1
|
Bragato C, Persico A, Ferreres G, Tzanov T, Mantecca P. Exploring the Effects of Lignin Nanoparticles in Different Zebrafish Inflammatory Models. Int J Nanomedicine 2024; 19:7731-7750. [PMID: 39099787 PMCID: PMC11297570 DOI: 10.2147/ijn.s469813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1β, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/β-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Andrea Persico
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Guillem Ferreres
- Group of Molecular and Industrial Biotechnology, Universitat Politècnica de Catalunya, Terrassa, 08222, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Universitat Politècnica de Catalunya, Terrassa, 08222, Spain
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, 20126, Italy
| |
Collapse
|
2
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
3
|
Liu Y, Karlsson S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024; 38:1-9. [PMID: 37973818 PMCID: PMC10776401 DOI: 10.1038/s41375-023-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
ABSTACT Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Jung M. Inflammation fuels bone marrow exhaustion caused by Samd9l mutation. J Clin Invest 2022; 132:164136. [PMID: 36317635 PMCID: PMC9621124 DOI: 10.1172/jci164136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sterile α motif domain-containing 9 (SAMD9) and SAMD9-like (SAMD9L) syndromes are inherited bone marrow failure syndromes known for their frequent development of myelodysplastic syndrome with monosomy 7. In this issue of the JCI, Abdelhamed, Thomas, et al. report a mouse model with a hematopoietic cell-specific heterozygous Samd9l mutation knockin. This mouse model resembles human disease in many ways, including bone marrow failure and the nonrandom loss of the mutant allele. Samd9l-mutant hematopoietic stem progenitor cells showed reduced fitness at baseline, which was further exacerbated by inflammation. TGF-β hyperactivation was found to underlie reduced fitness, which was partially rescued by a TGF-β inhibitor. These findings illustrate the potential role of TGF-β inhibitors in the treatment of SAMD9/SAMD9L syndromes.
Collapse
|
5
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
6
|
Ketharnathan S, Rajan V, Prykhozhij SV, Berman JN. Zebrafish models of inflammation in hematopoietic development and disease. Front Cell Dev Biol 2022; 10:955658. [PMID: 35923854 PMCID: PMC9340492 DOI: 10.3389/fcell.2022.955658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish offer an excellent tool for studying the vertebrate hematopoietic system thanks to a highly conserved and rapidly developing hematopoietic program, genetic amenability, optical transparency, and experimental accessibility. Zebrafish studies have contributed to our understanding of hematopoiesis, a complex process regulated by signaling cues, inflammation being crucial among them. Hematopoietic stem cells (HSCs) are multipotent cells producing all the functional blood cells, including immune cells. HSCs respond to inflammation during infection and malignancy by proliferating and producing the blood cells in demand for a specific scenario. We first focus on how inflammation plays a crucial part in steady-state HSC development and describe the critical role of the inflammasome complex in regulating HSC expansion and balanced lineage production. Next, we review zebrafish studies of inflammatory innate immune mechanisms focusing on interferon signaling and the downstream JAK-STAT pathway. We also highlight insights gained from zebrafish models harbouring genetic perturbations in the role of inflammation in hematopoietic disorders such as bone marrow failure, myelodysplastic syndrome, and myeloid leukemia. Indeed, inflammation has been recently identified as a potential driver of clonal hematopoiesis and leukemogenesis, where cells acquire somatic mutations that provide a proliferative advantage in the presence of inflammation. Important insights in this area come from mutant zebrafish studies showing that hematopoietic differentiation can be compromised by epigenetic dysregulation and the aberrant induction of signaling pathways.
Collapse
Affiliation(s)
- Sarada Ketharnathan
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Vinothkumar Rajan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Departments of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Jason N. Berman,
| |
Collapse
|
7
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, Xu C, Shen B, Chen Y, Jiang E, Kurita R, Nakamura Y, Lim KC, Engel JD, Zhou J, Cheng T, Zhu X, Zhu P, Shi L. Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov 2022; 8:41. [PMID: 35534476 PMCID: PMC9085895 DOI: 10.1038/s41421-022-00389-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.
Collapse
Affiliation(s)
- Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
8
|
Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11:cells11091422. [PMID: 35563729 PMCID: PMC9103147 DOI: 10.3390/cells11091422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or degradation. Over the last two decades, an increasing number of disorders caused by proteostasis perturbations have been identified. Depending on their molecular etiology, such diseases may be classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-effect relationship between proteostasis disruption and the initiation of innate immune responses. In this review, we provide a comprehensive overview of the molecular pathogenesis of these disorders and summarize current knowledge of the various mechanisms by which impaired proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how cells sense and integrate proteostasis perturbations as danger signals in the context of autoinflammatory diseases to provide insights into the complex and multiple facets of sterile inflammation.
Collapse
|
9
|
Evaluation of the effects of Loxosceles intermedia’s venom in zebrafish. Toxicol Rep 2022; 9:1410-1418. [DOI: 10.1016/j.toxrep.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
|
10
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
11
|
Yu L, Lemay P, Ludlow A, Guyot MC, Jones M, Mohamed FF, Saroya GA, Panaretos C, Schneider E, Wang Y, Myers G, Khoriaty R, Li Q, Franceschi R, Engel JD, Kaartinen V, Rothstein TL, Justice MJ, Kibar Z, Singh SA. A new murine Rpl5 (uL18) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia. Blood Adv 2021; 5:4167-4178. [PMID: 34464976 PMCID: PMC8945612 DOI: 10.1182/bloodadvances.2021004658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023] Open
Abstract
Ribosome dysfunction is implicated in multiple abnormal developmental and disease states in humans. Heterozygous germline mutations in genes encoding ribosomal proteins are found in most individuals with Diamond-Blackfan anemia (DBA), whereas somatic mutations have been implicated in a variety of cancers and other disorders. Ribosomal protein-deficient animal models show variable phenotypes and penetrance, similar to human patients with DBA. In this study, we characterized a novel ENU mouse mutant (Skax23m1Jus) with growth and skeletal defects, cardiac malformations, and increased mortality. After genetic mapping and whole-exome sequencing, we identified an intronic Rpl5 mutation, which segregated with all affected mice. This mutation was associated with decreased ribosome generation, consistent with Rpl5 haploinsufficiency. Rpl5Skax23-Jus/+ animals had a profound delay in erythroid maturation and increased mortality at embryonic day (E) 12.5, which improved by E14.5. Surviving mutant animals had macrocytic anemia at birth, as well as evidence of ventricular septal defect (VSD). Surviving adult and aged mice exhibited no hematopoietic defect or VSD. We propose that this novel Rpl5Skax23-Jus/+ mutant mouse will be useful in studying the factors influencing the variable penetrance that is observed in DBA.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Philippe Lemay
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Alexander Ludlow
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Marie-Claude Guyot
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Morgan Jones
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Fatma F. Mohamed
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Ghazi-Abdullah Saroya
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Emily Schneider
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Qing Li
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Renny Franceschi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; and
| | - Zoha Kibar
- Department of Neurosciences, CHU Sainte Justine Research Center, University of Montréal, Montreal, QC, Canada
| | - Sharon A. Singh
- Center for Immunobiology and Department of Investigative Medicine,Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
12
|
Iskander D, Wang G, Heuston EF, Christodoulidou C, Psaila B, Ponnusamy K, Ren H, Mokhtari Z, Robinson M, Chaidos A, Trivedi P, Trasanidis N, Katsarou A, Szydlo R, Palii CG, Zaidi MH, Al-Oqaily Q, Caputo VS, Roy A, Harrington Y, Karnik L, Naresh K, Mead AJ, Thongjuea S, Brand M, de la Fuente J, Bodine DM, Roberts I, Karadimitris A. Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med 2021; 13:eabf0113. [PMID: 34516827 DOI: 10.1126/scitranslmed.abf0113] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosome dysfunction underlies the pathogenesis of many cancers and heritable ribosomopathies. Here, we investigate how mutations in either ribosomal protein large (RPL) or ribosomal protein small (RPS) subunit genes selectively affect erythroid progenitor development and clinical phenotypes in Diamond-Blackfan anemia (DBA), a rare ribosomopathy with limited therapeutic options. Using single-cell assays of patient-derived bone marrow, we delineated two distinct cellular trajectories segregating with ribosomal protein genotypes. Almost complete loss of erythroid specification was observed in RPS-DBA. In contrast, we observed relative preservation of qualitatively abnormal erythroid progenitors and precursors in RPL-DBA. Although both DBA genotypes exhibited a proinflammatory bone marrow milieu, RPS-DBA was characterized by erythroid differentiation arrest, whereas RPL-DBA was characterized by preserved GATA1 expression and activity. Compensatory stress erythropoiesis in RPL-DBA exhibited disordered differentiation underpinned by an altered glucocorticoid molecular signature, including reduced ZFP36L2 expression, leading to milder anemia and improved corticosteroid response. This integrative analysis approach identified distinct pathways of erythroid failure and defined genotype-phenotype correlations in DBA. These findings may help facilitate therapeutic target discovery.
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guanlin Wang
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) Centre for Computational Biology, University of Oxford, Oxford OX3 9DS, UK
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DS, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-442, USA
| | - Chrysi Christodoulidou
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Bethan Psaila
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DS, UK
| | - Kanagaraju Ponnusamy
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Hongwei Ren
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Zeinab Mokhtari
- Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada
- Department of Medicine II, Würzburg University Hospital, Interdisciplinary Center for Clinical Research (IZKF), Laboratory for Experimental Stem Cell Transplantation, Würzburg, Germany
| | - Mark Robinson
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Pritesh Trivedi
- Department of Histopathology, Imperial College Healthcare Trust, Du Cane Road, London W12 0HS, UK
| | - Nikolaos Trasanidis
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Alexia Katsarou
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Richard Szydlo
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Carmen G Palii
- Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada
| | - Mehmood H Zaidi
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Qais Al-Oqaily
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Valentina S Caputo
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | - Anindita Roy
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DS, UK
- Department of Paediatrics, Children's Hospital, John Radcliffe, University of Oxford, Oxford OX3 9DU, UK
| | - Yvonne Harrington
- Department of Paediatrics, Imperial College Healthcare Trust, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Leena Karnik
- Department of Paediatrics, Imperial College Healthcare Trust, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kikkeri Naresh
- Department of Histopathology, Imperial College Healthcare Trust, Du Cane Road, London W12 0HS, UK
| | - Adam J Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DS, UK
| | - Supat Thongjuea
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) Centre for Computational Biology, University of Oxford, Oxford OX3 9DS, UK
| | - Marjorie Brand
- Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Josu de la Fuente
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
- Department of Paediatrics, Imperial College Healthcare Trust, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-442, USA
| | - Irene Roberts
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DS, UK
- Department of Paediatrics, Children's Hospital, John Radcliffe, University of Oxford, Oxford OX3 9DU, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
13
|
Karaosmanoglu B, Kursunel MA, Uckan Cetinkaya D, Gumruk F, Esendagli G, Unal S, Taskiran EZ. Proerythroblast Cells of Diamond-Blackfan Anemia Patients With RPS19 and CECR1 Mutations Have Similar Transcriptomic Signature. Front Physiol 2021; 12:679919. [PMID: 34177624 PMCID: PMC8226250 DOI: 10.3389/fphys.2021.679919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is an inherited bone marrow (BM) failure syndrome, characterized by a paucity of erythroid differentiation. DBA is mainly caused by the mutations in ribosomal protein genes, hence classified as ribosomopathy. However, in approximately 30% of patients, the molecular etiology cannot be discovered. RPS19 germline mutations caused 25% of the cases. On the other hand, CECR1 mutations also cause phenotypes similar to DBA but not being a ribosomopathy. Due to the blockade of erythropoiesis in the BM, we investigated the transcriptomic profile of three different cell types of BM resident cells of DBA patients and compared them with healthy donors. From BM aspirates BM mononuclear cells (MNCs) were isolated and hematopoietic stem cells (HSC) [CD71–CD34+ CD38mo/lo], megakaryocyte–erythroid progenitor cells (MEP) [CD71–CD34+ CD38hi] and Proerythroblasts [CD71+ CD117+ CD38+] were sorted and analyzed with a transcriptomic approach. Among all these cells, proerythroblasts had the most different transcriptomic profile. The genes associated with cellular stress/immune responses were increased and some of the transcription factors that play a role in erythroid differentiation had altered expression in DBA proerythroblasts. We also showed that gene expression levels of ribosomal proteins were decreased in DBA proerythroblasts. In addition to these, colony formation assay (CFU-E) provided functional evidence of the failure of erythroid differentiation in DBA patients. According to our findings that all patients resembling both RPS19 and CECR1 mutations have common transcriptomic signatures, it may be possible that inflammatory BM niche may have a role in DBA pathogenesis.
Collapse
Affiliation(s)
- Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - M Alper Kursunel
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Fatma Gumruk
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Research Center for Fanconi Anemia and Other IBMFS, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Research Center for Fanconi Anemia and Other IBMFS, Hacettepe University, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Solorzano S, Kim J, Chen J, Feng X, Young NS. Minimal role of interleukin 6 and toll-like receptor 2 and 4 in murine models of immune-mediated bone marrow failure. PLoS One 2021; 16:e0248343. [PMID: 33711076 PMCID: PMC7954294 DOI: 10.1371/journal.pone.0248343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Immune aplastic anemia (AA) results from T cell attack on hematopoietic cells, resulting in bone marrow hypocellularity and pancytopenia. Animal models have been successfully developed to study pathophysiological mechanisms in AA. While we have systemically defined the critical components of the adaptive immune response in the pathogenesis of immune marrow failure using this model, the role of innate immunity has not been fully investigated. Here, we demonstrate that lymph node (LN) cells from B6-based donor mice carrying IL-6, TLR2, or TLR4 gene deletions were fully functional in inducing severe pancytopenia and bone marrow failure (BMF) when infused into MHC-mismatched CByB6F1 recipients. Conversely, B6-based recipient mice with IL-6, TLR2, and TLR4 deletion backgrounds were all susceptible to immune-mediated BMF relative to wild-type B6 recipients following infusion of MHC-mismatched LN cells from FVB donors, but the disease appeared more severe in IL-6 deficient mice. We conclude that IL-6, TLR2, and TLR4, molecular elements important in maintenance of normal innate immunity, have limited roles in a murine model of immune-mediated BMF. Rather, adaptive immunity appears to be the major contributor to the animal disease.
Collapse
Affiliation(s)
- Sabrina Solorzano
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington DC, United States of America
| | - Jisoo Kim
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
16
|
Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia. Int J Mol Sci 2020; 21:ijms21249652. [PMID: 33348919 PMCID: PMC7768356 DOI: 10.3390/ijms21249652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.
Collapse
|
17
|
Wilkes MC, Siva K, Chen J, Varetti G, Youn MY, Chae H, Ek F, Olsson R, Lundbäck T, Dever DP, Nishimura T, Narla A, Glader B, Nakauchi H, Porteus MH, Repellin CE, Gazda HT, Lin S, Serrano M, Flygare J, Sakamoto KM. Diamond Blackfan anemia is mediated by hyperactive Nemo-like kinase. Nat Commun 2020; 11:3344. [PMID: 32620751 PMCID: PMC7334220 DOI: 10.1038/s41467-020-17100-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/26/2020] [Indexed: 01/30/2023] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy. Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome that is associated with anemia. Here, the authors examine the role of Nemo-like kinase (NLK) in erythroid cells in the pathogenesis of DBA and as a potential target for therapy.
Collapse
Affiliation(s)
- M C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - K Siva
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - J Chen
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - G Varetti
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - M Y Youn
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - F Ek
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - R Olsson
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - T Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - D P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - T Nishimura
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - B Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Nakauchi
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - M H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - C E Repellin
- Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - H T Gazda
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - S Lin
- Department of Molecular, Cell and Development Biology, University of California, Los Angeles, CA, 90095, USA
| | - M Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - J Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - K M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Chen C, Lu M, Lin S, Qin W. The nuclear gene rpl18 regulates erythroid maturation via JAK2-STAT3 signaling in zebrafish model of Diamond-Blackfan anemia. Cell Death Dis 2020; 11:135. [PMID: 32075953 PMCID: PMC7031319 DOI: 10.1038/s41419-020-2331-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome, characterized by red blood cell aplasia, developmental abnormalities, and enhanced risk of malignancy. However, the underlying pathogenesis of DBA is yet to be understood. Recently, mutations in the gene encoding ribosomal protein (RP) L18 were identified in DBA patients. RPL18 is a crucial component of the ribosomal large subunit but its role in hematopoiesis remains unknown. To genetically model the ribosomal defect identified in DBA, we generated a rpl18 mutant line in zebrafish, using CRISPR/Cas9 system. Molecular characterization of this mutant line demonstrated that Rpl18 deficiency mirrored the erythroid defects of DBA, namely a lack of mature red blood cells. Rpl18 deficiency caused an increase in p53 activation and JAK2-STAT3 activity. Furthermore, we found inhibitors of JAK2 or STAT3 phosphorylation could rescue anemia in rpl18 mutants. Our research provides a new in vivo model of Rpl18 deficiency and suggests involvement of signal pathway of JAK2-STAT3 in the DBA pathogenesis.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Wei Qin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Bianco C, Mohr I. Ribosome biogenesis restricts innate immune responses to virus infection and DNA. eLife 2019; 8:49551. [PMID: 31841110 PMCID: PMC6934380 DOI: 10.7554/elife.49551] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023] Open
Abstract
Ribosomes are universally important in biology and their production is dysregulated by developmental disorders, cancer, and virus infection. Although presumed required for protein synthesis, how ribosome biogenesis impacts virus reproduction and cell-intrinsic immune responses remains untested. Surprisingly, we find that restricting ribosome biogenesis stimulated human cytomegalovirus (HCMV) replication without suppressing translation. Interfering with ribosomal RNA (rRNA) accumulation triggered nucleolar stress and repressed expression of 1392 genes, including High Mobility Group Box 2 (HMGB2), a chromatin-associated protein that facilitates cytoplasmic double-stranded (ds) DNA-sensing by cGAS. Furthermore, it reduced cytoplasmic HMGB2 abundance and impaired induction of interferon beta (IFNB1) mRNA, which encodes a critical anti-proliferative, proinflammatory cytokine, in response to HCMV or dsDNA in uninfected cells. This establishes that rRNA accumulation regulates innate immune responses to dsDNA by controlling HMGB2 abundance. Moreover, it reveals that rRNA accumulation and/or nucleolar activity unexpectedly regulate dsDNA-sensing to restrict virus reproduction and regulate inflammation. (145 words)
Collapse
Affiliation(s)
- Christopher Bianco
- Department of Microbiology, NYU School of Medicine, New York, United States
| | - Ian Mohr
- Department of Microbiology, NYU School of Medicine, New York, United States.,Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, United States
| |
Collapse
|
20
|
Konantz M, Schürch C, Hanns P, Müller JS, Sauteur L, Lengerke C. Modeling hematopoietic disorders in zebrafish. Dis Model Mech 2019; 12:12/9/dmm040360. [PMID: 31519693 PMCID: PMC6765189 DOI: 10.1242/dmm.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish offer a powerful vertebrate model for studies of development and disease. The major advantages of this model include the possibilities of conducting reverse and forward genetic screens and of observing cellular processes by in vivo imaging of single cells. Moreover, pathways regulating blood development are highly conserved between zebrafish and mammals, and several discoveries made in fish were later translated to murine and human models. This review and accompanying poster provide an overview of zebrafish hematopoiesis and discuss the existing zebrafish models of blood disorders, such as myeloid and lymphoid malignancies, bone marrow failure syndromes and immunodeficiencies, with a focus on how these models were generated and how they can be applied for translational research. Summary: This At A Glance article and poster summarize the last 20 years of research in zebrafish models for hematopoietic disorders, highlighting how these models were created and are being applied for translational research.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland.,Division of Hematology, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
21
|
Banerjee R, Roy S, Samanta M, Das S. Molecular cloning, characterization and expression analysis of MHCI and chemokines CXCR3 and CXCR4 gene from freshwater carp, Catla catla. Microbiol Immunol 2019; 63:379-391. [PMID: 31310013 DOI: 10.1111/1348-0421.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/01/2022]
Abstract
The immune system with large number of molecules protects the host against a plethora of continuously evolving microbes. Major histocompatibility complex (MHC) molecules serve as cardinal elements of the adaptive immune system responsible for the activation of the adaptive immunity in the host. The present study reports MHCI molecule in freshwater carp, Catla catla, and its differential expression in immunologically relevant tissues post-infection with Gram-negative and Gram-positive bacteria. The MHCI sequence of C. catla had 502 bp nucleotides encoding putative 146 amino acids. The phylogenetic analysis exhibited its evolutionary conservation within the Cyprinidae family and formed a different clade with the higher vertebrates. Simultaneously, CXCR3 and CXCR4 chemokines were cloned and characterized for their expression in infected tissues. Analysis of immunologically relevant tissues of the infected fish exhibited an increase of MHCI gene expression and the down-regulation of CXCR3 and CXCR4 chemokines, indicating a tricky interaction between the innate and adaptive immune system. It was found that intestine, skin and spleen played a crucial role in the contribution of the defense activity which instigated the self-immunity. These immune activities can provide useful information to understand the interaction of self and non-self- immune system in freshwater fish, Catla catla.
Collapse
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudeshna Roy
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
22
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
23
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|