1
|
Li S, Wang S, Ji H, Tian N, Xu L, Chen W, Ding X. The dual nature of working memory deficits: methamphetamine abusers have more impaired social working memory capacity than canonical working memory capacity. PSYCHOLOGICAL RESEARCH 2024; 88:1969-1980. [PMID: 38951234 DOI: 10.1007/s00426-024-01996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Social working memory (WM) temporarily retains and manipulates various aspects of social information. Extensive research has highlighted impaired social cognitive functions in individuals with substance addiction. However, the specific deficit in social WM within this population remains notably understudied. Bridging this gap, we investigated social WM capacity using biological motion (BM) stimuli in methamphetamine (MA) abusers compared to an inmate control group, alongside contrasting these findings with their canonical WM deficits. Across two studies, we recruited female MA abusers (N = 80) undergoing post-isolation rehabilitation within a mandatory confinement circumstance. To ensure a pertinent comparison, we recruited female inmates (N = 80) subjected to comparable confinement. Results show substantial BM WM impairment in MA abusers, yet non-BM WM remains mostly intact. These findings highlight a pronounced social WM deficit in MA abusers, surpassing their canonical WM deficit relative to inmate controls. This suggests a distinct dissociation between social and canonical WM processing.
Collapse
Affiliation(s)
- Shouxin Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Shengyuan Wang
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China
| | - Huichao Ji
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Na Tian
- School of Psychology, Shandong Normal University, Jinan, China
| | - Luzi Xu
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China
- Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Wei Chen
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Ding
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Tetrahydropalmatine Regulates BDNF through TrkB/CAM Interaction to Alleviate the Neurotoxicity Induced by Methamphetamine. ACS Chem Neurosci 2021; 12:3373-3386. [PMID: 34448569 DOI: 10.1021/acschemneuro.1c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tetrahydropalmatine (THP) has analgesic, hypnotic, sedative, and other pharmacological effects. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, growth, and development. However, their mechanism of action in methamphetamine (MA)-induced neurotoxicity remains unclear. This study aims to explore the important role of BDNF in MA neurotoxicity and whether THP can regulate BDNF through the interaction between tyrosine kinase receptor B (TrkB)/calmodulin (CAM) to alleviate the neurotoxicity induced by MA. SD rats were randomly divided into control, MA, and MA + THP groups. Stereotyped behavior test, captive rejection test, open field test (OFT), and Morris water maze (MWM) were used to evaluate the anxiety, aggression, cognition, learning, and memory. Extracted hippocampus and mesencephalon tissue were detected by Western blot, HE staining, and immunohistochemistry. TUNEL staining was used to detect apoptosis. MOE was used for bioinformatics prediction, and coimmunoprecipitation was used to confirm protein interactions. Long-term abuse of MA resulted in lower weight gain ratio and nerve cell damage and caused various neurotoxicity-related behavioral abnormalities: anxiety, aggression, cognitive motor disorders, and learning and memory disorders. MA-induced neurotoxicity is related to the down-regulation of BDNF and apoptosis. THP attenuated the MA-induced neurotoxicity by decreasing CAM, increasing TrkB, phosphorylating Akt, up-regulating NF-κB and BDNF, and inhibiting cell apoptosis. MA can induce neurotoxicity in rats. BDNF may play a vital role in MA-induced neurotoxicity. THP regulates BDNF through TrkB/CAM interaction to alleviate the neurotoxicity induced by MA. THP may be a potential therapeutic drug for the neurotoxic and neurodegenerative diseases related to MA.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
3
|
Golsorkhdan SA, Boroujeni ME, Aliaghaei A, Abdollahifar MA, Ramezanpour A, Nejatbakhsh R, Anarkooli IJ, Barfi E, Fridoni MJ. Methamphetamine administration impairs behavior, memory and underlying signaling pathways in the hippocampus. Behav Brain Res 2020; 379:112300. [DOI: 10.1016/j.bbr.2019.112300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
|
4
|
An evaluation of the cut-off value of methamphetamine in hair samples via HPLC-MS/MS. Forensic Sci Int 2020; 306:110094. [DOI: 10.1016/j.forsciint.2019.110094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
|
5
|
Sharma C, Oh YJ, Park B, Lee S, Jeong CH, Lee S, Seo JH, Seo YH. Development of Thiazolidinedione-Based HDAC6 Inhibitors to Overcome Methamphetamine Addiction. Int J Mol Sci 2019; 20:ijms20246213. [PMID: 31835389 PMCID: PMC6940941 DOI: 10.3390/ijms20246213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Thiazolidinedione is a five-membered heterocycle that is widely used in drug discovery endeavors. In this study, we report the design, synthesis, and biological evaluation of a series of thiazolidinedione-based HDAC6 inhibitors. In particular, compound 6b exerts an excellent inhibitory activity against HDAC6 with an IC50 value of 21 nM, displaying a good HDAC6 selectivity over HDAC1. Compound 6b dose-dependently induces the acetylation level of α-tubulin via inhibition of HDAC6 in human neuroblastoma SH-SY5Y cell line. Moreover, compound 6b efficiently reverses methamphetamine-induced morphology changes of SH-SY5Y cells via regulating acetylation landscape of α-tubulin. Collectively, compound 6b represents a novel HDAC6-isoform selective inhibitor and demonstrates promising therapeutic potential for the treatment of methamphetamine addiction.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Yong Jin Oh
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
- Correspondence: ; Tel.: +82-053-580-6639
| |
Collapse
|
6
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
7
|
Deldar Z, Ekhtiari H, Pouretemad HR, Khatibi A. Bias Toward Drug-Related Stimuli Is Affected by Loading Working Memory in Abstinent Ex-Methamphetamine Users. Front Psychiatry 2019; 10:776. [PMID: 31695630 PMCID: PMC6817911 DOI: 10.3389/fpsyt.2019.00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023] Open
Abstract
Background: There is a trade-off between drug-related impulsive process and cognitive reflective process among ex-drug abusers. The present study aimed to investigate the impulsive effects of methamphetamine-related stimuli on working memory (WM) performance by manipulating WM load in abstinent ex-methamphetamine users. Methods: Thirty abstinent ex-methamphetamine users and 30 nonaddict matched control participants were recruited in this study. We used a modified Sternberg task in which participants were instructed to memorize three different sets of methamphetamine-related and non-drug-related words (three, five, or seven words) while performing a secondary attention-demanding task as an interference. Results: Repeated-measures ANOVA revealed that reaction times of abstinent ex-methamphetamine users increased during low WM load (three words) compared to the control group (p = 0.01). No significant differences were observed during high WM loads (five or seven words) (both p's > 0.1). Besides, reaction times of the experimental group during trials with high interference (three, five, or seven words) were not significantly different compared to the control group (p > 0.2). Conclusion: These findings imply that increasing WM load may provide an efficient buffer against attentional capture by salient stimuli (i.e., methamphetamine-related words). This buffer might modify the effect of interference bias. Besides, presenting methamphetamine-related stimuli might facilitate the encoding phase due to bias toward task-relevant stimuli. This finding has an important implication, suggesting that performing concurrent demanding tasks may reduce the power of salient stimuli and thus improve the efficiency of emotional regulation strategies.
Collapse
Affiliation(s)
- Zoha Deldar
- Institute for Cognitive Science Studies, Tehran, Iran
| | - Hamed Ekhtiari
- Institute for Cognitive Science Studies, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Pouretemad
- Institute for Cognitive and Brain Sciences (ICBS), Shahid Beheshti University, Tehran, Iran
| | - Ali Khatibi
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, AL, United States
| |
Collapse
|