamonds were prepared via ipso nitro substitution reaction and characterized by X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, infrared spectroscopy (IR) and thermogravimetry-differential scanning calorimetry (TG-DSC). The amine-functionalized nanodiamonds (ND@NH2) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin covalently linked to nanodiamonds (ND@βNH-TPPpCF3) were tested using Allium cepa as a plant model, and showed neither phytotoxicity nor cytotoxicity. The hybrid nanodiamond–copper(II)–porphyrin material ND@βNH-TPPpCF3-Cu(II) was also evaluated as a reusable catalyst in cyclohexene allylic oxidation, and displayed a remarkable turnover number (TON) value of ≈265,000, using O2 as green oxidant, in the total absence of sacrificial additives, which is the highest activity ever reported for said allylic oxidation. Additionally, ND@βNH-TPPpCF3-Cu(II) could be easily separated from the reaction mixture by centrifugation, and reused in three consecutive catalytic cycles without major loss of activity.
Collapse
|
12
|
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1508. [PMID: 32752020 PMCID: PMC7466546 DOI: 10.3390/nano10081508] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Collapse
Affiliation(s)
- Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Danijela Petrovic
- Department of Natural Sciences and Management in Education, Faculty of Education Sombor, University of Novi Sad, Podgorička 4, 25101 Sombor, Serbia
| | - Mariana Seke
- Institute of Nuclear Sciences "Vinca", University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
13
|
Kuzmin V, Safiullin K, Dolgorukov G, Stanislavovas A, Alakshin E, Yavkin B, Orlinskii S, Klochkov A, Tagirov M. Reply to 'Comment on "Angstrom-scale probing of paramagnetic centers location in nanodiamonds by 3He NMR at low temperatures"' by A. Shames, V. Osipov and A. Panich, Phys. Chem. Chem. Phys. 2018, 20, DOI. Phys Chem Chem Phys 2018; 20:27697-27699. [PMID: 30351324 DOI: 10.1039/c8cp05801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shames et al. made a comment on our article (DOI: 10.1039/C7CP05898E) stating that their experience in EPR studies of detonation nanodiamonds suggests the existence of two main types of paramagnetic center in detonation nanodiamonds which questions our results. In this reply we provide insights into why there is only one main type of paramagnetic centers detected in nanodiamonds used in this work, which validates the correctness of the proposed original method to determine the distances between paramagnetic centers and nanoparticle surfaces by 3He NMR.
Collapse
Affiliation(s)
- Vyacheslav Kuzmin
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | |
Collapse
|