1
|
Colarusso E, Lauro G, Potenza M, Galatello P, Garigliota MLD, Ferraro MG, Piccolo M, Chini MG, Irace C, Campiglia P, Hoffstetter RK, Werz O, Ramunno A, Bifulco G. 5-methyl-2-carboxamidepyrrole-based novel dual mPGES-1/sEH inhibitors as promising anticancer candidates. Arch Pharm (Weinheim) 2025; 358:e2400708. [PMID: 39692230 DOI: 10.1002/ardp.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Inhibiting microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E2 (PGE2) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC50 values in the low micromolar range. With the aim of further profiling the synthesized molecules, their ability to interfere with the activity of soluble epoxide hydrolase (sEH), whose inhibition blocks the loss of the anti-inflammatory mediators epoxyeicosatrienoic acids (EETs or epoxyicosatrienoic acids), was investigated in silico and by employing specific biological assays. Among the set of tested compounds, 1f, 2b, 2c, and 2d emerged as mPGES-1/sEH dual inhibitors. Moreover, given that overexpression of mPGES-1 has been observed in many human tumors, we finally explored the biological effect of our compounds in an in vitro model of human colorectal cancer (CRC). The obtained outcomes pave the way for future investigation to optimize and further characterize anticancer pharmacological profile of the carboxamidepyrrole-based molecules.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Marianna Potenza
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Naples, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Robert Klaus Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
2
|
Weaver LM, Stewart MJ, Ding K, Loftin CD, Zheng F, Zhan CG. A highly selective mPGES-1 inhibitor to block abdominal aortic aneurysm progression in the angiotensin mouse model. Sci Rep 2024; 14:6959. [PMID: 38521811 PMCID: PMC10960802 DOI: 10.1038/s41598-024-57437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Madeline J Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Kai Ding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Santos MFC, Nicácio KDJ, Katchborian-Neto A, Ferreira MS, Miranda DDO, Andrade JV, Pereira HDA, Jesus EGD, B T, Souza S, Morais-Urano RP, Dias DF, Chagas-Paula DA, Soares MG. Ex vivo inhibition of PGE2 formation in human blood by four bicyclico [3.2.1] octane neolignans isolated from Aniba firmula bark, two with unusual structural pattern. Nat Prod Res 2024; 38:393-401. [PMID: 36106991 DOI: 10.1080/14786419.2022.2124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
The phytochemical investigation of the stem bark crude extract of Aniba firmula (Lauraceae) led to the isolation of undescribed bicyclic [3.2.1] octane neolignans, 1 and 2, characterized by unusual bicyclic patterns and two other known bicyclic neolignans 3 and 4. Anti-inflammatory bicyclic [3.2.1] octane neolignans metabolites were previously reported in the literature, and the A. firmula stands out in the Lauraceae family as a source of potentially bioactive compounds. Thus, herein the anti-inflammatory potential of four isolated compounds from A. firmula was accessed via an ex vivo anti-inflammatory model that included plasmatic quantification of the prostaglandin E2 (PGE2) inflammatory mediator. Compounds 2 and 3 exhibited significant anti-inflammatory activity by inhibiting the production of PGE2 in plasma samples, thus by interference with the cyclooxygenase (COX) inflammatory pathway. Therefore, these findings demonstrate that the bicyclic octane neolignan classes [3.2.1] can present anti-inflammatory potential.
Collapse
Affiliation(s)
- Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Karen de J Nicácio
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | | - Miller S Ferreira
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | | | - João V Andrade
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Herinque de A Pereira
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Ester Gonçalves de Jesus
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | | | - Silva Souza
- Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | | | | - Marisi G Soares
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
4
|
Katchborian-Neto A, Nicácio KDJ, Cruz JC, Bueno PCP, Murgu M, Dias DF, Soares MG, Paula ACC, Chagas-Paula DA. Bioprospecting-based untargeted metabolomics identifies alkaloids as potential anti-inflammatory bioactive markers of Ocotea species (Lauraceae). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155060. [PMID: 37717309 DOI: 10.1016/j.phymed.2023.155060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Species within the Ocotea genus (Lauraceae), have demonstrated an interesting profile of bioactivities. Renowned for their diverse morphology and intricate specialized metabolite composition, Ocotea species have re-emerged as compelling candidates for bioprospecting in drug discovery research. However, it is a genus insufficiently studied, particularly regarding anti-inflammatory activity. PURPOSE To investigate the anti-inflammatory activity of Ocotea spp. extracts and determine the major markers in this genus. METHODS Extracts of 60 different Ocotea spp. were analysed by an ex vivo anti-inflammatory assay in human whole blood. The experiment estimates the prostaglandin E2 levels, which is one of the main mediators of the inflammatory cascade, responsible for the classical symptoms of fever, pain, and other common effects of the inflammatory process. Untargeted metabolomics analysis through liquid chromatography coupled with high-resolution mass spectrometry was performed, along with statistical analysis, to investigate which Ocotea metabolites are correlated with their anti-inflammatory activity. RESULTS The anti-inflammatory screening indicated that 49 out of 60 Ocotea spp. extracts exhibited significant inhibition of PGE2 release compared to the vehicle (p < 0.05). Furthermore, 10 of these extracts showed statistical similarity to the reference drugs. The bioactive markers were accurately identified using multivariate statistics combined with a fold change (> 1.5) and adjusted false discovery rate analysis as unknown compounds and alkaloids, with a majority of aporphine and benzylisoquinolines. These alkaloids were annotated with an increased level of confidence since MSE spectra were compared with comprehensive databases. CONCLUSION This study represents the first bioprospecting report revealing the anti-inflammatory potential of several Ocotea spp. The determination of their anti-inflammatory markers could contribute to drug discovery and the chemical knowledge of the Ocotea genus.
Collapse
Affiliation(s)
- Albert Katchborian-Neto
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), 37130-001, Alfenas, Minas Gerais, Brazil
| | - Karen de Jesus Nicácio
- Department of Chemistry, Federal University of Mato Grosso (UFMT), 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Jonas C Cruz
- Department of Chemistry, University of São Paulo (USP), 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Paula Carolina Pires Bueno
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), 37130-001, Alfenas, Minas Gerais, Brazil; Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Michael Murgu
- Waters Corporation, Alameda Tocantins 125, 27th floor, Alphaville, 06455-020, Barueri, São Paulo, Brazil
| | - Danielle F Dias
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), 37130-001, Alfenas, Minas Gerais, Brazil
| | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), 37130-001, Alfenas, Minas Gerais, Brazil
| | - Ana C C Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Daniela A Chagas-Paula
- Institute of Chemistry, Federal University of Alfenas (UNIFAL), 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Bülbül B, Ding K, Zhan CG, Çiftçi G, Yelekçi K, Gürboğa M, Özakpınar ÖB, Aydemir E, Baybağ D, Şahin F, Kulabaş N, Helvacıoğlu S, Charehsaz M, Tatar E, Özbey S, Küçükgüzel İ. Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity. Mol Divers 2023; 27:2185-2215. [PMID: 36331786 DOI: 10.1007/s11030-022-10551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Konuralp, Düzce, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Marmara University, Dragos, Kartal, 34865, Istanbul, Turkey
| | - Kai Ding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Gamze Çiftçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Merve Gürboğa
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, Istanbul, Turkey
| | - Özlem Bingöl Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, Istanbul, Turkey
| | - Esra Aydemir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Zeytinburnu, 34010, Turkey
| | - Deniz Baybağ
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey
| | - Sinem Helvacıoğlu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir, 34750, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir, 34750, Istanbul, Turkey
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey
| | - Süheyla Özbey
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey.
| |
Collapse
|
6
|
Steinmetz-Späh J, Jakobsson PJ. The anti-inflammatory and vasoprotective properties of mPGES-1 inhibition offer promising therapeutic potential. Expert Opin Ther Targets 2023; 27:1115-1123. [PMID: 38015194 DOI: 10.1080/14728222.2023.2285785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) is produced by cyclooxygenases (COX-1/2) and the microsomal prostaglandin E synthase 1 (mPGES-1). PGE2 is pro-inflammatory in diseases such as rheumatoid arthritis, cardiovascular disorders, and cancer. While Nonsteroidal anti-inflammatory drugs (NSAIDs) targeting COX can effectively reduce inflammation, their use is limited by gastrointestinal and cardiovascular side effects resulting from the blockade of all prostanoids. To overcome this limitation, selective inhibition of mPGES-1 is being explored as an alternative therapeutic strategy to inhibit PGE2 production while sparing or even upregulating other prostaglandins. However, the exact timing and location of PGH2 conversion to PGD2, PGI2, TXB2 or PGF2α, and whether it hinders or supports the therapeutic effect of mPGES-1 inhibition, is not fully understood. AREAS COVERED The article briefly describes prostanoid history and metabolism with a strong focus on the vascular effects of prostanoids. Recent advances in mPGES-1 inhibitor development and results from pre-clinical and clinical studies are presented. Prostanoid shunting after mPGES-1 inhibition is highlighted and particularly discussed in the context of cardiovascular diseases. EXPERT OPINION The newest research demonstrates that inhibition of mPGES-1 is a potent anti-inflammatory treatment strategy and beneficial and safer regarding cardiovascular side effects compared to NSAIDs. Inhibitors of mPGES-1 hold great potential to advance to the clinic and there are ongoing phase-II trials in endometriosis.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Lu R, Akasaka H, Ruan KH. Design, synthesis and characterization of lead compounds as anti-inflammatory drugs targeting mPGES-1 via enzymelink screening. Future Med Chem 2023; 15:757-767. [PMID: 37248701 PMCID: PMC10318571 DOI: 10.4155/fmc-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Aim: The objective of this study was to synthesize and validate a set of compounds that selectively inhibit mPGES-1, with the potential to be developed into a novel anti-inflammatory drug. Methods: The synthesized compounds were characterized using 1H NMR spectroscopy and LC-MS to confirm their structure. Cellular and enzymatic assays were used to demonstrate their inhibitory activity on prostaglandin E2 production. Results: Docking studies revealed that compounds containing fluoro-, chloro- and methyl- groups displayed strong inhibitory activity against prostaglandin E2. The inhibitory activity of synthesized trimethyl and trifluoro was further validated using enzymatic and cell migration assays. Conclusion: The findings demonstrated that the synthesized compounds possess significant potential as a new generation of nonsteroidal anti-inflammatory drugs that selectively target mPGES-1 with fewer side effects.
Collapse
Affiliation(s)
- Renzhong Lu
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hironori Akasaka
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ke-He Ruan
- Department of Pharmacological & Pharmaceutical Sciences, Center for Experimental Therapeutics & Pharmacoinformatics, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
8
|
Synthesis, in vitro and in silico studies on novel 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as potent inhibitors of mPGES-1. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Potenza M, Giordano A, Chini MG, Saviano A, Kretzer C, Raucci F, Russo M, Lauro G, Terracciano S, Bruno I, Iorizzi M, Hofstetter RK, Pace S, Maione F, Werz O, Bifulco G. Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E 2 and Leukotriene Biosynthesis Inhibitors. ACS Med Chem Lett 2022; 14:26-34. [PMID: 36655121 PMCID: PMC9841589 DOI: 10.1021/acsmedchemlett.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Marianna Potenza
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,The
FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Assunta Giordano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,Institute
of Biomolecular Chemistry (ICB), Consiglio
Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy
| | - Maria G. Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Anella Saviano
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Federica Raucci
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marina Russo
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Maria Iorizzi
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Robert K. Hofstetter
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Francesco Maione
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany,
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,
| |
Collapse
|
10
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Aurantiamide Acetate Ameliorates Lung Inflammation in Lipopolysaccharide-Induced Acute Lung Injury in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3510423. [PMID: 36046440 PMCID: PMC9424011 DOI: 10.1155/2022/3510423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Purpose Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.
Collapse
|
12
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
13
|
Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E 2 synthase-1. Future Med Chem 2022; 14:385-388. [PMID: 34985304 PMCID: PMC8905551 DOI: 10.4155/fmc-2021-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
15
|
Engineering 'Enzymelink' for screening lead compounds to inhibit mPGES-1 while maintaining prostacyclin synthase activity. Future Med Chem 2021; 13:1091-1103. [PMID: 34080888 DOI: 10.4155/fmc-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: This study investigated our Enzymelinks, COX-2-10aa-mPGES-1 and COX-2-10aa-PGIS, as cellular cross-screening targets for quick identification of lead compounds to inhibit inflammatory PGE2 biosynthesis while maintaining prostacyclin synthesis. Methods: We integrated virtual and wet cross-screening using Enzymelinks to rapidly identify lead compounds from a large compound library. Results: From 380,000 compounds virtually cross-screened with the Enzymelinks, 1576 compounds were identified and used for wet cross-screening using HEK293 cells that overexpressed individual Enzymelinks as targets. The top 15 lead compounds that inhibited mPGES-1 activity were identified. The top compound that specifically inhibited inflammatory PGE2 biosynthesis alone without affecting COX-2 coupled to PGI2 synthase (PGIS) for PGI2 biosynthesis was obtained. Conclusion: Enzymelink technology could advance cyclooxygenase pathway-targeted drug discovery to a significant degree.
Collapse
|
16
|
Di Micco S, Terracciano S, Ruggiero D, Potenza M, Vaccaro MC, Fischer K, Werz O, Bruno I, Bifulco G. Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Front Chem 2021; 9:676631. [PMID: 34046398 PMCID: PMC8144515 DOI: 10.3389/fchem.2021.676631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Dafne Ruggiero
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Marianna Potenza
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Maria C Vaccaro
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Katrin Fischer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ines Bruno
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
17
|
Orally Administered NSAIDs-General Characteristics and Usage in the Treatment of Temporomandibular Joint Osteoarthritis-A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14030219. [PMID: 33807930 PMCID: PMC7998670 DOI: 10.3390/ph14030219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative joint disease. The aim of this review was to present the general characteristics of orally administered nonsteroidal anti-inflammatory drugs (NSAIDs) and to present the efficacy of NSAIDs in the treatment of TMJ OA. Methods: PubMed database was analyzed with the keywords: "(temporomandibular joint) AND ((disorders) OR (osteoarthritis) AND (treatment)) AND (nonsteroidal anti-inflammatory drug)". After screening of 180 results, 6 studies have been included in this narrative review. Results and Conclusions: Nonsteroidal anti-inflammatory drugs are one of the most commonly used drugs for alleviation of pain localized in the orofacial area. The majority of articles predominantly examined and described diclofenac sodium in the treatment of pain in the course of TMJ OA. Because of the limited number of randomized studies evaluating the efficacy of NSAIDs in the treatment of TMJ OA, as well as high heterogeneity of published researches, it seems impossible to draw up unequivocal recommendations for the usage of NSAIDs in the treatment of TMJ OA. However, it is highly recommended to use the lowest effective dose of NSAIDs for the shortest possible time. Moreover, in patients with increased risk of gastrointestinal complications, supplementary gastroprotective agents should be prescribed.
Collapse
|
18
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
19
|
Wang Q, Li Y, Wu M, Huang S, Zhang A, Zhang Y, Jia Z. Targeting microsomal prostaglandin E synthase 1 to develop drugs treating the inflammatory diseases. Am J Transl Res 2021; 13:391-419. [PMID: 33527033 PMCID: PMC7847505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Microsomal prostaglandin E synthase 1 (mPGES-1) is the terminal synthase of prostaglandin E2 (PGE2) which plays a crucial role in inflammatory diseases. Thus, mPGES-1 inhibitors are promising agents for their better specificity in blocking the production of PGE2, a potent inflammatory mediator, compared with non-steroidal anti-inflammatory drugs (NSAIDs). Currently, two mPGES-1 inhibitors are undergoing clinical trials and more novel inhibitors are being developed. In this review, we focus on the advances in the development of mPGES-1 inhibitors and the potential of these inhibitors to treat different inflammatory diseases, and discuss the existing challenges. The insights from this review will increase the understanding on the current status of mPGES-1-targeted anti-inflammatory drug development and the potential of these drugs in treating inflammation in diseases.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityGuangzhou Road #72, Nanjing 210008, China
| |
Collapse
|
20
|
Yarla NS, Pathuri G, Gali H, Terzyan S, Panneerselvam J, Chandrakesan P, Scotti MT, Houchen C, Madka V, Rao CV. Discovery and Development of a Novel mPGES-1/5-LOX Dual Inhibitor LFA-9 for Prevention and Treatment of Chronic Inflammatory Diseases. J Inflamm Res 2021; 13:1261-1278. [PMID: 33408499 PMCID: PMC7781011 DOI: 10.2147/jir.s286110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Background Non-steroidal anti-inflammatory drugs, cyclooxygenase (COX)-2 selective inhibitors, have been explored for prevention and treatment of several inflammatory chronic conditions including arthritis, and cancer. However, the long-term use of these drugs is associated with gastrointestinal, renal, and cardiovascular side effects. Later, COX/5-lipoxygenase (5-LOX) dual inhibitors (eg, licofelone) have been developed but did not enter into the market from the clinical trails due to COX-1/2 inhibition-associated side effects. Hence, targeting microsomal prostaglandin E synthase-1 (mPGES-1) and 5-LOX can be an ideal approach while sparing COX-1/2 activities for development of the next generation of anti-inflammatory drugs with better efficacy and safety. Materials and Methods In silico (molecular modelling) studies were used to design a mPGES-1/5-LOX dual inhibitory and COX-1/2 sparing lead molecule licofelone analogue-9 (LFA-9) by modifying the pharmacophore of licofelone. In vitro cell-free enzymatic (mPGES-1, 5-LOX, COX-1/2) assays using fluorometric/colorimetric methods and cell-based assays (LPS-induced PGE2, LTB4, and PGI2 productions from macrophages) using ELISA technique, isothermal calorimetry, and circular dichroism techniques were performed to determine the mPGES-1/5-LOX inhibitory efficacy and selectivity. Anti-inflammatory efficacy of LFA-9 was evaluated using a carrageenan (inflammogen)-induced rat paw edema model. Infiltration/expression of CD68 immune cells and TNF-α in paw tissues were evaluated using confocal microscope and immunoblot analysis. Anti-cancer effect of LFA-9 was evaluated using colon spheroids in vitro. Results LFA-9 inhibited mPGES-1/5-LOX and their products PGE2 and LTB4, spared COX-1/2 and its product PGI2. LFA-9 bound strongly with human mPGES-1/5-LOX enzymes and induced changes in their secondary structure, thereby inhibited their enzymatic activities. LFA-9 inhibited carrageenan-induced inflammation (70.4%) in rats and suppressed CD68 immune cell infiltration (P ≤ 0.0001) and TNF-α expression. LFA-9 suppressed colon tumor stemness (60.2%) in vitro through inhibition of PGE2 (82%) levels. Conclusion Overall study results suggest that LFA-9 is a mPGES-1/5-LOX dual inhibitor and showed anti-inflammatory and colorectal cancer preventive activities, and warranted detailed studies.
Collapse
Affiliation(s)
- Nagendra Sastri Yarla
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hariprasad Gali
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Simon Terzyan
- Laboratory of Biomolecular Structure and Function; Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Courtney Houchen
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
21
|
Robertson-Plouch C, Stille JR, Liu P, Smith C, Brown D, Warner M, Hu L, Fisher MJ. A randomized clinical efficacy study targeting mPGES1 or EP4 in dogs with spontaneous osteoarthritis. Sci Transl Med 2020; 11:11/516/eaaw9993. [PMID: 31666405 DOI: 10.1126/scitranslmed.aaw9993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Canine studies of spontaneous osteoarthritis (OA) pain add valuable data supporting drug treatment mechanisms that may translate to humans. A multicenter, randomized, double-blind, placebo- and active-controlled study was conducted in client-owned dogs with moderate OA pain to evaluate efficacy of LYA, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES1), an EP4 antagonist (LYB), and carprofen, versus placebo. Of 255 dogs screened, 163 were randomized (placebo/LYA/LYB/carprofen: n = 43/39/42/39) and 158 completed treatment. Efficacy versus placebo was assessed using Bayesian mixed-effect model for repeated measure analyses of the Canine Brief Pain Inventory (CBPI) pain interference score (PIS; primary endpoint), pain severity score, and overall impression, as well as the Liverpool Osteoarthritis in Dogs (LOAD) mobility score. The posterior probability that the difference to placebo was <0 at week 2 was 80% for LYA and 54% for LYB for CBPI PIS (both <95% predefined threshold). For secondary endpoints, the posterior probability that the difference to placebo was <0 at week 2 ranged from 89 to 96% for LYA and from 56 to 89% for LYB. The posterior probabilities comparing carprofen to placebo groups were ≥90% for all efficacy endpoints. The proportion of dogs with one or more adverse event was not significantly different from placebo (32.6%) for LYA (35.9%) or carprofen (25.6%), but the rate for LYB (59.5%) was higher versus placebo (P = 0.017). LYA treatment demonstrated consistent improvement in all efficacy measures, suggesting that inhibition of mPGES1 may be an effective treatment for chronic pain associated with OA.
Collapse
Affiliation(s)
| | - John R Stille
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Peng Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Claire Smith
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Dorothy Brown
- Elanco, Eli Lilly and Company, Indianapolis, IN 46140, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret Warner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Leijun Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Matthew J Fisher
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
22
|
DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1. Sci Rep 2020; 10:10187. [PMID: 32576928 PMCID: PMC7311425 DOI: 10.1038/s41598-020-67283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs. However, there has been no clinically promising mPGES-1 inhibitor identified through traditional drug discovery and development route. Here we report a new approach, called DREAM-in-CDM (Drug Repurposing Effort Applying Integrated Modeling-in vitro/vivo-Clinical Data Mining), to identify an FDA-approved drug suitable for use as an effective analgesic targeting mPGES-1. The DREAM-in-CDM approach consists of three steps: computational screening of FDA-approved drugs; in vitro and/or in vivo assays; and clinical data mining. By using the DREAM-in-CDM approach, lapatinib has been identified as a promising mPGES-1 inhibitor which may have significant anti-inflammatory effects to relieve various forms of pain and possibly treat various inflammation conditions involved in other inflammation-related diseases such as the lung inflammation caused by the newly identified COVID-19. We anticipate that the DREAM-in-CDM approach will be used to repurpose FDA-approved drugs for various new therapeutic indications associated with new targets.
Collapse
|
23
|
Kalčic F, Kolman V, Ajani H, Zídek Z, Janeba Z. Polysubstituted Pyrimidines as mPGES‐1 Inhibitors: Discovery of Potent Inhibitors of PGE
2
Production with Strong Anti‐inflammatory Effects in Carrageenan‐Induced Rat Paw Edema. ChemMedChem 2020; 15:1398-1407. [DOI: 10.1002/cmdc.202000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 128 43 Prague 2 Czech Republic
| | - Viktor Kolman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Zdeněk Zídek
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
24
|
Woolbright BL, Pilbeam CC, Taylor JA. Prostaglandin E2 as a therapeutic target in bladder cancer: From basic science to clinical trials. Prostaglandins Other Lipid Mediat 2020; 148:106409. [PMID: 31931078 DOI: 10.1016/j.prostaglandins.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is a common solid tumor marked by high rates of recurrence, especially in non-muscle invasive disease. Prostaglandin E2 (PGE2) is a ubiquitously present lipid mediator responsible for numerous physiological actions. Inhibition of cyclooxygenase (COX) enzymes by the non-steroidal anti-inflammatory (NSAID) class of drugs results in reduced PGE2 levels. NSAID usage has been associated with reductions in cancers such as BCa. Clinical trials using NSAIDs to prevent recurrence have had mixed results, but largely converge on issues with cardiotoxicity. The purpose of this review is to understand the basic science behind how and why inhibitors of PGE2 may be effective against BCa, and to explore alternate therapeutic modalities for addressing the role of PGE2 without the associated cardiotoxicity. We will address the role of PGE2 in a diverse array of cancer-related functions including stemness, immunosuppression, proliferation, cellular signaling and more.
Collapse
Affiliation(s)
| | - Carol C Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Larsson K, Steinmetz J, Bergqvist F, Arefin S, Spahiu L, Wannberg J, Pawelzik SC, Morgenstern R, Stenberg P, Kublickiene K, Korotkova M, Jakobsson PJ. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol 2019; 176:4625-4638. [PMID: 31404942 DOI: 10.1111/bph.14827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microsomal PGE synthase-1 (mPGES-1), the inducible synthase that catalyses the terminal step in PGE2 biosynthesis, is of high interest as therapeutic target to treat inflammation. Inhibition of mPGES-1 is suggested to be safer than traditional NSAIDs, and recent data demonstrate anti-constrictive effects on vascular tone, indicating new therapeutic opportunities. However, there is a lack of potent mPGES-1 inhibitors lacking interspecies differences for conducting in vivo studies in relevant preclinical disease models. EXPERIMENTAL APPROACH Potency was determined based on the reduction of PGE2 formation in recombinant enzyme assays, cellular assay, human whole blood assay, and air pouch mouse model. Anti-inflammatory properties were assessed by acute paw swelling in a paw oedema rat model. Effect on vascular tone was determined with human ex vivo wire myography. KEY RESULTS We report five new mPGES-1 inhibitors (named 934, 117, 118, 322, and 323) that selectively inhibit recombinant human and rat mPGES-1 with IC50 values of 10-29 and 67-250 nM respectively. The compounds inhibited PGE2 production in a cellular assay (IC50 values 0.15-0.82 μM) and in a human whole blood assay (IC50 values 3.3-8.7 μM). Moreover, the compounds blocked PGE2 formation in an air pouch mouse model and reduced acute paw swelling in a paw oedema rat model. Human ex vivo wire myography analysis showed reduced adrenergic vasoconstriction after incubation with the compounds. CONCLUSION AND IMPLICATIONS These mPGES-1 inhibitors can be used as refined tools in further investigations of the role of mPGES-1 in inflammation and microvascular disease.
Collapse
Affiliation(s)
- Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Spahiu
- Biochemical Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Wannberg
- SciLifeLab Drug Discovery and Development Platform, Medicinal Chemistry-Lead Identification, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sven-Christian Pawelzik
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ralf Morgenstern
- Biochemical Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
27
|
Lee HH, Moon Y, Shin JS, Lee JH, Kim TW, Jang C, Park C, Lee J, Kim Y, Kim Y, Werz O, Park BY, Lee JY, Lee KT. A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins Other Lipid Mediat 2019; 144:106347. [DOI: 10.1016/j.prostaglandins.2019.106347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
28
|
Zhou S, Zhou Z, Ding K, Yuan Y, Zheng F, Zhan CG. In Silico Observation of the Conformational Opening of the Glutathione-Binding Site of Microsomal Prostaglandin E2 Synthase-1. J Chem Inf Model 2019; 59:3839-3845. [DOI: 10.1021/acs.jcim.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Maione F, Minosi P, Di Giannuario A, Raucci F, Chini MG, De Vita S, Bifulco G, Mascolo N, Pieretti S. Long-Lasting Anti-Inflammatory and Antinociceptive Effects of Acute Ammonium Glycyrrhizinate Administration: Pharmacological, Biochemical, and Docking Studies. Molecules 2019; 24:E2453. [PMID: 31277398 PMCID: PMC6651237 DOI: 10.3390/molecules24132453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
The object of the study was to estimate the long-lasting effects induced by ammonium glycyrrhizinate (AG) after a single administration in mice using animal models of pain and inflammation together with biochemical and docking studies. A single intraperitoneal injection of AG was able to produce anti-inflammatory effects in zymosan-induced paw edema and peritonitis. Moreover, in several animal models of pain, such as the writhing test, the formalin test, and hyperalgesia induced by zymosan, AG administered 24 h before the tests was able to induce a strong antinociceptive effect. Molecular docking studies revealed that AG possesses higher affinity for microsomal prostaglandin E synthase type-2 compared to type-1, whereas it seems to locate better in the binding pocket of cyclooxygenase (COX)-2 compared to COX-1. These results demonstrated that AG induced anti-inflammatory and antinociceptive effects until 24-48 h after a single administration thanks to its ability to bind the COX/mPGEs pathway. Taken together, all these findings highlight the potential use of AG for clinical treatment of pain and/or inflammatory-related diseases.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Amalia Di Giannuario
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Giovanna Chini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
30
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
31
|
Kim SH, Roszik J, Cho SN, Ogata D, Milton DR, Peng W, Menter DG, Ekmekcioglu S, Grimm EA. The COX2 Effector Microsomal PGE2 Synthase 1 is a Regulator of Immunosuppression in Cutaneous Melanoma. Clin Cancer Res 2019; 25:1650-1663. [PMID: 30538110 PMCID: PMC6397703 DOI: 10.1158/1078-0432.ccr-18-1163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/16/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Microsomal prostaglandin E2 synthase 1 (mPGES1) was evaluated as an important downstream effector of the COX2 pathway responsible for tumor-mediated immunosuppression in melanoma. EXPERIMENTAL DESIGN The analysis of a stage III melanoma tissue microarray (n = 91) was performed to assess the association between mPGES1, COX2, CD8, and patient survival. Pharmacologic inhibitors and syngeneic mouse models using PTGES-knockout (KO) mouse melanoma cell lines were used to evaluate the mPGES1-mediated immunosuppressive function. RESULTS We observed correlations in expression and colocalization of COX2 and mPGES1, which are associated with increased expression of immunosuppressive markers in human melanoma. In a syngeneic melanoma mouse model, PTGES KO increased melanoma expression of PD-L1, increased infiltration of CD8a+ T cells, and CD8a+ dendritic cells into tumors and suppressed tumor growth. Durable tumor regression was observed in mice bearing PTGES KO tumors that were given anti-PD-1 therapy. Analysis of a stage III melanoma tissue microarray revealed significant associations between high mPGES1 expression and low CD8+ infiltration, which correlated with a shorter patient survival. CONCLUSIONS Our results are the first to illustrate a potential role for mPGES1 inhibition in melanoma immune evasion and selective targeting in supporting the durability of response to PD-1 checkpoint immunotherapy. More research effort in this drug development space is needed to validate the use of mPGES1 inhibitors as safe treatment options.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dai Ogata
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|