1
|
Larson JD, Heitkamp NA, Murray LE, Popchock AR, Biggins S, Asbury CL. Kinetochores grip microtubules with directionally asymmetric strength. J Cell Biol 2025; 224:e202405176. [PMID: 39485274 PMCID: PMC11533501 DOI: 10.1083/jcb.202405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
For accurate mitosis, all chromosomes must achieve "biorientation," with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.
Collapse
Affiliation(s)
- Joshua D. Larson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Natalie A. Heitkamp
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lucas E. Murray
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew R. Popchock
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles L. Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Cai P, Casas CJ, Quintero Plancarte G, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. Chromosome Res 2025; 33:1. [PMID: 39751905 PMCID: PMC11698895 DOI: 10.1007/s10577-024-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
Affiliation(s)
- Pingping Cai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Christian J Casas
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Lisa L Hua
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
| |
Collapse
|
3
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
4
|
Cai P, Casas CJ, Plancarte GQ, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. RESEARCH SQUARE 2024:rs.3.rs-4283973. [PMID: 38746098 PMCID: PMC11092853 DOI: 10.21203/rs.3.rs-4283973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
5
|
Joshi JN, Changela N, Mahal L, Defosse T, Jang J, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585003. [PMID: 38559067 PMCID: PMC10980020 DOI: 10.1101/2024.03.14.585003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.
Collapse
|
6
|
Cai P, Casas CJ, Plancarte GQ, Hua LL, Mikawa T. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534352. [PMID: 37034601 PMCID: PMC10081237 DOI: 10.1101/2023.03.27.534352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G 1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
7
|
Nair VM, Sabu AS, Hussain A, Kombarakkaran DP, Lakshmi RB, Manna TK. E3-ubiquitin ligase, FBXW7 regulates mitotic progression by targeting BubR1 for ubiquitin-mediated degradation. Cell Mol Life Sci 2023; 80:374. [PMID: 38008853 PMCID: PMC11072012 DOI: 10.1007/s00018-023-05019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/28/2023]
Abstract
Faithful chromosome segregation requires correct attachment of kinetochores with the spindle microtubules. Erroneously-attached kinetochores recruit proteins to activate Spindle assembly checkpoint (SAC), which senses the errors and signals cells to delay anaphase progression for error correction. Temporal control of the levels of SAC activating-proteins is critical for checkpoint activation and silencing, but its mechanism is not fully understood. Here, we show that E3 ubiquitin ligase, SCF-FBXW7 targets BubR1 for ubiquitin-mediated degradation and thereby controls SAC in human cells. Depletion of FBXW7 results in prolonged metaphase arrest with increased stabilization of BubR1 at kinetochores. Similar kinetochore stabilization is also observed for BubR1-interacting protein, CENP-E. FBXW7 induced ubiquitination of both BubR1 and the BubR1-interacting kinetochore-targeting domain of CENP-E, but CENP-E domain degradation is dependent on BubR1. Interestingly, Cdk1 inhibition disrupts FBXW7-mediated BubR1 targeting and further, phospho-resistant mutation of Cdk1-targeted phosphorylation site, Thr 620 impairs BubR1-FBXW7 interaction and FBXW7-mediated BubR1 ubiquitination, supporting its role as a phosphodegron for FBXW7. The results demonstrate SCF-FBXW7 as a key regulator of spindle assembly checkpoint that controls stability of BubR1 and its associated CENP-E at kinetochores. They also support that upstream Cdk1 specific BubR1 phosphorylation signals the ligase to activate the process.
Collapse
Affiliation(s)
- Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Amit Santhu Sabu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Ahmed Hussain
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
8
|
Matković J, Ghosh S, Ćosić M, Eibes S, Barišić M, Pavin N, Tolić IM. Kinetochore- and chromosome-driven transition of microtubules into bundles promotes spindle assembly. Nat Commun 2022; 13:7307. [PMID: 36435852 PMCID: PMC9701229 DOI: 10.1038/s41467-022-34957-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mitotic spindle assembly is crucial for chromosome segregation and relies on bundles of microtubules that extend from the poles and overlap in the middle. However, how these structures form remains poorly understood. Here we show that overlap bundles arise through a network-to-bundles transition driven by kinetochores and chromosomes. STED super-resolution microscopy reveals that PRC1-crosslinked microtubules initially form loose arrays, which become rearranged into bundles. Kinetochores promote microtubule bundling by lateral binding via CENP-E/kinesin-7 in an Aurora B-regulated manner. Steric interactions between the bundle-associated chromosomes at the spindle midplane drive bundle separation and spindle widening. In agreement with experiments, theoretical modeling suggests that bundles arise through competing attractive and repulsive mechanisms. Finally, perturbation of overlap bundles leads to inefficient correction of erroneous kinetochore-microtubule attachments. Thus, kinetochores and chromosomes drive coarsening of a uniform microtubule array into overlap bundles, which promote not only spindle formation but also chromosome segregation fidelity.
Collapse
Affiliation(s)
- Jurica Matković
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Subhadip Ghosh
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mateja Ćosić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Susana Eibes
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marin Barišić
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nenad Pavin
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Iva M. Tolić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Klaasen SJ, Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022; 11:3564. [PMID: 36428993 PMCID: PMC9688425 DOI: 10.3390/cells11223564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues.
Collapse
Affiliation(s)
- Sjoerd J. Klaasen
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
10
|
Klaasen SJ, Truong MA, van Jaarsveld RH, Koprivec I, Štimac V, de Vries SG, Risteski P, Kodba S, Vukušić K, de Luca KL, Marques JF, Gerrits EM, Bakker B, Foijer F, Kind J, Tolić IM, Lens SMA, Kops GJPL. Nuclear chromosome locations dictate segregation error frequencies. Nature 2022; 607:604-609. [PMID: 35831506 PMCID: PMC9300461 DOI: 10.1038/s41586-022-04938-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.
Collapse
Affiliation(s)
- Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - My Anh Truong
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | - Sippe G de Vries
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Kim L de Luca
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Joana F Marques
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Elianne M Gerrits
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Jop Kind
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Susanne M A Lens
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Iemura K, Anzawa H, Funayama R, Iwakami R, Nakayama K, Kinoshita K, Tanaka K. High levels of chromosomal instability facilitate the tumor growth and sphere formation. Cancer Sci 2022; 113:2727-2737. [PMID: 35662350 PMCID: PMC9357619 DOI: 10.1111/cas.15457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Most cancer cells show chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates. Growing evidence suggests that CIN is not just a consequence of, but a driving force for, oncogenic transformation, although the relationship between CIN and tumorigenesis has not been fully elucidated. Here we found that conventional two‐dimensional (2D) culture of HeLa cells, a cervical cancer‐derived cell line, was a heterogenous population containing cells with different CIN levels. Although cells with high‐CIN levels (high‐CIN cells) grew more slowly compared with cells with low‐CIN levels (low‐CIN cells) in 2D monolayer culture, they formed tumors in nude mice and larger spheres in three‐dimensional (3D) culture, which was more representative of the in vivo environment. The duration of mitosis was longer in high‐CIN cells, reflecting their higher mitotic defects. Single‐cell genome sequencing revealed that high‐CIN cells exhibited a higher karyotype heterogeneity compared with low‐CIN cells. Intriguingly, the karyotype heterogeneity was reduced in the spheres formed by high‐CIN cells, suggesting that cells with growth advantages were selected, although genomic copy number changes specific for spheres were not identified. When we examined gene expression profiles, genes related to the K‐ras signaling were upregulated, while those related to the unfolded protein response were downregulated in high‐CIN cells in 3D culture compared with 2D culture, suggesting the relevance of these genes for their survival. Our data suggested that, although CIN is disadvantageous in monolayer culture, it promotes the selection of cells with growth advantages under in vivo environments, which may lead to tumorigenesis.
Collapse
Affiliation(s)
- Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer Tohoku University Sendai, Miyagi 980‐8575 Japan
| | - Hayato Anzawa
- Department of Applied Information Sciences, Graduate School of Information Sciences Tohoku University Sendai, Miyagi 980‐8579 Japan
| | - Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of Medicine Tohoku University Sendai, Miyagi 980‐8575 Japan
| | - Runa Iwakami
- Department of Molecular Oncology, Institute of Development, Aging and Cancer Tohoku University Sendai, Miyagi 980‐8575 Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of Medicine Tohoku University Sendai, Miyagi 980‐8575 Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences Tohoku University Sendai, Miyagi 980‐8579 Japan
- Tohoku Medical Megabank Organization Tohoku University Sendai, Miyagi 980‐8573 Japan
- Advanced Research Center for Innovations in Next‐Generation Medicine Tohoku University Sendai, Miyagi 980‐8573 Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer Tohoku University Sendai, Miyagi 980‐8575 Japan
| |
Collapse
|
12
|
Kouznetsova A, Liu JG, Valentiniene S, Brismar H, Höög C. Age-dependent aneuploidy in mammalian oocytes instigated at the second meiotic division. Aging Cell 2022; 21:e13649. [PMID: 35665589 PMCID: PMC9282850 DOI: 10.1111/acel.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Jian Guo Liu
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Sonata Valentiniene
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics Royal Institute of Technology Solna Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| |
Collapse
|
13
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
14
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
McKim KS. Highway to hell-thy meiotic divisions: Chromosome passenger complex functions driven by microtubules: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function. Bioessays 2022; 44:e2100202. [PMID: 34821405 PMCID: PMC8688318 DOI: 10.1002/bies.202100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin-microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC-microtubule dependent functions are considered in the context of the first meiotic division. Acentrosomal spindle assembly is a process that depends on transfer of the CPC from the chromosomes to the microtubules. Furthermore, transfer to the microtubules is not only to position the CPC for a later role in cytokinesis; metaphase I error correction and subsequent bi-orientation of bivalents may depend on microtubule associated CPC interacting with the kinetochores.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
16
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
17
|
Krivov MA, Ataullakhanov FI, Ivanov PS. Computer simulation of merotelic kinetochore-microtubule attachments: corona size is more important than other cell parameters. Chromosome Res 2021; 29:327-349. [PMID: 34427825 DOI: 10.1007/s10577-021-09669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The even chromosome segregation between daughter cells during mitosis is crucial for genome integrity and is mostly regulated by proper attachments of spindle microtubules to kinetochores. Abnormalities in this process can lead to chromosome mis-segregation and potentially result in severe developmental disorders such as aneuploidy and cancer. Merotelic attachments when tubulin microtubules captured by the kinetochore of one chromatid originate from both spindle poles are considered as one of the key molecular processes that cause such abnormalities. In this paper, we use computer modeling and the Monte Carlo approach to reveal the reasons for retaining merotelic attachments at the end of metaphase. To this end, we varied, in small increments, the basic cell parameters within ensembles of 100, 500, and 1000 virtual cells. The analysis of configurations that ensure the preservation of the largest fraction of merotelic attachments enabled us to conclude that only a change in the size of the kinetochore corona can significantly increase the number of merotelic attachments and the angle between the centromere axis and the spindle axis. The effect of the other changes in model parameters, if any, was steadily suppressed by the end of metaphase. In addition, our computer model was validated by successfully reproducing the results of third-party theoretical studies as well as some experimental observations. We also found that the orientation of chromosomes and the number of merotelic attachments do not have an explicit correlation with each other and within some limits can change independently.
Collapse
Affiliation(s)
| | - Fazoil I Ataullakhanov
- M.V. Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicoсhemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
18
|
Itoh G, Takagane K, Fukushi Y, Kuriyama S, Umakoshi M, Goto A, Yanagihara K, Yashiro M, Tanaka M. Cancer-associated fibroblasts educate normal fibroblasts to facilitate cancer cell spreading and T cell suppression. Mol Oncol 2021; 16:166-187. [PMID: 34379869 PMCID: PMC8732346 DOI: 10.1002/1878-0261.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022] Open
Abstract
In some tumors, a small number of cancer cells are scattered in a large fibrotic stroma. Here, we demonstrate a novel mechanism for expansion of pro‐tumor fibroblasts via cancer‐associated fibroblast (CAF)‐mediated education of normal fibroblasts (NFs). When NFs were incubated with conditioned medium from CAFs, the resulting CAF‐educated fibroblasts (CEFs) generated reactive oxygen species, which induced NF‐κB‐mediated expression of inflammatory cytokines and the extracellular matrix protein asporin (ASPN), while expression of a common CAF marker gene, α‐SMA, was not increased. ASPN further increased CEF expression of downstream molecules, including indoleamine 2,3‐dioxygenase 1 (IDO‐1), kynureninase (KYNU), and pregnancy‐associated plasma protein‐A (PAPP‐A). These CEFs induce cytocidal effects against CD8+ T cells and IGF‐I activation in cancer cells. CEFs were generated without cancer cells by the direct mixture of NFs and CAFs in mouse xenografts, and once CEFs were generated, they sequentially educated NFs, leading to continuous generation of CEFs. In diffuse‐type gastric cancers, ASPNhigh/IDO‐1high/KYNUhigh/α‐SMA− CEFs were located at the distal invading front. These CEFs expanded in the fibrotic stroma and caused dissemination of cancer cells. ASPN may therefore be a key molecule in facilitating tumor spreading and T‐cell suppression.
Collapse
Affiliation(s)
- Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuma Fukushi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita, 010-8502, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8545, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
19
|
Hino M, Iemura K, Ikeda M, Itoh G, Tanaka K. Chromosome alignment-maintaining phosphoprotein CHAMP1 plays a role in cell survival through regulating Mcl-1 expression. Cancer Sci 2021; 112:3711-3721. [PMID: 34107118 PMCID: PMC8409433 DOI: 10.1111/cas.15018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Antimitotic drugs such as vinca alkaloids and taxanes cause mitotic cell death after prolonged mitotic arrest. However, a fraction of cells escape from mitotic arrest by undergoing mitotic slippage, which is related to resistance to antimitotic drugs. Tipping the balance to mitotic cell death thus can be a way to overcome the drug resistance. Here we found that depletion of a mitotic regulator, CHAMP1 (chromosome alignment-maintaining phosphoprotein, CAMP), accelerates the timing of mitotic cell death after mitotic arrest. Live cell imaging revealed that CHAMP1-depleted cells died earlier than mock-treated cells in the presence of antimitotic drugs that resulted in the reduction of cells undergoing mitotic slippage. Depletion CHAMP1 reduces the expression of antiapoptotic Bcl-2 family proteins, especially Mcl-1. We found that CHAMP1 maintains Mcl-1 expression both at protein and mRNA levels independently of the cell cycle. At the protein level, CHAMP1 maintains Mcl-1 stability by suppressing proteasome-dependent degradation. Depletion of CHAMP1 reduces cell viability, and exhibits synergistic effects with antimitotic drugs. Our data suggest that CHAMP1 plays a role in the maintenance of Mcl-1 expression, implying that CHAMP1 can be a target to overcome the resistance to antimitotic drugs.
Collapse
Affiliation(s)
- Maho Hino
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Jang JK, Gladstein AC, Das A, Shapiro JG, Sisco ZL, McKim KS. Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes. J Cell Sci 2021; 134:jcs254037. [PMID: 34297127 PMCID: PMC8325958 DOI: 10.1242/jcs.254037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/14/2021] [Indexed: 01/06/2023] Open
Abstract
Meiosis in female oocytes lacks centrosomes, the microtubule-organizing centers. In Drosophila oocytes, meiotic spindle assembly depends on the chromosomal passenger complex (CPC). To investigate the mechanisms that regulate Aurora B activity, we examined the role of protein phosphatase 2A (PP2A) in Drosophila oocyte meiosis. We found that both forms of PP2A, B55 and B56, antagonize the Aurora B spindle assembly function, suggesting that a balance between Aurora B and PP2A activity maintains the oocyte spindle during meiosis I. PP2A-B56, which has a B subunit encoded by two partially redundant paralogs, wdb and wrd, is also required for maintenance of sister chromatid cohesion, establishment of end-on microtubule attachments, and metaphase I arrest in oocytes. WDB recruitment to the centromeres depends on BUBR1, MEI-S332 and kinetochore protein SPC105R. Although BUBR1 stabilizes microtubule attachments in Drosophila oocytes, it is not required for cohesion maintenance during meiosis I. We propose at least three populations of PP2A-B56 regulate meiosis, two of which depend on SPC105R and a third that is associated with the spindle.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim S. McKim
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Barisic M, Rajendraprasad G. Mitotic poleward flux: Finding balance between microtubule dynamics and sliding. Bioessays 2021; 43:e2100079. [PMID: 34085708 DOI: 10.1002/bies.202100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Continuous poleward motion of microtubules in metazoan mitotic spindles has been fascinating generations of cell biologists over the last several decades. In human cells, this so-called poleward flux was recently shown to be driven by the coordinated action of four mitotic kinesins. The sliding activities of kinesin-5/EG5 and kinesin-12/KIF15 are sequentially supported by kinesin-7/CENP-E at kinetochores and kinesin-4/KIF4A on chromosome arms, with the individual contributions peaking during prometaphase and metaphase, respectively. Although recent data elucidate the molecular mechanism underlying this cellular phenomenon, the functional roles of microtubule poleward flux during cell division remain largely elusive. Here, we discuss potential contribution of microtubule flux engine to various essential processes at different stages of mitosis.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| |
Collapse
|
22
|
Iemura K, Natsume T, Maehara K, Kanemaki MT, Tanaka K. Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol 2021; 220:212099. [PMID: 33988677 PMCID: PMC8129796 DOI: 10.1083/jcb.202006116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A-dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore-microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A-mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore-microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.
Collapse
Affiliation(s)
- Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kayoko Maehara
- Department of Nutrition, Graduate School of Health Sciences, Kio University, Kitakatsuragi, Nara, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
23
|
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci 2021; 78:4955-4972. [PMID: 33860332 PMCID: PMC8233288 DOI: 10.1007/s00018-021-03827-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
Collapse
Affiliation(s)
- Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Renda F, Khodjakov A. Role of spatial patterns and kinetochore architecture in spindle morphogenesis. Semin Cell Dev Biol 2021; 117:75-85. [PMID: 33836948 PMCID: PMC8762378 DOI: 10.1016/j.semcdb.2021.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Mitotic spindle is a self-assembling macromolecular machine responsible for the faithful segregation of chromosomes during cell division. Assembly of the spindle is believed to be governed by the 'Search & Capture' (S&C) principle in which dynamic microtubules explore space in search of kinetochores while the latter capture microtubules and thus connect chromosomes to the spindle. Due to the stochastic nature of the encounters between kinetochores and microtubules, the time required for incorporating all chromosomes into the spindle is profoundly affected by geometric constraints, such as the size and shape of kinetochores as well as their distribution in space at the onset of spindle assembly. In recent years, several molecular mechanisms that control these parameters have been discovered. It is now clear that stochastic S&C takes place in structured space, where components are optimally distributed and oriented to minimize steric hindrances. Nucleation of numerous non-centrosomal microtubules near kinetochores accelerates capture, while changes in the kinetochore architecture at various stages of spindle assembly promote proper connection of sister kinetochores to the opposite spindle poles. Here we discuss how the concerted action of multiple facilitating mechanisms ensure that the spindle assembles rapidly yet with a minimal number of errors.
Collapse
Affiliation(s)
- Fioranna Renda
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States.
| | - Alexey Khodjakov
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
25
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
26
|
Steblyanko Y, Rajendraprasad G, Osswald M, Eibes S, Jacome A, Geley S, Pereira AJ, Maiato H, Barisic M. Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO J 2020; 39:e105432. [PMID: 33073400 PMCID: PMC7705458 DOI: 10.15252/embj.2020105432] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.
Collapse
Affiliation(s)
| | | | - Mariana Osswald
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Susana Eibes
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
| | - Ariana Jacome
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Stephan Geley
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - António J Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Helder Maiato
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Experimental Biology UnitDepartment of BiomedicineFaculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Marin Barisic
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
She ZY, Yu KW, Wei YL, Zhong N, Lin Y. Kinesin-7 CENP-E regulates the formation and structural maintenance of the acrosome. Cell Tissue Res 2020; 383:1167-1182. [PMID: 33237480 DOI: 10.1007/s00441-020-03341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022]
Abstract
The acrosome is a special organelle that develops from the Golgi apparatus and the endolysosomal compartment in the spermatids. Centromere protein E (CENP-E) is an essential kinesin motor in chromosome congression and alignment. This study is aimed at investigating the roles and mechanisms of kinesin-7 CENP-E in the formation of the acrosome during spermatogenesis. Male ICR mice are injected with GSK923295 for long-term inhibition of CENP-E. Chemical inhibition and siRNA-mediated knockdown of CENP-E are carried out in the GC-2 spd cells. The morphology of the acrosomes is determined by the HE staining, immunofluorescence, and transmission electron microscopy. We have identified CENP-E is a key factor in the formation and structural maintenance of the acrosome during acrosome biogenesis. Long-term inhibition of CENP-E by GSK923295 results in the asymmetric acrosome and the dispersed acrosome. CENP-E depletion leads to the malformation of the Golgi complex and abnormal targeting of the PICK1- and PIST-positive Golgi-associated vesicles. Our findings uncover an essential role of CENP-E in membrane trafficking and structural organization of the acrosome in the spermatids during spermatogenesis. Our results shed light on the molecular mechanisms involved in vesicle trafficking and architecture maintenance of the acrosome.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| | - Kai-Wei Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| |
Collapse
|
28
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Kops GJPL, Gassmann R. Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends Cell Biol 2020; 30:653-667. [PMID: 32386879 DOI: 10.1016/j.tcb.2020.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
The kinetochore is at the heart of chromosome segregation in mitosis and meiosis. Rather than a static linker complex for chromatin and spindle microtubules, it is highly dynamic in composition, size, and shape. While known for decades that it can expand and grow a fibrous meshwork known as the corona, it was until recently unclear what constitutes this 'crown' and what its relevance is for kinetochore function. Here, we highlight recent discoveries in fibrous corona biology, and place them in the context of the processes that orchestrate high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, 3584, CT, The Netherlands.
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
30
|
Kouznetsova A, Kitajima TS, Brismar H, Höög C. Post-metaphase correction of aberrant kinetochore-microtubule attachments in mammalian eggs. EMBO Rep 2019; 20:e47905. [PMID: 31290587 PMCID: PMC6680117 DOI: 10.15252/embr.201947905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Tomoya S Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hjalmar Brismar
- Science for Life LaboratoryDepartment of Applied PhysicsRoyal Institute of TechnologySolnaSweden
| | - Christer Höög
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
31
|
Booth AJ, Yue Z, Eykelenboom JK, Stiff T, Luxton GG, Hochegger H, Tanaka TU. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. eLife 2019; 8:46902. [PMID: 31264963 PMCID: PMC6634967 DOI: 10.7554/elife.46902] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus, we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome-spindle interactions.
Collapse
Affiliation(s)
- Alexander Jr Booth
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Gw Gant Luxton
- College of Biological Sciences, University of Minnesota, Minneapolis, United States
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
32
|
Yu KW, Zhong N, Xiao Y, She ZY. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biol Cell 2019; 111:143-160. [PMID: 30784092 DOI: 10.1111/boc.201800082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Chromosome congression is essential for faithful chromosome segregation and genomic stability in cell division. Centromere-associated protein E (CENP-E), a plus-end-directed kinesin motor, is required for congression of pole-proximal chromosomes in metaphase. CENP-E accumulates at the outer plate of kinetochores and mediates the kinetochore-microtubule capture. CENP-E also transports the chromosomes along spindle microtubules towards the equatorial plate. CENP-E interacts with Bub1-related kinase, Aurora B and core kinetochore components during kinetochore-microtubule attachment. In this review, we introduce the structures and mechanochemistry of kinesin-7 CENP-E. We highlight the complicated interactions between CENP-E and partner proteins during chromosome congression. We summarise the detailed roles and mechanisms of CENP-E in mitosis and meiosis, including the kinetochore-microtubule capture, chromosome congression/alignment in metaphase and the regulation of spindle assembly checkpoint. We also shed a light on the roles of CENP-E in tumourigenesis and CENP-E's specific inhibitors.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ning Zhong
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yu Xiao
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
33
|
The binding of Borealin to microtubules underlies a tension independent kinetochore-microtubule error correction pathway. Nat Commun 2019; 10:682. [PMID: 30737408 PMCID: PMC6368601 DOI: 10.1038/s41467-019-08418-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Proper chromosome segregation depends upon kinetochore phosphorylation by the Chromosome Passenger Complex (CPC). Current models suggest the activity of the CPC decreases in response to the inter-kinetochore stretch that accompanies the formation of bi-oriented microtubule attachments, however little is known about tension-independent CPC phosphoregulation. Microtubule bundles initially lie in close proximity to inner centromeres and become depleted by metaphase. Here we find these microtubules control kinetochore phosphorylation by the CPC in a tension independent manner via a microtubule-binding site on the Borealin subunit. Disruption of Borealin-microtubule interactions generates reduced phosphorylation of prometaphase kinetochores, improper kinetochore-microtubule attachments and weakened spindle checkpoint signals. Experimental and modeling evidence suggests that kinetochore phosphorylation is greatly stimulated when the CPC binds microtubules that lie near the inner centromere, even if kinetochores have high inter-kinetochore stretch. We propose the CPC senses its local environment through microtubule structures to control phosphorylation of kinetochores. How the chromosome passenger complex (CPC) phosphorylates the kinetochores that can be a micron away to control mitotic events is unknown. Here the authors find that the CPC directly binds microtubules near inner centromeres, which controls its ability to phosphorylate kinetochores independently of tension generated by kinetochore microtubule attachments.
Collapse
|
34
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
35
|
Delayed Chromosome Alignment to the Spindle Equator Increases the Rate of Chromosome Missegregation in Cancer Cell Lines. Biomolecules 2018; 9:biom9010010. [PMID: 30597919 PMCID: PMC6359495 DOI: 10.3390/biom9010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
For appropriate chromosome segregation, kinetochores on sister chromatids have to attach to microtubules from opposite spindle poles (bi-orientation). Chromosome alignment at the spindle equator, referred to as congression, can occur through the attachment of kinetochores to the lateral surface of spindle microtubules, facilitating bi-orientation establishment. However, the contribution of this phenomenon to mitotic fidelity has not been clarified yet. Here, we addressed whether delayed chromosome alignment to the spindle equator increases the rate of chromosome missegregation. Cancer cell lines depleted of Kid, a chromokinesin involved in chromosome congression, showed chromosome alignment with a slight delay, and increased frequency of lagging chromosomes. Delayed chromosome alignment concomitant with an increased rate of lagging chromosomes was also seen in cells depleted of kinesin family member 4A (KIF4A), another chromokinesin. Cells that underwent chromosome missegregation took relatively longer time to align chromosomes in both control and Kid/KIF4A-depleted cells. Tracking of late-aligning chromosomes showed that they exhibit a higher rate of lagging chromosomes. Intriguingly, the metaphase of cells that underwent chromosome missegregation was shortened, and delaying anaphase onset ameliorated the increased chromosome missegregation. These data suggest that late-aligning chromosomes do not have sufficient time to establish bi-orientation, leading to chromosome missegregation. Our data imply that delayed chromosome alignment is not only a consequence, but also a cause of defective bi-orientation establishment, which can lead to chromosomal instability in cells without severe mitotic defects.
Collapse
|
36
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
37
|
Pereira C, Reis RM, Gama JB, Celestino R, Cheerambathur DK, Carvalho AX, Gassmann R. Self-Assembly of the RZZ Complex into Filaments Drives Kinetochore Expansion in the Absence of Microtubule Attachment. Curr Biol 2018; 28:3408-3421.e8. [PMID: 30415699 PMCID: PMC6224608 DOI: 10.1016/j.cub.2018.08.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023]
Abstract
The kinetochore is a dynamic multi-protein assembly that forms on each sister chromatid and interacts with microtubules of the mitotic spindle to drive chromosome segregation. In animals, kinetochores without attached microtubules expand their outermost layer into crescent and ring shapes to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. Kinetochore expansion is an example of protein co-polymerization, but the mechanism is not understood. Here, we present evidence that kinetochore expansion is driven by oligomerization of the Rod-Zw10-Zwilch (RZZ) complex, an outer kinetochore component that recruits the motor dynein and the SAC proteins Mad1-Mad2. Depletion of ROD in human cells suppresses kinetochore expansion, as does depletion of Spindly, the adaptor that connects RZZ to dynein, although dynein itself is dispensable. Expansion is also suppressed by mutating ZWILCH residues implicated in Spindly binding. Conversely, supplying cells with excess ROD facilitates kinetochore expansion under otherwise prohibitive conditions. Using the C. elegans early embryo, we demonstrate that ROD-1 has a concentration-dependent propensity for oligomerizing into micrometer-scale filaments, and we identify the ROD-1 β-propeller as a key regulator of self-assembly. Finally, we show that a minimal ROD-1-Zw10 complex efficiently oligomerizes into filaments in vitro. Our results suggest that RZZ's capacity for oligomerization is harnessed by kinetochores to assemble the expanded outermost domain, in which RZZ filaments serve as recruitment platforms for SAC components and microtubule-binding proteins. Thus, we propose that reversible RZZ self-assembly into filaments underlies the adaptive change in kinetochore size that contributes to chromosome segregation fidelity.
Collapse
Affiliation(s)
- Cláudia Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita M Reis
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - José B Gama
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
38
|
Abstract
Accurate chromosome segregation critically depends on the formation of attachments between microtubule polymers and each sister chromatid. The kinetochore is the macromolecular complex that assembles at the centromere of each chromosome during mitosis and serves as the link between the DNA and the microtubules. In this Cell Science at a Glance article and accompanying poster, we discuss the activities and molecular players that are involved in generating kinetochore-microtubule attachments, including the initial stages of lateral kinetochore-microtubule interactions and maturation to stabilized end-on attachments. We additionally explore the features that contribute to the ability of the kinetochore to track with dynamic microtubules. Finally, we examine the contributions of microtubule-associated proteins to the organization and stabilization of the mitotic spindle and the control of microtubule dynamics.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, MIT, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, MIT, Cambridge, MA 02142, USA
| |
Collapse
|