1
|
Palacpac NMQ, Ishii KJ, Arisue N, Tougan T, Horii T. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitol Int 2024; 99:102845. [PMID: 38101534 DOI: 10.1016/j.parint.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
3
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Ouédraogo A, Bougouma EC, Palacpac NMQ, Houard S, Nebie I, Sawadogo J, Berges GD, Soulama I, Diarra A, Hien D, Ouedraogo AZ, Konaté AT, Kouanda S, Myoui A, Ezoe S, Ishii KJ, Sato T, D’Alessio F, Leroy O, Tiono AB, Cousens S, Horii T, Sirima SB. Safety and immunogenicity of BK-SE36/CpG malaria vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled, double-blinded, age de-escalation trial. Front Immunol 2023; 14:1267372. [PMID: 37908361 PMCID: PMC10613650 DOI: 10.3389/fimmu.2023.1267372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background BK-SE36/CpG is a recombinant blood-stage malaria vaccine candidate based on the N-terminal Plasmodium falciparum serine repeat antigen5 (SE36), adsorbed to aluminium hydroxide gel and reconstituted, prior to administration, with synthetic oligodeoxynucleotides bearing CpG motifs. In healthy Japanese adult males, BK-SE36/CpG was well tolerated. This study assessed its safety and immunogenicity in healthy malaria-exposed African adults and children. Methods A double-blind, randomised, controlled, age de-escalating clinical trial was conducted in an urban area of Ouagadougou, Burkina Faso. Healthy participants (n=135) aged 21-45 years (Cohort 1), 5-10 years (Cohort 2) and 12-24 months (Cohort 3) were randomised to receive three vaccine doses (Day 0, 28 and 112) of BK-SE36/CpG or rabies vaccine by intramuscular injection. Results One hundred thirty-four of 135 (99.2%) subjects received all three scheduled vaccine doses. Vaccinations were well tolerated with no related Grade 3 (severe) adverse events (AEs). Pain/limitation of limb movement, headache in adults and fever in younger children (all mild to moderate in intensity) were the most frequently observed local and systemic AEs. Eighty-three of BK-SE36/CpG (91%) recipients and 37 of control subjects (84%) had Grade 1/2 events within 28 days post vaccination. Events considered by the investigator to be vaccine related were experienced by 38% and 14% of subjects in BK-SE36/CpG and control arms, respectively. Throughout the trial, six Grade 3 events (in 4 subjects), not related to vaccination, were recorded in the BK-SE36/CpG arm: 5 events (in 3 subjects) within 28 days of vaccination. All serious adverse events (SAEs) (n=5) were due to severe malaria (52-226 days post vaccination) and not related to vaccination. In all cohorts, BK-SE36/CpG arm had higher antibody titres after Dose 3 than after Dose 2. Younger cohorts had stronger immune responses (12-24-month-old > 5-10 years-old > 21-45 years-old). Sera predominantly reacted to peptides that lie in intrinsically unstructured regions of SE36. In the control arm, there were no marked fold changes in antibody titres and participants' sera reacted poorly to all peptides spanning SE36. Conclusion BK-SE36/CpG was well-tolerated and immunogenic. These results pave the way for further proof-of-concept studies to demonstrate vaccine efficacy. Clinical trial registration https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1921, PACTR201701001921166.
Collapse
Affiliation(s)
| | | | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jean Sawadogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Denise Hien
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Amadou T. Konaté
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Seni Kouanda
- Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
| | - Akira Myoui
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
| | - Sachiko Ezoe
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
- Department of Space Infection Control, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanobu Sato
- Research and Development Division, Nobelpharma Co., Ltd., Tokyo, Japan
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
5
|
Tiono AB, Palacpac NMQ, Bougouma EC, Nebie I, Ouédraogo A, Houard S, Arisue N, D’Alessio F, Horii T, Sirima SB. Plasmodium falciparum infection coinciding with the malaria vaccine candidate BK-SE36 administration interferes with the immune responses in Burkinabe children. Front Immunol 2023; 14:1119820. [PMID: 36993981 PMCID: PMC10040972 DOI: 10.3389/fimmu.2023.1119820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
BackgroundA vaccine targeting the erythrocyte stages of Plasmodium falciparum could play a role in preventing clinical disease. BK-SE36 is a promising malaria vaccine candidate that has shown a good safety profile and immunological responses during field evaluations. It was observed that repeated natural infections could result in immune tolerance against SE36 molecule.MethodsThe primary trial was conducted to assess the safety and immunogenicity of the BK-SE36 in two cohorts of children aged 25-60 months (Cohort 1) and 12-24 months (Cohort 2). Immunization was at full dose (1.0 mL) administered at 0, 1, and 6 months. Blood samples were collected before each vaccination for immunological assessments and detection of Plasmodium falciparum infection by microscopy. Blood samples were further collected one month post each vaccination to evaluate immunogenicity.ResultsOf seventy-two (72) subjects that have received BK-SE36 vaccination, 71 had available blood smears during vaccination days. One month post Dose 2, the geometric mean of SE36 antibodies was 263.2 (95% CI: 178.9-387.1) in uninfected individuals compared to 77.1 (95% CI: 47.3-125.7) in infected participants. The same trend was observed one-month post booster dose. Participants uninfected at the time of booster vaccination had significantly higher GMTs compared to those who were infected (424.1 (95% CI: 301.9-595.8) vs. 92.8 (95% CI: 34.9-246.6), p = 0.002. There was a 14.3 (95% CI: 9.7-21.1) and 2.4 (95% CI: 1.3-4.4) fold-change, respectively, in uninfected and infected participants between one-month post Dose 2 and booster. The difference was statistically significant (p < 0.001).ConclusionConcomitant infection by P. falciparum during BK-SE36 vaccine candidate administration is associated with reduced humoral responses. However, it is to be noted that the BK-SE36 primary trial was not designed to investigate the influence of concomitant infection on vaccine-induced immune response and should be interpreted cautiously.Trial registrationWHO ICTRP, PACTR201411000934120.
Collapse
Affiliation(s)
- Alfred B. Tiono
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | - Issa Nebie
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- *Correspondence: Toshihiro Horii, ; Sodiomon B. Sirima,
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- *Correspondence: Toshihiro Horii, ; Sodiomon B. Sirima,
| |
Collapse
|
6
|
Arisue N, Palacpac NMQ, Ntege EH, Yeka A, Balikagala B, Kanoi BN, Bougouma EC, Tiono AB, Nebie I, Diarra A, Houard S, D’Alessio F, Leroy O, Sirima SB, Egwang TG, Horii T. African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination. Front Cell Infect Microbiol 2022; 12:1058081. [PMID: 36590593 PMCID: PMC9802637 DOI: 10.3389/fcimb.2022.1058081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women’s Medical University, Tokyo, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, University of the Ryukyus, Graduate School of Medicine and Hospital, Okinawa, Japan
| | - Adoke Yeka
- Makerere University School of Public Health, Kampala, Uganda
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Bernard N. Kanoi
- Centre for Malaria Elimination (CME) and Centre for Research in Infectious Diseases (CRID), Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Edith Christiane Bougouma
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Alfred B. Tiono
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Issa Nebie
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany,Sorekara-x consultant, Paris, France
| | - Sodiomon B. Sirima
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Bougouma EC, Palacpac NMQ, Tiono AB, Nebie I, Ouédraogo A, Houard S, Yagi M, Coulibaly SA, Diarra A, Tougan T, Ouedraogo AZ, Soulama I, Arisue N, Yaro JB, D’Alessio F, Leroy O, Cousens S, Horii T, Sirima SB. Safety and immunogenicity of BK-SE36 in a blinded, randomized, controlled, age de-escalating phase Ib clinical trial in Burkinabe children. Front Immunol 2022; 13:978591. [PMID: 36119062 PMCID: PMC9471861 DOI: 10.3389/fimmu.2022.978591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background A blood-stage vaccine targeting the erythrocytic-stages of the malaria parasite Plasmodium falciparum could play a role to protect against clinical disease. Antibodies against the P. falciparum serine repeat antigen 5 (SE47 and SE36 domains) correlate well with the absence of clinical symptoms in sero-epidemiological studies. A previous phase Ib trial of the recombinant SE36 antigen formulated with aluminum hydroxyl gel (BK-SE36) was promising. This is the first time the vaccine candidate was evaluated in young children below 5 years using two vaccination routes. Methods Safety and immunogenicity of BK-SE36 was assessed in a double-blind, randomized, controlled, age de-escalating phase Ib trial. Fifty-four Burkinabe children in each age cohort, 25–60 or 12–24 months, were randomized in a 1:1:1 ratio to receive three doses of BK-SE36 either by intramuscular (BK IM) or subcutaneous (BK SC) route on Day 0, Week 4, and 26; or the control vaccine, Synflorix®via IM route on Day 0, Week 26 (and physiological saline on Week 4). Safety data and samples for immunogenicity analyses were collected at various time-points. Results Of 108 subjects, 104 subjects (96.3%) (Cohort 1: 94.4%; Cohort 2: 98.1%) received all three scheduled vaccine doses. Local reactions, mostly mild or of moderate severity, occurred in 99 subjects (91.7%). The proportion of subjects that received three doses without experiencing Grade 3 adverse events was similar across BK-SE36 vaccines and control arms (Cohort 1: 100%, 89%, and 89%; and Cohort 2: 83%, 82%, and 83% for BK IM, BK SC, and control, respectively). BK-SE36 vaccine was immunogenic, inducing more than 2-fold change in antibody titers from pre-vaccination, with no difference between the two vaccination routes. Titers waned before the third dose but in both cohorts titers were boosted 6 months after the first vaccination. The younger cohort had 2-fold and 4-fold higher geometric mean titers compared to the 25- to 60-month-old cohort after 2 and 3 doses of BK-SE36, respectively. Conclusion BK-SE36 was well tolerated and immunogenic using either intramuscular or subcutaneous routes, with higher immune response in the younger cohort. Clinical Trial Registration https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=934, identifier PACTR201411000934120.
Collapse
Affiliation(s)
- Edith Christiane Bougouma
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Issa Nebie
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sam Aboubacar Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Amidou Z. Ouedraogo
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jean Baptiste Yaro
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- *Correspondence: Toshihiro Horii, ; Sodiomon B. Sirima,
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou (GRAS), Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
- *Correspondence: Toshihiro Horii, ; Sodiomon B. Sirima,
| |
Collapse
|
8
|
Red Blood Cell BCL-x L Is Required for Plasmodium falciparum Survival: Insights into Host-Directed Malaria Therapies. Microorganisms 2022; 10:microorganisms10040824. [PMID: 35456874 PMCID: PMC9027239 DOI: 10.3390/microorganisms10040824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
The development of antimalarial drug resistance is an ongoing problem threatening progress towards the elimination of malaria, and antimalarial treatments are urgently needed for drug-resistant malaria infections. Host-directed therapies (HDT) represent an attractive strategy for the development of new antimalarials with untapped targets and low propensity for resistance. In addition, drug repurposing in the context of HDT can lead to a substantial decrease in the time and resources required to develop novel antimalarials. Host BCL-xL is a target in anti-cancer therapy and is essential for the development of numerous intracellular pathogens. We hypothesised that red blood cell (RBC) BCL-xL is essential for Plasmodium development and tested this hypothesis using six BCL-xL inhibitors, including one FDA-approved compound. All BCL-xL inhibitors tested impaired proliferation of Plasmodium falciparum 3D7 parasites in vitro at low micromolar or sub-micromolar concentrations. Western blot analysis of infected cell fractions and immunofluorescence microscopy assays revealed that host BCL-xL is relocated from the RBC cytoplasm to the vicinity of the parasite upon infection. Further, immunoprecipitation of BCL-xL coupled with mass spectrometry analysis identified that BCL-xL forms unique molecular complexes with human μ-calpain in uninfected RBCs, and with human SHOC2 in infected RBCs. These results provide interesting perspectives for the development of host-directed antimalarial therapies and drug repurposing efforts.
Collapse
|
9
|
Arisue N, Chagaluka G, Palacpac NMQ, Johnston WT, Mutalima N, Peprah S, Bhatia K, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Goedert JJ, Molyneux EM, Newton R, Horii T, Mbulaiteye SM. Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi. Cancers (Basel) 2021; 13:1692. [PMID: 33918470 PMCID: PMC8038222 DOI: 10.3390/cancers13071692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - W. Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Sally Peprah
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, P.O. Box 30377, Capital City, Lilongwe 3, Malawi;
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| |
Collapse
|
10
|
Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:211-238. [PMID: 33834439 DOI: 10.1007/978-981-33-6064-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sangyun Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Moosung Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Juntaek Oh
- Department of Physics, KAIST, Daejeon, South Korea
| | - Su-A Yang
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon, South Korea. .,KAIST Institute Health Science and Technology, Daejeon, South Korea. .,Tomocube Inc., Daejeon, South Korea.
| |
Collapse
|
11
|
Ezoe S, Palacpac NMQ, Tetsutani K, Yamamoto K, Okada K, Taira M, Nishida S, Hirata H, Ogata A, Yamada T, Yagi M, Edula JR, Oishi Y, Tougan T, Ishii KJ, Myoui A, Horii T. First-in-human randomised trial and follow-up study of Plasmodium falciparum blood-stage malaria vaccine BK-SE36 with CpG-ODN(K3). Vaccine 2020; 38:7246-7257. [PMID: 33012605 DOI: 10.1016/j.vaccine.2020.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND BK-SE36 is blood-stage malaria vaccine candidate that is undergoing clinical trials. Here, the safety and immunogenicity of BK-SE36 with a novel adjuvant, CpG-ODN(K3) (thus, BK-SE36/CpG) was assessed in a phase 1a trial in Japan. METHODS An investigator-initiated, randomised, single-blind, placebo-controlled, dose-escalation study was conducted at Osaka University Hospital with 26 healthy malaria naïve Japanese male adults. The trial was conducted in two stages: Stage/Group 1, half-dose (n = 7 for BK-SE36/CpG and n = 3 for control) and Stage/Group 2, full-dose (n = 11 for BK-SE36/CpG and n = 5 for control). There were two intramuscular vaccinations 21 days apart for both half-dose (0.5 ml: 50 µg SE36 + 500 µg aluminum + 500 µg K3) and full-dose (1.0 ml: 100 µg SE36 + 1000 µg aluminum + 1000 µg K3). A one-year follow-up was done to monitor changes in autoimmune markers and vaccine-induced antibody response. RESULTS BK-SE36/CpG was well tolerated. Vaccination site reactions were similar to those observed with BK-SE36. During the trial and follow-up period, no subject had clinical evidence of autoimmune disease. The full-dose group had significantly higher titres than the half-dose group (Student's t-test, p = 0.002) at 21 days post-second vaccination. Antibody titres remained above baseline values during 12 months of follow-up. The vaccine induced antibody was mostly composed of IgG1 and IgM, and recognised epitopes close to the polyserine region located in the middle of SE36. CONCLUSIONS BK-SE36/CpG has an acceptable safety profile. Use of CpG-ODN(K3) greatly enhanced immunogenicity in malaria naïve Japanese adults when compared to BK-SE36 alone. The utility of BK-SE36/CpG is currently under evaluation in a malaria endemic setting in West Africa. TRIAL REGISTRATION JMACCT Clinical Trial Registry JMA-IIA00109.
Collapse
Affiliation(s)
- Sachiko Ezoe
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Environmental Space Infection Control, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nirianne Marie Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohhei Tetsutani
- Laboratory of Adjuvant Innovation/Mockup Vaccine, Center for Vaccine Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouji Yamamoto
- Data Coordinating Center, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Okada
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Taira
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Ogata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomomi Yamada
- Data Coordinating Center, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Oishi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation/Mockup Vaccine, Center for Vaccine Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Myoui
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
El Chamy Maluf S, Icimoto MY, Melo PMS, Budu A, Coimbra R, Gazarini ML, Carmona AK. Human plasma plasminogen internalization route in Plasmodium falciparum-infected erythrocytes. Malar J 2020; 19:302. [PMID: 32847585 PMCID: PMC7449074 DOI: 10.1186/s12936-020-03377-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023] Open
Abstract
Background The intra-erythrocytic development of the malaria parasite Plasmodium falciparum depends on the uptake of a number of essential nutrients from the host cell and blood plasma. It is widely recognized that the parasite imports low molecular weight solutes from the plasma and the consumption of these nutrients by P. falciparum has been extensively analysed. However, although it was already shown that the parasite also imports functional proteins from the vertebrate host, the internalization route through the different infected erythrocyte membranes has not yet been elucidated. In order to further understand the uptake mechanism, the study examined the trafficking of human plasminogen from the extracellular medium into P. falciparum-infected red blood cells. Methods Plasmodium falciparum clone 3D7 was cultured in standard HEPES-buffered RPMI 1640 medium supplemented with 0.5% AlbuMAX. Exogenous human plasminogen was added to the P. falciparum culture and the uptake of this protein by the parasites was analysed by electron microscopy and Western blotting. Immunoprecipitation and mass spectrometry were performed to investigate possible protein interactions that may assist plasminogen import into infected erythrocytes. The effect of pharmacological inhibitors of different cellular physiological processes in plasminogen uptake was also tested. Results It was observed that plasminogen was selectively internalized by P. falciparum-infected erythrocytes, with localization in plasma membrane erythrocyte and parasite’s cytosol. The protein was not detected in parasitic food vacuole and haemoglobin-containing vesicles. Furthermore, in erythrocyte cytoplasm, plasminogen was associated with the parasite-derived membranous structures tubovesicular network (TVN) and Maurer’s clefts. Several proteins were identified in immunoprecipitation assay and may be involved in the delivery of plasminogen across the P. falciparum multiple compartments. Conclusion The findings here reported reveal new features regarding the acquisition of plasma proteins of the host by P. falciparum-infected erythrocytes, a mechanism that involves the exomembrane system, which is distinct from the haemoglobin uptake, clarifying a route that may be potentially targeted for inhibition studies.
Collapse
Affiliation(s)
- Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Pollyana Maria Saud Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Rita Coimbra
- Centro de Microscopia Eletrônica (CEME), Universidade Federal de São Paulo, Rua Botucatu 862, Vila Clementino, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab. 329, 3°andar, Vila Mathias, Santos, São Paulo, 11015020, Brazil.
| | - Adriana Karaoglanovic Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil.
| |
Collapse
|
13
|
Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, Horii T. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J 2020; 19:155. [PMID: 32295584 PMCID: PMC7161009 DOI: 10.1186/s12936-020-03229-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum is a protozoan that develops in red blood cells (RBCs) and requires various host factors. For its development in RBCs, nutrients not only from the RBC cytosol but also from the extracellular milieu must be acquired. Although the utilization of host nutrients by P. falciparum has been extensively analysed, only a few studies have reported its utilization of host serum proteins. Hence, the aim of the current study was to comprehensively identify host serum proteins taken up by P. falciparum parasites and to elucidate their role in pathogenesis. Methods Plasmodium falciparum was cultured with human serum in vitro. Uptake of serum proteins by parasites was comprehensively determined via shotgun liquid chromatography–mass spectrometry/mass spectrometry and western blotting. The calcium ion concentration in serum was also evaluated, and coagulation activity of the parasite lysate was assessed. Results Three proteins, vitamin K-dependent protein S, prothrombin, and vitronectin, were selectively internalized under sufficient Ca2+ levels in the culture medium. The uptake of these proteins was initiated before DNA replication, and increased during the trophozoite and schizont stages, irrespective of the assembly/disassembly of actin filaments. Coagulation assay revealed that prothrombin was activated and thereby induced blood coagulation. Conclusions Serum proteins were taken up by parasites under culture conditions with sufficient Ca2+ levels. This uptake phenomenon was associated with their pathogenicity.
Collapse
Affiliation(s)
- Takahiro Tougan
- Research Centre for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Arisue N, Palacpac NMQ, Tougan T, Horii T. Characteristic features of the SERA multigene family in the malaria parasite. Parasit Vectors 2020; 13:170. [PMID: 32252804 PMCID: PMC7132891 DOI: 10.1186/s13071-020-04044-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/27/2020] [Indexed: 02/28/2023] Open
Abstract
Serine repeat antigen (SERA) is conserved among species of the genus Plasmodium. Sera genes form a multigene family and are generally tandemly clustered on a single chromosome. Although all Plasmodium species encode multiple sera genes, the number varies between species. Among species, the members share similar sequences and gene organization. SERA possess a central papain-like cysteine protease domain, however, in some members, the active site cysteine residue is substituted with a serine. Recent studies implicate this gene family in a number of aspects in parasite biology and induction of protective immune response. This review summarizes the current understanding on this important gene family in several Plasmodium species. The Plasmodium falciparum (Pf)-sera family, for example, consists of nine gene members. Unlike other multigene families in Plasmodium species, Pf-sera genes do not exhibit antigenic variation. Pf-sera5 nucleotide diversity is also low. Moreover, although Pf-sera5 is highly transcribed during the blood stage of malaria infection, and a large amount is released into the host blood following schizont rupture, in malaria endemic countries the sero-positive rates for Pf-SERA5 are low, likely due to Pf-SERA5 binding of host proteins to avoid immune recognition. As an antigen, the N-terminal 47 kDa domain of Pf-SERA5 is a promising vaccine candidate currently undergoing clinical trials. Pf-SERA5 and Pf-SERA6, as well as P. berghei (Pb)-SERA3, and Pb-SERA5, have been investigated for their roles in parasite egress. Two P. yoelii SERA, which have a serine residue at the protease active center, are implicated in parasite virulence. Overall, these studies provide insight that during the evolution of the Plasmodium parasite, the sera gene family members have increased by gene duplication, and acquired various functions that enable the parasite to survive and successfully maintain infection in the host.![]()
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tougan
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Oh J, Ryu JS, Lee M, Jung J, Han S, Chung HJ, Park Y. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:1257-1267. [PMID: 32206407 PMCID: PMC7075604 DOI: 10.1364/boe.377740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Measuring alterations in bacteria upon antibiotic application is important for basic studies in microbiology, drug discovery, clinical diagnosis, and disease treatment. However, imaging and 3D time-lapse response analysis of individual bacteria upon antibiotic application remain largely unexplored mainly due to limitations in imaging techniques. Here, we present a method to systematically investigate the alterations in individual bacteria in 3D and quantitatively analyze the effects of antibiotics. Using optical diffraction tomography, in-situ responses of Escherichia coli and Bacillus subtilis to various concentrations of ampicillin were investigated in a label-free and quantitative manner. The presented method reconstructs the dynamic changes in the 3D refractive-index distributions of living bacteria in response to antibiotics at sub-micrometer spatial resolution.
Collapse
Affiliation(s)
- Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea
| | - Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Jaehwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
- Current Affiliation: Mechatronics R&D Center, Samsung Electronics, Hwasung 18448, South Korea
| | - SeungYun Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Yongkeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
- Tomocube Inc., Daejeon 34051, South Korea
| |
Collapse
|
16
|
[Development of malaria vaccines-state of the art]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 63:45-55. [PMID: 31828371 PMCID: PMC7223738 DOI: 10.1007/s00103-019-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Weltweit leben 3,1 Mrd. Menschen in Gebieten, in denen Malaria endemisch ist (Tropen, Subtropen). Jährlich erkranken etwa 200 Mio. Menschen, ca. 500.000 sterben daran. Betroffen sind vor allem Kinder. Um die Malaria zu kontrollieren und schlussendlich jegliche Neuinfektion zu verhindern, ist die Entwicklung wirksamer Impfstoffe von großer Bedeutung. In diesem Beitrag werden zunächst Hintergrundinformationen zur Geschichte der Impfstoffentwicklung, zur Malariaerkrankung und zu den Möglichkeiten der Therapie und Ausbreitungskontrolle gegeben. Der Hauptteil widmet sich dem aktuellen Forschungsstand zu Impfstoffen gegen den Erreger Plasmodium falciparum, gefolgt von einer ausführlichen Diskussion. Malaria ist eine parasitäre Infektionskrankheit, die von Einzellern, sog. Plasmodien, verursacht wird. Es werden 5 humanpathogene Spezies unterschieden, von denen P. falciparum über 99 % der Erkrankungen in Afrika verursacht. Überträger (Vektor) ist die Anophelesmücke. Plasmodium bietet innerhalb seines Lebenszyklus verschiedene Ansatzpunkte für die Wirkung von Impfstoffen. Von den insgesamt ca. 70 Impfstoffkandidaten sind die präerythrozytären Impfstoffe, die in den Leberzyklus des Parasiten eingreifen, aktuell am weitesten entwickelt. Die von der Weltgesundheitsorganisation (WHO) angestrebte Wirksamkeit von mindestens 75 % wurde aber längst nicht erreicht. Mit RTS,S/AS01 wird derzeit erstmals ein mäßig wirksamer Impfstoff großflächig eingesetzt. Schon jetzt ist offensichtlich, dass die Malaria nur im Zusammenspiel mit anderen Maßnahmen eingedämmt werden kann. Expositionsprophylaxe mit imprägnierten Moskitonetzen, der Einsatz von Insektiziden mit Residualeffekt in Innenräumen (Indoor Residual Spraying), die Vernichtung von Moskitobrutplätzen und schnelle Diagnose und Therapie der Erkrankung sind hier wichtige Elemente ebenso wie eine funktionierende Gesundheitsversorgung, die in den von Armut geprägten Gebieten oft nicht gewährleistet ist.
Collapse
|
17
|
Salamanca DR, Gómez M, Camargo A, Cuy-Chaparro L, Molina-Franky J, Reyes C, Patarroyo MA, Patarroyo ME. Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Front Microbiol 2019; 10:2712. [PMID: 31849871 PMCID: PMC6901501 DOI: 10.3389/fmicb.2019.02712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023] Open
Abstract
Plasmodium falciparum malaria is a disease causing high morbidity and mortality rates worldwide, mainly in sub-Saharan Africa. Candidates have been identified for vaccines targeting the parasite's blood stage; this stage is important in the development of symptoms and clinical complications. However, no vaccine that can directly affect morbidity and mortality rates is currently available. This review analyzes the formulation, methodological design, and results of active clinical trials for merozoite-stage vaccines, regarding their safety profile, immunological response (phase Ia/Ib), and protective efficacy levels (phase II). Most vaccine candidates are in phase I trials and have had an acceptable safety profile. GMZ2 has made the greatest progress in clinical trials; its efficacy has been 14% in children aged less than 5 years in a phase IIb trial. Most of the available candidates that have shown strong immunogenicity and that have been tested for their protective efficacy have provided good results when challenged with a homologous parasite strain; however, their efficacy has dropped when they have been exposed to a heterologous strain. In view of these vaccines' unpromising results, an alternative approach for selecting new candidates is needed; such line of work should be focused on how to increase an immune response induced against the highly conserved (i.e., common to all strains), functionally relevant, protein regions that the parasite uses to invade target cells. Despite binding regions tending to be conserved, they are usually poorly antigenic and/or immunogenic, being frequently discarded as vaccine candidates when the conventional immunological approach is followed. The Fundación Instituto de Inmunología de Colombia (FIDIC) has developed a logical and rational methodology based on including conserved high-activity binding peptides (cHABPs) from the main P. falciparum biologically functional proteins involved in red blood cell (RBC) invasion. Once appropriately modified (mHABPs), these minimal, subunit-based, chemically synthesized peptides can be used in a system covering the human immune system's main genetic variables (the human leukocyte antigen HLA-DR isotype) inducing a suitable, immunogenic, and protective immune response in most of the world's populations.
Collapse
Affiliation(s)
- David Ricardo Salamanca
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Marcela Gómez
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Laura Cuy-Chaparro
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Jessica Molina-Franky
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Boyacá, Colombia
| |
Collapse
|
18
|
Shin S, Kim J, Lee JR, Jeon EC, Je TJ, Lee W, Park Y. Enhancement of optical resolution in three-dimensional refractive-index tomograms of biological samples by employing micromirror-embedded coverslips. LAB ON A CHIP 2018; 18:3484-3491. [PMID: 30303499 DOI: 10.1039/c8lc00880a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical diffraction tomography (ODT) enables the reconstruction of the three-dimensional (3D) refractive-index (RI) distribution of a biological cell, which provides invaluable information for cellular and subcellular structures in a non-invasive manner. However, ODT suffers from an inferior axial resolution, due to the limited accessible angles imposed by the numerical aperture of the objective lens. In this study, we propose and experimentally demonstrate an approach to enhance the 3D reconstruction performance in ODT. By employing trapezoidal micromirrors, side scattered signals from the sample are measured for various side plane-wave-illumination angles. By combining the side scattered fields with the forward scattered fields, the axial resolution and 3D image quality of ODT are improved, without changing optical instruments. The feasibility and applicability of the proposed method are demonstrated by reconstructing the 3D RI distribution of a red blood cell and HeLa cells in hydrogel. We also present systematic analyses of the improved 3D imaging performance using numerical simulations and experimental measurements for the 3D transfer function, a point object, and a microsphere. The analyses demonstrate an improved axial resolution of 0.31 μm, 4.8 times smaller than that of the conventional method. The proposed method enables the non-invasive and accurate 3D imaging of 3D cultured cells, which is crucial for cell biology studies.
Collapse
Affiliation(s)
- Seungwoo Shin
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
19
|
Park C, Shin S, Park Y. Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:1891-1898. [PMID: 30461848 DOI: 10.1364/josaa.35.001891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Optical diffraction tomography (ODT) is a three-dimensional (3D) quantitative phase imaging technique, which enables the reconstruction of the 3D refractive index (RI) distribution of a transparent sample. Due to its fast, non-invasive, and quantitative imaging capability, ODT has emerged as a powerful tool for various applications. However, the spatial resolution of ODT has only been quantified along the lateral and axial directions for limited conditions; it has not been investigated for arbitrary-oblique directions. In this paper, we systematically quantify the 3D spatial resolution of ODT by exploiting the spatial bandwidth of the reconstructed scattering potential. The 3D spatial resolution is calculated for various types of systems, including the illumination-scanning, sample-rotation, and hybrid scanning-rotation methods. In particular, using the calculated 3D spatial resolution, we provide the spatial resolution as well as the arbitrary sliced angle. Furthermore, to validate the present method, the point spread function of an ODT system is experimentally obtained using the deconvolution of a 3D RI distribution of a microsphere and is compared with the calculated resolution.
Collapse
|
20
|
Kim YS, Lee S, Jung J, Shin S, Choi HG, Cha GH, Park W, Lee S, Park Y. Combining Three-Dimensional Quantitative Phase Imaging and Fluorescence Microscopy for the Study of Cell Pathophysiology. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:267-277. [PMID: 30258314 PMCID: PMC6153632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Quantitative phase imaging (QPI) has emerged as one of the powerful imaging tools for the study of live cells in a non-invasive manner. In particular, multimodal approaches combining QPI and fluorescence microscopic techniques have been recently developed for superior spatiotemporal resolution as well as high molecular specificity. In this review, we briefly summarize recent advances in three-dimensional QPI combined with fluorescence techniques for the correlative study of cell pathophysiology. Through this review, biologists and clinicians can be provided with insights on this rapidly growing field of research and may find broader applications to investigate unrevealed nature in cell physiology and related diseases.
Collapse
Affiliation(s)
- Young Seo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea,Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - SangYun Lee
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - JaeHwang Jung
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Seungwoo Shin
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - He-Gwon Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Weisun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Sumin Lee
- Tomocube Inc., Daejeon, Republic of Korea
| | - YongKeun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea,To whom all correspondence should be addressed: YongKeun Park, Department of Physics, KAIST, Daejeon, Republic of Korea;
| |
Collapse
|