1
|
Kanamori R, Aoki N, Kanazawa A, Nakamoto D, Yuda M, Makino N, Ohata E, Fukui N, Mori H, Yokokawa H, Naito T. Characteristics and real-world medication persistence of people living with HIV treated with DTG/3TC or BIC/FTC/TAF: a hospital claims database study in Japan. Front Med (Lausanne) 2024; 11:1329922. [PMID: 39318599 PMCID: PMC11420020 DOI: 10.3389/fmed.2024.1329922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Background As the life expectancy of people living with human immunodeficiency virus (HIV) (PLWH) has improved, chronic disease burden and polypharmacy have increased in PLWH. Simplification of the antiretroviral therapy (ART) regimen for PLWH has become crucial. The real-world treatment patterns and medication persistence of the 2-drug single-tablet regimen (STR), dolutegravir/lamivudine (DTG/3TC), compared to bictegravir/emtricitabine/tenofovir alafenamide (BIC/FTC/TAF) prescribed were investigated. Methods This retrospective, database study extracted data from a hospital-based medical claims database in Japan. The changes in ART distributions by year during the identification period between January 1, 2018 and December 31, 2021 were observed. Patients with disease record of HIV-1 infection and prescribed DTG/3TC or BIC/FTC/TAF as the first prescription of STR during the identification period were divided into two cohorts; DTG/3TC cohort and BIC/FTC/TAF cohort, respectively. Patient without medication records more than 3 months and no future data more than 6 months were excluded. Patients' characteristics were compared between the DTG/3TC cohort and the BIC/FTC/TAF cohort by Mantel-Haenszel test to adjust for age. Medication persistence was compared between the two cohorts by evaluating the continuation rates using Kaplan-Meier methods, using the log-rank test to assess the difference between the Kaplan-Meier curves. The median time-to-first prescription was compared between the two cohorts by Kaplan-Meier methods. Results Prescriptions of DTG/3TC and BIC/FTC/TAF increased steadily from 2019 to 2021 after the release year of each STR. There was no significant difference in the time-to-first prescription (p = 0.3). A total of 959 patients were included, with 120 patients and 839 patients on DTG/3TC and BIC/FTC/TAF, respectively. The proportion of dyslipidemia at baseline was significantly higher in the DTG/3TC cohort than in the BIC/FTC/TAF cohort after adjusting for mean age (p = 0.002). There was no significant difference in medication persistence between the two cohorts (p = 0.91). Conclusion This study showed that DTG/3TC was likely to be selected for elderly patients and those with chronic disease in real-world clinical practice, which seems in accordance with the treatment strategy recommended by guidelines. Comparable medication persistence was observed with both regimens, aligning with findings from other countries. The 2-drug single-tablet regimen DTG/3TC may be an important ART regimen for PLWH with multiple morbidities and polypharmacy in an aging society. Due to the limitations of the database, further research to assess viral loads, emergence of resistance and adverse events will be encouraged.
Collapse
Affiliation(s)
- Rie Kanamori
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nozomi Aoki
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daisuke Nakamoto
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mayumi Yuda
- Center for Promotion of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nao Makino
- Center for Promotion of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Emi Ohata
- Center for Promotion of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Fukui
- Center for Promotion of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotake Mori
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hirohide Yokokawa
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Branda F, Giovanetti M, Sernicola L, Farcomeni S, Ciccozzi M, Borsetti A. Comprehensive Analysis of HIV-1 Integrase Resistance-Related Mutations in African Countries. Pathogens 2024; 13:102. [PMID: 38392840 PMCID: PMC10892843 DOI: 10.3390/pathogens13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The growing emergence of non-nucleoside reverse transcriptase inhibitor (NNRTI) HIV drug resistance in sub-Saharan Africa (SSA) led to the World Health Organization (WHO) recommending, in 2018, a transition to dolutegravir (DTG) as a first-line antiretroviral therapy (ART) in SSA. The broad HIV-1 genetic diversity in SSA could shape DTG effectiveness and the pattern of drug resistance mutations (DRMs) in this region. This study evaluated HIV-1 integrase (IN) DRMs and conserved regions among published groups M, N, O, and P HIV-1 sequences spanning forty years of the HIV epidemic during the transition of DTG-based ART. Overall, we found low levels of integrase strand transfer inhibitor (INSTI)-DRMs (<1%) across HIV groups between the years 1983 and 2023; however, it was unexpected to detect DRMs at statistically significantly higher frequencies in pre-INSTI (1983-2007) than in the INSTI (2008-2023) era. The variability of accessory INSTI-DRMs depended on the HIV subtypes, with implications for susceptibility to DTG. Our findings provide new perspectives on the molecular epidemiology and drug resistance profiles of INSTIs in SSA, emphasizing the need for ongoing surveillance and customized treatment approaches to address the continent's varied HIV subtypes and changing resistance patterns.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, Brazil
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| |
Collapse
|
3
|
Kiros M, Tefera DA, Andualem H, Geteneh A, Tesfaye A, Woldemichael TS, Kidane E, Alemayehu DH, Maier M, Mihret A, Abegaz WE, Mulu A. Low level of HIV-1C integrase strand transfer inhibitor resistance mutations among recently diagnosed ART-naive Ethiopians. Sci Rep 2023; 13:6546. [PMID: 37085698 PMCID: PMC10121640 DOI: 10.1038/s41598-023-33850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
With the widespread use of Integrase strand transfer inhibitors (INSTIs), surveillance of HIV-1 pretreatment drug resistance is critical in optimizing antiretroviral treatment efficacy. However, despite the introduction of these drugs, data concerning their resistance mutations (RMs) is still limited in Ethiopia. Thus, this study aimed to assess INSTI RMs and polymorphisms at the gene locus coding for Integrase (IN) among viral isolates from ART-naive HIV-1 infected Ethiopian population. This was a cross-sectional study involving isolation of HIV-1 from plasma of 49 newly diagnosed drug-naive HIV-1 infected individuals in Addis-Ababa during the period between June to December 2018. The IN region covering the first 263 codons of blood samples was amplified and sequenced using an in-house assay. INSTIs RMs were examined using calibrated population resistance tool version 8.0 from Stanford HIV drug resistance database while both REGA version 3 online HIV-1 subtyping tool and the jumping profile Hidden Markov Model from GOBICS were used to examine HIV-1 genetic diversity. Among the 49 study participants, 1 (1/49; 2%) harbored a major INSTIs RM (R263K). In addition, blood specimens from 14 (14/49; 28.5%) patients had accessory mutations. Among these, the M50I accessory mutation was observed in a highest frequency (13/49; 28.3%) followed by L74I (1/49; 2%), S119R (1/49; 2%), and S230N (1/49; 2%). Concerning HIV-1 subtype distribution, all the entire study subjects were detected to harbor HIV-1C strain as per the IN gene analysis. This study showed that the level of primary HIV-1 drug resistance to INSTIs is still low in Ethiopia reflecting the cumulative natural occurrence of these mutations in the absence of selective drug pressure and supports the use of INSTIs in the country. However, continues monitoring of drug resistance should be enhanced since the virus potentially develop resistance to this drug classes as time goes by.
Collapse
Affiliation(s)
- Mulugeta Kiros
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Aksum University, Aksum, Ethiopia.
| | | | - Henok Andualem
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | | | | | - Eleni Kidane
- The Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Melanie Maier
- Department Virology, Institute Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
4
|
Mbhele N, Gordon M. Structural effects of HIV-1 subtype C integrase mutations on the activity of integrase strand transfer inhibitors in South African patients. J Biomol Struct Dyn 2022; 40:12546-12556. [PMID: 34488561 DOI: 10.1080/07391102.2021.1972840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 integrase enzyme is responsible for the integration of viral DNA into the host genomic DNA. Integrase strand transfer inhibitors (INSTIs) are highly potent antiretroviral agents that inhibit this process, and are internationally approved for the treatment of both naïve and treated HIV-1 patients. However, their long-term efficacy is threatened by development of drug resistance strains resulting in resistance mutations. This work aimed to examine the effect of INSTI resistance-associated mutations (RAMs) and polymorphisms on the structure of HIV-1 subtype C (HIV-1C) integrase. Genetic analysis was performed on seven HIV-1C infected individuals with virologic failure after at least 6 months of INSTI-based antiretroviral therapy, presenting at the King Edward VIII hospital in Durban, South Africa. These were compared with sequences from 41 INSTI-naïve isolates. Integrase structures of selected isolates were modeled on the SWISS model online server. Molecular docking and dynamics simulations were also conducted using AutoDock-Vina and AMBER 18 force fields, respectively. Only one INSTI-treated isolate (14.28%) harboured major mutations (G140A + Q148R) as well as the E157Q minor mutation. Interestingly, S119T and V151I were only found in patients failing raltegravir (an INSTI drug). Molecular modeling and docking showed that RAMs and polymorphisms associated with INSTI-based therapy affect protein stability and this is supported by their weakened hydrogen-bond interactions compared to the wild-type. To the best of our knowledge, this is the first study to identify a double mutant in the 140's loop region from South African HIV-1C isolates and study its effects on Raltegravir, Elvitegravir, and Dolutegravir binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nokuzola Mbhele
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| | - Michelle Gordon
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| |
Collapse
|
5
|
Kelentse N, Moyo S, Choga WT, Lechiile K, Leeme TB, Lawrence DS, Kasvosve I, Musonda R, Mosepele M, Harrison TS, Jarvis JN, Gaseitsiwe S. High concordance in plasma and CSF HIV-1 drug resistance mutations despite high cases of CSF viral escape in individuals with HIV-associated cryptococcal meningitis in Botswana. J Antimicrob Chemother 2022; 78:180-184. [PMID: 36322466 PMCID: PMC10205474 DOI: 10.1093/jac/dkac372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES We compared the patterns of HIV-1 drug resistance mutations between the CSF and plasma of individuals with HIV-associated cryptococcal meningitis. METHODS This is a cross-sectional study of archived CSF and plasma samples collected from ART-exposed participants recruited in the Phase 3 AmBisome Therapy Induction Optimisation randomized controlled trial (ISRCTN72509687) conducted in Botswana between 2018 and 2021. HIV-1 RT and protease genes were genotyped using next-generation sequencing and HIV-1 drug resistance mutations were compared between the CSF and plasma compartments stratified by thresholds of ≥20% and <20%. RESULTS Overall, 66.7% (16/24) of participants had at least one HIV-1 drug resistance mutation in the CSF and/or plasma. A total of 15/22 (68.2%) participants had HIV-1 drug resistance mutations at ≥20% threshold in the plasma and of those, 11 (73.3%) had been on ART longer than 6 months. HIV-1 drug resistance mutations were highly concordant between the CSF and plasma at ≥20% threshold despite a substantial number of individuals experiencing CSF viral escape and with only 54.5% with CSF WBC count ≥20 cells/mm3. Minority HIV-1 drug resistance mutations were detected in 20.8% (5/24) of participants. There were no mutations in the CSF that were not detected in the plasma. CONCLUSIONS There was high concordance in HIV-1 drug resistance mutations in the CSF and plasma, suggesting intercompartmental mixing and possibly a lack of compartmentalization. Some individuals harboured minority HIV-1 drug resistance mutations, demonstrating the need to employ more sensitive genotyping methods such as next-generation sequencing for the detection of low-abundance mutations.
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- University of Botswana, Department of Medical Laboratory Sciences, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, USA
| | | | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Tshepo B Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - David S Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Ishmael Kasvosve
- University of Botswana, Department of Medical Laboratory Sciences, Gaborone, Botswana
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, USA
| | - Mosepele Mosepele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- University of Botswana, Department of Internal Medicine, Gaborone, Botswana
| | - Thomas S Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London, UK
| | - Joseph N Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, USA
| |
Collapse
|
6
|
Henerico S, Lyimo E, Makubi AN, Magesa D, Desderius B, Mueller A, Changalucha J, Kalluvya SE, Van Zyl G, Preiser W, Mshana SE, Kasang C. Primary resistance against integrase strand transfer inhibitors in integrase strand transfer inhibitor-naive patients failing first- and second-line ART in Tanzania. J Antimicrob Chemother 2022; 77:3138-3143. [PMID: 36101479 PMCID: PMC9616539 DOI: 10.1093/jac/dkac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Sub-Saharan African countries are introducing integrase strand transfer inhibitors (INSTIs) in their ART programmes as the preferred first-line regimen, and dolutegravir is the INSTI of choice due to its potency, tolerability and high genetic barrier to resistance. Dolutegravir was introduced into the first-line ART regimen in Tanzania in 2019. However, there is a paucity of data on the occurrence of mutations in HIV lineages circulating in Tanzania. This study aimed to determine the prevalence of INSTI primary resistance mutations in Tanzanian patients exposed to ART but not INSTIs. METHODS Plasma samples from 50 INSTI-naive patients failing first- or second-line ART [median (IQR) age: 40 (21.93-46.41) years; 68% women] were subjected to Sanger sequencing of the HIV integrase gene. Participants had been on ART for a median (IQR) duration of 7.32 (4.73-9.29) years, with 80% and 20% failing first- and second-line ART, respectively. RESULTS No major INSTI mutations were found, but 2 (4%) participants had the accessory mutation T97A. Using the REGA HIV-1 subtyping tool, HIV subtype A1 (53.1%) was found to be dominant, followed by subtypes C (30.6%) and D (16.3%). CONCLUSIONS This study found no current evidence for transmitted resistance against INSTIs among unexposed patients failing ART and supports the scale-up of INSTI-based regimens. However, the presence of accessory mutations calls for the surveillance of INSTI resistance mutations to ensure that the anticipated long-term desired outcomes are achieved.
Collapse
Affiliation(s)
| | - Eric Lyimo
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, United Republic of Tanzania
| | - Abel N Makubi
- The Ministry of Health, Dodoma, United Republic of Tanzania
| | - Daniel Magesa
- Centers for Disease Control and Prevention, United Republic of Tanzania branch, Dar es Salaam, United Republic of Tanzania
| | - Bernard Desderius
- Bugando Medical Centre, Mwanza, United Republic of Tanzania
- Catholic University of Health and Allied Sciences-Bugando, Mwanza, United Republic of Tanzania
| | - Andreas Mueller
- Klinikum Wuerzburg Mitte gGmbH, Missioklinik, Department of Tropical Medicine, Würzburg, Germany
| | - John Changalucha
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, United Republic of Tanzania
| | | | - Gert Van Zyl
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University/National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University/National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Stephen E Mshana
- Catholic University of Health and Allied Sciences-Bugando, Mwanza, United Republic of Tanzania
| | - Christa Kasang
- German Leprosy and Tuberculosis Relief Association (DAHW), Würzburg, Germany
- Medmissio, Würzburg, Germany
| |
Collapse
|
7
|
Fan W, Wang X, Zhang Y, Meng J, Su M, Yang X, Shi H, Shi P, Lu X. Prevalence of resistance mutations associated with integrase inhibitors in therapy-naive HIV-positive patients in Baoding, Hebei province, China. Front Genet 2022; 13:975397. [PMID: 36186451 PMCID: PMC9515489 DOI: 10.3389/fgene.2022.975397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Antiretroviral therapy (ART) regimens containing integrase strand transfer inhibitors (INSTIs) are the recommended treatment for human immunodeficiency virus type 1 (HIV-1)-infected patients in the most recent guidelines in China. In this study, we investigated INSTI resistance mutations in newly diagnosed therapy-naive HIV-positive patients in Baoding City, Hebei Province (China) to provide guidance for implementing routine INSTI-associated HIV-1 genotypic resistance testing. Plasma samples were collected from HIV-1-infected patients without treatment at Baoding People’s Hospital from January 2020 to December 2021. The part of HIV-1 pol gene encoding integrase was amplified, sequenced, and analyzed for INSTI resistance. Clinical data including demographic data, CD4+ T cell counts, HIV-RNA loads, and resistance mutations were collected. Treatment-naïve HIV-1 patients (n = 131) were enrolled. We identified ten genotypes, and the predominant genotype was CRF01_AE in 67 patients (51.15%), CRF07_ BC in 39 patients (29.77%), subtype B in 11 patients (8.40%), and other subtypes (CRF68_01B, 3.82%; CRF55_01B, 1.53%, CRF80_0107, 1.53%; URFs 1.53%; and CRF103_01B, CRF59_01B, and CRF65_cpx, 1.4% each). Four major (E138A, R263k, G140S, and S147G) and three accessory (H51Y, Q146QL, and S153F) INSTI-resistance mutations were observed (genotype CRF01_AE, three patients; genotype B, one patient; and genotype CRF07_BC, one patient), resulting in different degrees of resistance to the following five INSTIs: raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. The overall resistance rate was 3.82% (5/131). All INSTI-resistant strains were cross-resistant. The primary INSTI drug resistance rate among newly diagnosed HIV-infected patients in Baoding was low, but monitoring and research on HIV INSTI resistance should be strengthened in Baoding because INSTI-based regimen prescriptions are anticipated to increase in the near future.
Collapse
Affiliation(s)
- Weiguang Fan
- Clinical Laboratory, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Xiaodong Wang
- Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Yuchen Zhang
- Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Juan Meng
- Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Miaomiao Su
- Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Xuegang Yang
- Infection Division, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Haoxi Shi
- Clinical Laboratory, The People’s Hospital of Baoding, Baoding, Hebei, China
| | - Penghui Shi
- Clinical Laboratory, The People’s Hospital of Baoding, Baoding, Hebei, China
- *Correspondence: Penghui Shi, ; Xinli Lu,
| | - Xinli Lu
- Department of AIDS Research, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
- *Correspondence: Penghui Shi, ; Xinli Lu,
| |
Collapse
|
8
|
Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022; 14:v14040729. [PMID: 35458459 PMCID: PMC9029575 DOI: 10.3390/v14040729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dolutegravir-based antiretroviral therapy (ART) has been scaled up in many developing countries, including Ethiopia. However, subtype-dependent polymorphic differences might influence the occurrence of HIV-drug-resistance mutations (HIVDRMs). We analyzed the prevalence of pre-treatment integrase strand transfer inhibitor (INSTI) HIVDRMs and naturally occurring polymorphisms (NOPs) of the integrase gene, using plasma samples collected as part of the national HIVDR survey in Ethiopia in 2017. We included a total of 460 HIV-1 integrase gene sequences from INSTI-naïve (n = 373 ART-naïve and n = 87 ART-experienced) patients. No dolutegravir-associated HIVDRMs were detected, regardless of previous exposure to ART. However, we found E92G in one ART-naïve patient specimen and accessory mutations in 20/460 (4.3%) of the specimens. Moreover, among the 288 integrase amino acid positions of the subtype C, 187/288 (64.9%) were conserved (<1.0% variability). Analysis of the genetic barrier showed that the Q148H/K/R dolutegravir resistance pathway was less selected in subtype C. Docking analysis of the dolutegravir showed that protease- and reverse-transcriptase-associated HIVDRMs did not affect the native structure of the HIV-1 integrase. Our results support the implementation of a wide scale-up of dolutegravir-based regimes. However, the detection of polymorphisms contributing to INSTI warrants the continuous surveillance of INSTI resistance.
Collapse
|
9
|
Giovanetti M, Farcomeni S, Sernicola L, Virtuoso S, Sulekova LF, Maggiorella MT, Buttò S, Taliani G, Ciccozzi M, Borsetti A. Analysis of HIV‐1 integrase genotypes and polymorphisms among integrase inhibitors‐based antiretroviral treatment naïve patients in South Sudan. J Med Virol 2022; 94:3320-3327. [DOI: 10.1002/jmv.27713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Giovanetti
- Reference Laboratory of Flavivirus, Oswaldo Cruz Institute, Fundação Oswaldo CruzRio de JaneiroBrazil
- Laboratório de Genética Celular e Molecular, ICBUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Medical Statistics and Molecular EpidemiologyUniversity Campus Bio‐Medico of RomeRomeItaly
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | | | - Maria T. Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Gloria Taliani
- Chronic Infectious Diseases Unit, Policlinico Umberto I“Sapienza” University of RomeRomeItaly
| | - Massimo Ciccozzi
- Medical Statistics and Molecular EpidemiologyUniversity Campus Bio‐Medico of RomeRomeItaly
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| |
Collapse
|
10
|
Tufa TB, Fuchs A, Orth HM, Lübke N, Knops E, Heger E, Jarso G, Hurissa Z, Eggers Y, Häussinger D, Luedde T, Jensen BEO, Kaiser R, Feldt T. Characterization of HIV-1 drug resistance among patients with failure of second-line combined antiretroviral therapy in central Ethiopia. HIV Med 2021; 23:159-168. [PMID: 34622550 DOI: 10.1111/hiv.13176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND As a consequence of the improved availability of combined antiretroviral therapy (cART) in resource-limited countries, an emergence of HIV drug resistance (HIVDR) has been observed. We assessed the prevalence and spectrum of HIVDR in patients with failure of second-line cART at two HIV clinics in central Ethiopia. METHODS HIV drug resistance was analysed in HIV-1-infected patients with virological failure of second-line cART using the geno2pheno application. RESULTS Among 714 patients receiving second-line cART, 44 (6.2%) fulfilled the criteria for treatment failure and 37 were eligible for study inclusion. Median age was 42 years [interquartile range (IQR): 20-45] and 62.2% were male. At initiation of first-line cART, 23 (62.2%) were WHO stage III, mean CD4 cell count was 170.6 (range: 16-496) cells/µL and median (IQR) HIV-1 viral load was 30 220 (7963-82 598) copies/mL. Most common second-line cART regimens at the time of failure were tenofovir disoproxil fumarate (TDF)-lamivudine (3TC)-ritonavir-boosted atazanavir (ATV/r) (19/37, 51.4%) and zidovudine (ZDV)-3TC-ATV/r (9/37, 24.3%). Genotypic HIV-1 resistance testing was successful in 35 (94.6%) participants. We found at least one resistance mutation in 80% of patients and 40% carried a protease inhibitor (PI)-associated mutation. Most common mutations were M184V (57.1%), Y188C (25.7%), M46I/L (25.7%) and V82A/M (25.7%). High-level resistance against the PI ATV (10/35, 28.6%) and lopinavir (LPV) (5/35, 14.3%) was reported. As expected, no resistance mutations conferring integrase inhibitor resistance were detected. CONCLUSIONS We found a high prevalence of resistance mutations, also against PIs (40%), as the national standard second-line cART components. Resistance testing before switching to second- or third-line cART is warranted.
Collapse
Affiliation(s)
- Tafese Beyene Tufa
- College of Health Sciences, Arsi University, Asella, Ethiopia.,Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Andre Fuchs
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Hans Martin Orth
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Nadine Lübke
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Elena Knops
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Godana Jarso
- Adama Hospital Medical College, Adama, Oromia, Ethiopia
| | - Zewdu Hurissa
- College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Yannik Eggers
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Dieter Häussinger
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Tom Luedde
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Björn-Erik Ole Jensen
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Torsten Feldt
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
11
|
Semengue ENJ, Armenia D, Inzaule S, Santoro MM, Dambaya B, Takou D, Teto G, Nka AD, Yagai B, Fabeni L, Chenwi C, Angong Beloumou G, Djupsa Ndjeyep SC, Colizzi V, Perno CF, Ceccherini-Silberstein F, Fokam J. Baseline integrase drug resistance mutations and conserved regions across HIV-1 clades in Cameroon: implications for transition to dolutegravir in resource-limited settings. J Antimicrob Chemother 2021; 76:1277-1285. [PMID: 33501504 DOI: 10.1093/jac/dkab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transition to dolutegravir-based regimens in resource-limited settings (RLS) requires prior understanding of HIV-1 integrase variants and conserved regions. Therefore, we evaluated integrase drug resistance mutations (DRMs) and conserved regions amongst integrase strand transfer inhibitor (INSTI)-naive patients harbouring diverse HIV-1 clades in Cameroon. METHODS A cross-sectional study was conducted amongst 918 INSTI-naive patients from Cameroon (89 ART-naive and 829 ART-experienced patients). HIV-1 sequences were interpreted regarding INSTI-DRMs using the Stanford HIVdb v8.9-1 and the 2019 IAS-USA list. Amino acid positions with <1% variability were considered as highly conserved. Subtyping was performed by phylogeny. RESULTS Overall prevalence (95% CI) of INSTI-DRMs was 0.8% (0.4-1.7), with 0.0% (0.0-4.0) amongst ART-naive versus 0.9% (0.5-1.9) amongst ART-experienced patients; P = 0.44. Accessory mutations (95% CI) were found in 33.8% (30.9-37.0), with 38.2% (28.1-49.1) amongst ART-naive versus 33.4% (30.4-36.7) amongst ART-experienced patients; P = 0.21. Of 288 HIV-1 integrase amino acid positions, 58.3% were highly conserved across subtypes in the following major regions: V75-G82, E85-P90, H114-G118, K127-W132, E138-G149, Q168-L172, T174-V180, W235-A239 and L241-D253. Wide genetic diversity was found (37 clades), including groups M (92.3%), N (1.4%), O (6.2%) and P (0.1%). Amongst group M, CRF02_AG was predominant (47.4%), with a significantly higher frequency (95% CI) of accessory mutations compared with non-AG [41.4% (36.8-46.0) versus 27.1% (23.3-31.2) respectively; P < 0.001]. CONCLUSIONS The low baseline of INSTI-DRMs (<1%) in Cameroon suggests effectiveness of dolutegravir-based regimens. In spite of high conservation across clades, the variability of accessory mutations between major circulating strains underscores the need for monitoring the selection of INSTI-DRMs while scaling up dolutegravir-based regimens in RLS.
Collapse
Affiliation(s)
- Ezechiel Ngoufack Jagni Semengue
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Daniele Armenia
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Seth Inzaule
- Department of Global Health, Academic Medical Center of the University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Béatrice Dambaya
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Désiré Takou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Georges Teto
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Alex Durand Nka
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Bouba Yagai
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Collins Chenwi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Grâce Angong Beloumou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Sandrine Claire Djupsa Ndjeyep
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Vittorio Colizzi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Carlo-Federico Perno
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | | | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,National HIV Drug Resistance Working Group, Ministry of Public Health, Cameroon.,Faculty of Health Sciences, University of Buea, Buea, Cameroon
| |
Collapse
|
12
|
Obasa AE, Ambikan AT, Gupta S, Neogi U, Jacobs GB. Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa. BMC Infect Dis 2021; 21:214. [PMID: 33632139 PMCID: PMC7908688 DOI: 10.1186/s12879-021-05905-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Collapse
Affiliation(s)
- Adetayo Emmanuel Obasa
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden.
| | - Anoop T Ambikan
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Soham Gupta
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
13
|
Mabeya S, Nyamache A, Ngugi C, Nyerere A, Lihana R. Characterization of HIV-1 Integrase Gene and Resistance Associated Mutations Prior to Roll out of Integrase Inhibitors by Kenyan National HIV-Treatment Program in Kenya. Ethiop J Health Sci 2020; 30:37-44. [PMID: 32116431 PMCID: PMC7036466 DOI: 10.4314/ejhs.v30i1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Antiretroviral therapy containing an integrase strand transfer inhibitor plus two Nucleoside Reverse Transcriptase inhibitors has now been recommended for treatment of HIV-1-infected patients. This thus determined possible pre-existing integrase resistance-associated mutations in the integrase gene prior to introduction of integrase inhibitors combination therapy in Kenya. Methods Drug experienced HIV patients were enrolled at Kisii Teaching and Referral in Kenya. Blood specimens from (33) patients were collected for direct sequencing of HIV-1 polintegrase genes. Drug resistance mutations were interpreted according to the Stanford algorithm and phylogenetically analysed using insilico tools. Results From pooled 188 Kenyan HIV integrase sequences that were analysed for drug resistance, no major mutations conferring resistance to integrase inhibitors were detected. However, polymorphic accessory mutations associated with reduced susceptibility of integrase inhibitors were observed in low frequency; M50I (12.2%), T97A (3.7%), S153YG, E92G (1.6%), G140S/A/C (1.1%) and E157Q (0.5%). Phylogenetic analysis (330 sequences revealed that HIV-1 subtype A1 accounted for majority of the infections, 26 (78.8%), followed by D, 5 (15.2%) and C, 2 (6%). Conclusion The integrase inhibitors will be effective in Kenya where HIV-1 subtype A1 is still the most predominant. However, occurring polymorphisms may warrant further investigation among drug experienced individuals on dolutegravir combination or integrase inhibitor treatment.
Collapse
Affiliation(s)
- Sepha Mabeya
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Anthony Nyamache
- Department of Biochemistry Microbiology & Biotechnology, School of Pure & Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Caroline Ngugi
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Raphael Lihana
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
14
|
Structural Comparison of Diverse HIV-1 Subtypes using Molecular Modelling and Docking Analyses of Integrase Inhibitors. Viruses 2020; 12:v12090936. [PMID: 32858802 PMCID: PMC7552036 DOI: 10.3390/v12090936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.
Collapse
|
15
|
Mboumba Bouassa RS, Mossoro-Kpinde CD, Gody JC, Veyer D, Péré H, Matta M, Robin L, Grésenguet G, Charpentier C, Bélec L. High predictive efficacy of integrase strand transfer inhibitors in perinatally HIV-1-infected African children in therapeutic failure of first- and second-line antiretroviral drug regimens recommended by the WHO. J Antimicrob Chemother 2020; 74:2030-2038. [PMID: 30891603 PMCID: PMC6587428 DOI: 10.1093/jac/dkz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Objectives The predictive efficacy of integrase (IN) strand transfer inhibitors (INSTIs) was investigated in HIV-infected children born to HIV-infected mothers in Africa. Methods Plasma was collected at the Complexe Pédiatrique of Bangui, Central African Republic, from INSTI-naive children (n = 8) and adolescents (n = 10) in virological failure (viral load >1000 copies/mL) after 5 years of first- and/or second-line combination ART (cART). IN, reverse transcriptase (RT) and protease (P) genes were genotyped and drug resistance mutations (DRMs) to INSTIs, NRTIs, NNRTIs and PIs were interpreted using the Stanford algorithm. Results Successful IN, RT and P genotypes were obtained for 18, 13 and 15 children (median age 11 years, range 5–18; 8 were female), respectively. Two (2/18; 11.1%) viruses from children treated with a first-line regimen had INSTI DRMs at codon 138 (E138K and E138T), which is known to harbour major resistance mutations, and also had the accessory mutations L74I, G140K, G140R and G163R. The majority (16/18; 88.9%) of HIV-1 IN sequences demonstrated full susceptibility to all major INSTIs with a high frequency of natural polymorphic mutations. Most (12/15; 80%) genotyped viruses harboured at least one major DRM conferring resistance to at least one of the WHO-recommended antiretroviral drugs (NNRTIs, NRTIs and PIs) prescribed in first- and second-line regimens. Conclusions INSTIs could be proposed in first-line regimens in the majority of African children or adolescents and may constitute relevant therapeutic alternatives as second- and third-line cART regimens in HIV-infected children and adolescents living in sub-Saharan Africa.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France.,Ecole Doctorale (ED562) Bio Sorbonne Paris Cité (BioSPC), Université Paris Descartes, Paris, France.,Ecole Doctorale Régionale en Infectiologie Tropicale, Franceville, Gabon
| | - Christian Diamant Mossoro-Kpinde
- Laboratoire National de Biologie Clinique et de Santé Publique, Bangui, République Centrafricaine.,Faculté des Sciences de la Santé, Université de Bangui, Bangui, République Centrafricaine
| | - Jean-Chrysostome Gody
- Faculté des Sciences de la Santé, Université de Bangui, Bangui, République Centrafricaine.,Complexe Pédiatrique de Bangui, Bangui, République Centrafricaine
| | - David Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Péré
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Mathieu Matta
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Leman Robin
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Grésenguet
- Faculté des Sciences de la Santé, Université de Bangui, Bangui, République Centrafricaine
| | - Charlotte Charpentier
- INSERM, IAME, UMR 1137, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Armenia D, Bouba Y, Gagliardini R, Gori C, Bertoli A, Borghi V, Gennari W, Micheli V, Callegaro AP, Gazzola L, Bruzzone B, Giannetti A, Mazzotta V, Vergori A, Mastrorosa I, Colafigli M, Lichtner M, di Biagio A, Maggiolo F, Rizzardini G, d'Arminio Monforte A, Andreoni M, Mussini C, Antinori A, Ceccherini-Silberstein F, Perno CF, Santoro MM. Evaluation of virological response and resistance profile in HIV-1 infected patients starting a first-line integrase inhibitor-based regimen in clinical settings. J Clin Virol 2020; 130:104534. [PMID: 32769022 DOI: 10.1016/j.jcv.2020.104534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/05/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Virological response and resistance profile were evaluated in drug-naïve patients starting their first-line integrase inhibitors (INIs)-based regimen in a clinical setting. STUDY DESIGN Virological success (VS) and virological rebound (VR) after therapy start were assessed by survival analyses. Drug-resistance was evaluated at baseline and at virological failure. RESULTS Among 798 patients analysed, 38.6 %, 27.1 % and 34.3 % received raltegravir, elvitegravir and dolutegravir, respectively. Baseline resistance to NRTIs, NNRTIs, PIs and INIs was: 3.9 %, 13.9 %, 1.6 % and 0.5 %, respectively. Overall, by 12 months of treatment, the probability of VS was 95 %, while the probability of VR by 36 months after VS was 13.1 %. No significant differences in the virological response were found according to the INI used. The higher pre-therapy viremia strata was (<100,000 vs. 100,000-500,000 vs. > 500,000 copies/mL), lower was the probability of VS (96.0 % vs. 95.2 % vs. 91.1 %, respectively, P < 0.001), and higher the probability of VR (10.2 % vs. 15.8 % vs. 16.6 %, respectively, P = 0.010). CD4 cell count <200 cell/mm3 was associated with the lowest probability of VS (91.5 %, P < 0.001) and the highest probability of VR (20.7 %, P = 0.008) compared to higher CD4 levels. Multivariable Cox-regression confirmed the negative role of high pre-therapy viremia and low CD4 cell count on VS, but not on VR. Forty-three (5.3 %) patients experienced VF (raltegravir: 30; elvitegravir: 9; dolutegravir: 4). Patients failing dolutegravir did not harbor any resistance mutation either in integrase or reverse transcriptase. CONCLUSIONS Our findings confirm that patients receiving an INI-based first-line regimen achieve and maintain very high rates of VS in clinical practice.
Collapse
Affiliation(s)
- Daniele Armenia
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Yagai Bouba
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberta Gagliardini
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Caterina Gori
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Vanni Borghi
- Clinic of Infectious Diseases, University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - William Gennari
- Microbiology and Virology Unit, University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Micheli
- Department of Clinical Microbiology, Virology and Diagnosis of Bioemergency, Luigi Sacco University Hospital, Milano, Italy
| | | | - Lidia Gazzola
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Giannetti
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Alessandra Vergori
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Manuela Colafigli
- Unit of Dermatology and Sexually Transmitted Diseases, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, "Sapienza" University, Polo Pontino, Latina, Italy
| | - Antonio di Biagio
- Infectious Diseases Clinic, Policlinico San Martino Hospital, Department of Health Sciences (DISSAL), University of Genoa, Genova, Italy
| | - Franco Maggiolo
- Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, Luigi Sacco University Hospital, Milano, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, University Hospital "Tor Vergata", Rome, Italy
| | - Cristina Mussini
- Clinic of Infectious Diseases, University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Antinori
- Clinical Division of HIV/AIDS, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | | | - Carlo Federico Perno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | |
Collapse
|
17
|
Molecular dynamic simulations to investigate the structural impact of known drug resistance mutations on HIV-1C Integrase-Dolutegravir binding. PLoS One 2020; 15:e0223464. [PMID: 32379830 PMCID: PMC7205217 DOI: 10.1371/journal.pone.0223464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Resistance associated mutations (RAMs) threaten the long-term success of combination antiretroviral therapy (cART) outcomes for HIV-1 treatment. HIV-1 Integrase (IN) strand transfer inhibitors (INSTIs) have proven to be a viable option for highly specific HIV-1 therapy. The INSTI, Dolutegravir is recommended by the World Health Organization for use as first-line cART. This study aims to understand how RAMs affect the stability of IN, as well as the binding of the drug Dolutegravir to the catalytic pocket of the protein. A homology model of HIV-1 subtype C IN was successfully constructed and validated. The site directed mutator webserver was used to predict destabilizing and/or stabilizing effects of known RAMs while FoldX confirmed any changes in protein energy upon introduction of mutation. Also, interaction analysis was performed between neighbouring residues. Three mutations known to be associated with Raltegravir, Elvitegravir and Dolutegravir resistance were selected; E92Q, G140S and Y143R, for molecular dynamics simulations. The structural quality assessment indicated high reliability of the HIV-1C IN tetrameric structure, with more than 90% confidence in modelled regions. Change in free energy for the three mutants indicated different effects, while simulation analysis showed G140S to have the largest affect on protein stability and flexibility. This was further supported by weaker non-bonded pairwise interaction energy and binding free energy values between the drug DTG and E92Q, Y143R and G140S mutants suggesting reduced binding affinity, as indicated by interaction analysis in comparison to the WT. Our findings suggest the G140S mutant has the strongest effect on the HIV-1C IN protein structure and Dolutegravir binding. To the best of our knowledge, this is the first study that uses the consensus wild type HIV-1C IN sequence to build an accurate 3D model to understand the effect of three known mutations on DTG drug binding in a South Africa context.
Collapse
|
18
|
Mikasi SG, Gichana JO, Van der Walt C, Brado D, Obasa AE, Njenda D, Messembe M, Lyonga E, Assoumou O, Cloete R, Ikomey GM, Jacobs GB. HIV-1 Integrase Diversity and Resistance-Associated Mutations and Polymorphisms Among Integrase Strand Transfer Inhibitor-Naive HIV-1 Patients from Cameroon. AIDS Res Hum Retroviruses 2020; 36:450-455. [PMID: 31830799 DOI: 10.1089/aid.2019.0264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The World Health Organization (WHO) has put forth recommendations for the use of integrase (IN) strand transfer inhibitors (INSTIs) to be part of the first-line combination antiretroviral therapy regimen to treat HIV infections. The knowledge of pretreatment drug resistance against INSTIs is still scarce in resource-limited settings (RLS). We characterized the integrase gene to identify resistance-associated mutations (RAMs) in 56 INSTI-naive patient viral sequences from Cameroon. Study analysis used 37 sequences with fragment size ≥500 bp or of good quality .The majority of the sequences were identified as CRF02_AG 54.% (n = 20/37) and 45.9% (n = 17/37), other subtype viral sequences include (A, CRF36_cpx, F,G, and C). A total of 18.9% (n = 7/37) of the sequences had RAMs, with only 5.4% (n = 2/37) having major RAMs (Y143R/C/D/G and P145S), against INSTIs. Accessory RAMs were present in 8.1% (n = 3/37) of the sequences, of which one sequence contained solely E157Q, and another Q95K. One patient sequence had three accessory RAMs (G140E, E157Q, and G163R). We identified major RAMs to INSTIs, which might have a potential clinical impact to dolutegravir rollout in RLS, including Cameroon. This is the first study to describe RAMs among INSTI-naive people living with HIV-1 (PLHIV-1) infected with CRF02_AG and other subtypes in Cameroon.
Collapse
Affiliation(s)
- Sello Given Mikasi
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Josiah Otwoma Gichana
- Division of Oral Surgery, Department of Pathology Laboratory, University of Nairobi, Nairobi, Kenya
| | - Cheri Van der Walt
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dominik Brado
- Division of Virology, Faculty of Medicine, Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Duncan Njenda
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, University of Stockholm, Stockholm, Sweden
| | - Martha Messembe
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Emilia Lyonga
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Okomo Assoumou
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - George Mondinde Ikomey
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Acharya A, Tagny CT, Mbanya D, Fonsah JY, Nchindap E, Kenmogne L, Jihyun M, Njamnshi AK, Kanmogne GD. Variability in HIV-1 Integrase Gene and 3'-Polypurine Tract Sequences in Cameroon Clinical Isolates, and Implications for Integrase Inhibitors Efficacy. Int J Mol Sci 2020; 21:ijms21051553. [PMID: 32106437 PMCID: PMC7084836 DOI: 10.3390/ijms21051553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs) are now included in preferred first-line antiretroviral therapy (ART) for HIV-infected adults. Studies of Western clade-B HIV-1 show increased resistance to INSTIs following mutations in integrase and nef 3′polypurine tract (3′-PPT). With anticipated shifts in Africa (where 25.6-million HIV-infected people resides) to INSTIs-based ART, it is critical to monitor patients in African countries for resistance-associated mutations (RAMs) affecting INSTIs efficacy. We analyzed HIV-1 integrase and 3′-PPT sequences in 345 clinical samples from INSTIs-naïve HIV-infected Cameroonians for polymorphisms and RAMs that affect INSTIs. Phylogeny showed high genetic diversity, with the predominance of HIV-1 CRF02_AG. Major INSTIs RAMs T66A and N155K were found in two (0.6%) samples. Integrase polymorphic and accessory RAMs found included T97A, E157Q, A128T, M50I, S119R, L74M, L74I, S230N, and E138D (0.3′23.5% of samples). Ten (3.2%) samples had both I72V+L74M, L74M+T97A, or I72V+T97A mutations; thirty-one (9.8%) had 3′-PPT mutations. The low frequency of major INSTIs RAMs shows that INSTIs-based ART can be successfully used in Cameroon. Several samples had ≥1 INSTIs accessory RAMs known to reduce INSTIs efficacy; thus, INSTIs-based ART would require genetic surveillance. The 3′-PPT mutations could also affect INSTIs. For patients failing INSTIs-based ART with no INSTIs RAMs, monitoring 3′-PPT sequences could reveal treatment failure etiology.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Claude T. Tagny
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Julius Y. Fonsah
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Department of Neurology, Yaoundé Central Hospital/Brain Research Africa Initiative (BRAIN), P.O. Box 25625 Yaoundé, Cameroon
| | - Emilienne Nchindap
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Léopoldine Kenmogne
- Yaoundé University Teaching Hospital, Department of Haematology, P.O. Box 5739 Yaoundé, Cameroon; (E.N.); (L.K.)
| | - Ma Jihyun
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alfred K. Njamnshi
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364 Yaoundé, Cameroon (D.M.); (J.Y.F.); (A.K.N.)
- Department of Neurology, Yaoundé Central Hospital/Brain Research Africa Initiative (BRAIN), P.O. Box 25625 Yaoundé, Cameroon
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence: ; Tel.: +402-559-4084
| |
Collapse
|
20
|
Drug resistance and optimizing dolutegravir regimens for adolescents and young adults failing antiretroviral therapy. AIDS 2019; 33:1729-1737. [PMID: 31361272 DOI: 10.1097/qad.0000000000002284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The integrase strand inhibitor dolutegravir (DTG) combined with tenofovir and lamivudine (TLD) is a single tablet regimen recommended for 1st, 2nd and 3rd-line public health antiretroviral therapy (ART). We determined drug resistance mutations (DRMs) and evaluated the predictive efficacy of a TLD containing regimen for viremic adolescents and young adults in Harare, Zimbabwe. METHODS We sequenced plasma viral RNA from HIV-1-infected adolescents and young adults on 1st and 2nd-line ART with confirmed virologic failure (viral load >1000 copies/ml) and calculated total genotypic susceptibility scores to current 2nd, 3rd line and DTG regimens. RESULTS A total of 160 participants were genotyped; 112 (70%) on 1st line and 48 (30%) on 2nd line, median (interquartile range) age 18 (15-19) and duration of ART (interquartile range) was 6 (4-8) years. Major DRMs were present in 94 and 67% of 1st and 2nd-line failures, respectively (P < 0.001). Dual class resistance to nucleotide reverse transcriptase inhibitors and nonnucleotide reverse transcriptase inhibitors was detected in 96 (60%) of 1st-line failures; protease inhibitor DRMs were detected in a minority (10%) of 2nd-line failures. A total genotypic susceptibility score of 2 or less may risk protease inhibitor or DTG monotherapy in 11 and 42% of 1st-line failures switching to 2nd-line protease inhibitor and TLD respectively. CONCLUSION Among adolescents and young adults, current protease inhibitor-based 2nd-line therapies are poorly tolerated, more expensive and adherence is poor. In 1st-line failure, implementation of TLD for many adolescents and young adults on long-term ART may require additional active drug(s). Drug resistance surveillance and susceptibility scores may inform strategies for the implementation of TLD.
Collapse
|
21
|
Pham HT, Mesplède T. Bictegravir in a fixed-dose tablet with emtricitabine and tenofovir alafenamide for the treatment of HIV infection: pharmacology and clinical implications. Expert Opin Pharmacother 2019; 20:385-397. [PMID: 30698467 DOI: 10.1080/14656566.2018.1560423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Current antiretroviral therapy is more effective and simpler than in previous times due to the development of new drugs with improved pharmacokinetic and pharmacodynamic profiles and the advent of single pill regimens with low toxicity that facilitate long-term adherence. The recent approval of the novel potent integrase strand-transfer inhibitor bictegravir (BIC) co-formulated with emtricitabine (FTC) and tenofovir alafenamide (TAF) in a fixed daily dose pill, B/F/TAF, adds to the list of single-tablet regimens available to treat HIV infection. Areas covered: This review provides an overview of the pharmacological and clinical information obtained from MEDLINE/PubMed publications and the latest international conferences. Expert opinion: BIC is a potent antiretroviral with an improved resistance profile over previous integrase inhibitors. Its combination with the new tenofovir prodrug TAF and FTC creates an effective regimen B/F/TAF for treatment-naïve patients and for those switching from another successful combination. B/F/TAF's favorable pharmacokinetic profile, simple dose, low pill burden, and few drug-drug interactions or treatment-related adverse events, will make it one of the preferred regimens in the future.
Collapse
Affiliation(s)
- Hanh Thi Pham
- a Lady Davis Institute for Medical Research, Jewish General Hospital , McGill University AIDS Centre , Montréal , Québec , Canada.,b Department of Microbiology and Immunology, Faculty of Medicine , McGill University , Montréal , Québec , Canada
| | - Thibault Mesplède
- a Lady Davis Institute for Medical Research, Jewish General Hospital , McGill University AIDS Centre , Montréal , Québec , Canada.,b Department of Microbiology and Immunology, Faculty of Medicine , McGill University , Montréal , Québec , Canada.,c Division of Experimental Medicine, Faculty of Medicine , McGill University , Montréal , Québec , Canada.,d Division of Infectious Diseases, Jewish General Hospital , McGill University , Montréal , Québec , Canada
| |
Collapse
|
22
|
Rogers L, Obasa AE, Jacobs GB, Sarafianos SG, Sönnerborg A, Neogi U, Singh K. Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Front Microbiol 2018; 9:1754. [PMID: 30116231 PMCID: PMC6083056 DOI: 10.3389/fmicb.2018.01754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) integrates viral DNA into the host genome using its 3′-end processing and strand-transfer activities. Due to the importance of HIV-1 IN, it is targeted by the newest class of approved drugs known as integrase strand transfer inhibitors (INSTIs). INSTIs are efficient in maintaining low viral load; however, as with other approved antivirals, resistance mutations emerge in patients receiving INSTI-containing therapy. As INSTIs are becoming increasingly accessible worldwide, it is important to understand the mechanism(s) of INSTI susceptibility. There is strong evidence suggesting differences in the patterns and mechanisms of drug resistance between HIV-1 subtype B, which dominates in United States, Western Europe and Australia, and non-B infections that are most prevalent in countries of Africa and Asia. IN polymorphisms and other genetic differences among diverse subtypes are likely responsible for these different patterns, but lack of a full-length high-resolution structure of HIV-1 IN has been a roadblock in understanding the molecular mechanisms of INSTI resistance and the impact of polymorphisms on therapy outcome. A recently reported full-length medium-resolution cryoEM structure of HIV-1 IN provides insights into understanding the mechanism of integrase function and the impact of genetic variation on the effectiveness of INSTIs. Here we use molecular modeling to explore the structural impact of IN polymorphisms on the IN reaction mechanism and INSTI susceptibility.
Collapse
Affiliation(s)
- Leonard Rogers
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Adetayo E Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Graeme B Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|