1
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Moazzen S, Janke J, Slooter AJC, Winterer G, Spies C, Pischon T, Feinkohl I. The association of pre-operative biomarkers of endothelial dysfunction with the risk of post-operative neurocognitive disorders: results from the BioCog study. BMC Anesthesiol 2024; 24:358. [PMID: 39379830 PMCID: PMC11459984 DOI: 10.1186/s12871-024-02722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Endothelial dysfunction (ED) promotes the development of atherosclerosis, and studies suggest an association with age-related neurocognitive disorders. It is currently unclear whether ED is also associated with the risk of perioperative neurocognitive disorders. METHOD We included 788 participants aged ≥ 65 years of the BioCog study. Patients were scheduled to undergo elective surgery with expected duration > 60 min. Blood was collected before surgery for measurement of 5 biomarkers of ED: asymmetric and symmetric dimethylarginine (ADMA; SDMA), intercellular and vascular adhesion molecule (ICAM-1, VCAM-1), and von Willebrand factor (vWF). Patients were monitored for the occurrence of postoperative delirium (POD) daily until the 7th postoperative day. 537 (68.1%) patients returned for a 3-month follow-up. Post-operative cognitive dysfunction (POCD) was defined from the change in results on a battery of 6 neuropsychological tests between baseline and 3 months, compared to the change in results of a control group during the 3-month interval. The associations of each of the 5 ED biomarkers with POD and POCD respectively were determined using multiple logistic regression analyses with adjustment for age, sex, surgery type, pre-morbid IQ, body mass index, hypertension, diabetes, HbA1C, triglyceride, total and HDL cholesterol. RESULTS 19.8% of 788 patients developed POD; 10.1% of 537 patients had POCD at 3 months. Concentrations of ED biomarkers were not significantly associated with a POD. A higher VCAM-1 concentration was associated with a reduced POCD risk (adjusted odds ratio 0.55; 95% CI: 0.35-0.86). No further statistically significant results were found. CONCLUSION Pre-operative concentrations of ED biomarkers were not associated with POD risk. We unexpectedly found higher VCAM-1 to be associated with a reduced POCD risk. Further studies are needed to evaluate these findings.
Collapse
Affiliation(s)
- Sara Moazzen
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Jürgen Janke
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Arjen J C Slooter
- Departments of Psychiatry and Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Georg Winterer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Claudia Spies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Insa Feinkohl
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.
- Medical Biometry and Epidemiology Research Group, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
3
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Lake J, Warly Solsberg C, Kim JJ, Acosta-Uribe J, Makarious MB, Li Z, Levine K, Heutink P, Alvarado CX, Vitale D, Kang S, Gim J, Lee KH, Pina-Escudero SD, Ferrucci L, Singleton AB, Blauwendraat C, Nalls MA, Yokoyama JS, Leonard HL. Multi-ancestry meta-analysis and fine-mapping in Alzheimer's disease. Mol Psychiatry 2023; 28:3121-3132. [PMID: 37198259 PMCID: PMC10615750 DOI: 10.1038/s41380-023-02089-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and the department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Zizheng Li
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin Levine
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- Alector, Inc. 131 Oyster Point Blvd, Suite 600, South San Francisco, CA, 94080, USA
| | - Chelsea X Alvarado
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sarang Kang
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
- Korea Brain Research Institute, Daegu, 41062, Korea
| | - Stefanie D Pina-Escudero
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
7
|
Joseph A, Joly BS, Picod A, Veyradier A, Coppo P. The Specificities of Thrombotic Thrombocytopenic Purpura at Extreme Ages: A Narrative Review. J Clin Med 2023; 12:jcm12093068. [PMID: 37176509 PMCID: PMC10179719 DOI: 10.3390/jcm12093068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening thrombotic microangiopathy (TMA) related to a severe ADAMTS13 deficiency, the specific von Willebrand factor (VWF)-cleaving protease. This deficiency is often immune-mediated (iTTP) and related to the presence of anti-ADAMTS13 autoantibodies that enhance its clearance or inhibit its VWF processing activity. iTTP management may be challenging at extreme ages of life. International cohorts of people with TTP report delayed diagnoses and misdiagnoses in children and elderly people. Child-onset iTTP shares many features with adult-onset iTTP: a female predominance, an idiopathic presentation, and the presence of neurological disorders and therapeutic strategies. Long-term follow-ups and a transition from childhood to adulthood are crucial to preventing iTTP relapses, in order to identify the occurrence of other autoimmune disorders and psychosocial sequelae. In contrast, older iTTP patients have an atypical clinical presentation, with delirium, an atypical neurological presentation, and severe renal and cardiac damages. They also have a poorer response to treatment and prognosis. Long-term sequelae are highly prevalent in older patients. Prediction scores for iTTP diagnoses are not used for children and have a lower sensitivity and specificity in patients over 60 years old. ADAMTS13 remains the unique biological marker that is able to definitely confirm or rule out the diagnosis of iTTP and predict relapses during follow-ups.
Collapse
Affiliation(s)
- Adrien Joseph
- Medical Intensive Care Unit, Saint-Louis Hospital, Public Assistance Hospitals of Paris, 75010 Paris, France
- French Reference Center for Thrombotic Microangiopathies, 75012 Paris, France
| | - Bérangère S Joly
- French Reference Center for Thrombotic Microangiopathies, 75012 Paris, France
- Hematology Biology Department, Lariboisière Hospital, Public Assistance Hospitals of Paris, 75006 Paris, France
- EA-3518, Clinical Research in Hematology, Immunology and Transplantation, Institut de Recherche Saint-Louis, Université de Paris, 75571 Paris, France
| | - Adrien Picod
- Medical Intensive Care Unit, Saint-Louis Hospital, Public Assistance Hospitals of Paris, 75010 Paris, France
- French Reference Center for Thrombotic Microangiopathies, 75012 Paris, France
| | - Agnès Veyradier
- French Reference Center for Thrombotic Microangiopathies, 75012 Paris, France
- Hematology Biology Department, Lariboisière Hospital, Public Assistance Hospitals of Paris, 75006 Paris, France
- EA-3518, Clinical Research in Hematology, Immunology and Transplantation, Institut de Recherche Saint-Louis, Université de Paris, 75571 Paris, France
| | - Paul Coppo
- French Reference Center for Thrombotic Microangiopathies, 75012 Paris, France
- Hematology Department, Saint-Antoine hospital, Public Assistance Hospitals of Paris, 75571 Paris, France
| |
Collapse
|
8
|
Sun W, Luo Y, Zhang S, Lu W, Liu L, Yang X, Wu D. The Relationship Between ADAMTS13 Activity and Overall Cerebral Small Vessel Disease Burden: A Cross-Sectional Study Based on CSVD. Front Aging Neurosci 2021; 13:738359. [PMID: 34690744 PMCID: PMC8531192 DOI: 10.3389/fnagi.2021.738359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives: This study aimed to investigate the association between plasma von Willebrand factor (VWF) level, ADAMTS13 activity, and neuroimaging features of cerebral small vessel disease (CSVD), including the CSVD neuroimaging markers and the overall CSVD burden. Methods: CSVD patients admitted to our hospital from 2016 to 2020 were recruited. Plasma VWF level and ADAMTS13 activity were measured. The overall effect of CSVD on the brain was described as a validated CSVD score. We evaluated the association between VWF levels, ADAMTS13 activity, and the increasing severity of CSVD score by the logistic regression model. Results: We enrolled 296 patients into this study. The mean age of the sample was 69.0 years (SD 7.0). The mean VWF level was 1.31 IU/mL, and the ADAMTS13 activity was 88.01 (SD 10.57). In multivariate regression analysis, lower ADAMTS13 activity and higher VWF level was related to white matter hyperintensity (WMH) [β = −7.31; 95% confidence interval (CI) (−9.40, −4.93); p<0.01; β = 0.17; 95% confidence interval (0.11, 0.23); p<0.01], subcortical infarction (SI) [(β = −9.22; 95% CI (−11.37, −7.06); p<0.01); β = 0.21; 95% confidence interval (0.15, 0.27); p<0.01] independently, but not cerebral microbleed (CMB) [(β = −2.3; 95% CI (−4.95, 0.05); p = 0.22); β = 0.02; 95% confidence interval (−0.05, 0.08); p = 0.63]. Furthermore, ADAMTS13 activity was independently negatively correlated with the overall CSVD burden (odd ratio = 21.33; 95% CI (17.46, 54.60); p < 0.01) after adjustment for age, history of hypertension, and current smoking. Conclusions: Reducing ADAMTS13 activity change is related to white matter hyperintensity, subcortical infarction, but not with cerebral microhemorrhage. In addition, ADAMTS13 may have played an essential role in the progression of CSVD.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yufan Luo
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenmei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Luqiong Liu
- Department of General Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiaoli Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ziliotto N, Bernardi F, Piazza F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer's disease. Neurol Sci 2021; 42:3177-3188. [PMID: 34041636 DOI: 10.1007/s10072-021-05327-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023]
Abstract
Increased cerebrovascular amyloid-β (Aβ) deposition represents the main pathogenic mechanisms characterizing Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Whereas an increasing number of studies define the contribution of fibrin(ogen) to neurodegeneration, how other hemostasis factors might be pleiotropically involved in the AD and CAA remains overlooked. Although traditionally regarded as pertaining to hemostasis, these proteins are also modulators of inflammation and angiogenesis, and exert cytoprotective functions. This review discusses the contribution of hemostasis components to Aβ cerebrovascular deposition, which settle the way to endothelial and blood-brain barrier dysfunction, vessel fragility, cerebral bleeding, and the associated cognitive changes. From the primary hemostasis, the process that refers to platelet aggregation, we discuss evidence regarding the von Willebrand factor (vWF) and its regulator ADAMTS13. Then, from the secondary hemostasis, we focus on tissue factor, which triggers the extrinsic coagulation cascade, and on the main inhibitors of coagulation, i.e., tissue factor pathway inhibitor (TFPI), and the components of protein C pathway. Last, from the tertiary hemostasis, we discuss evidence on FXIII, involved in fibrin cross-linking, and on components of fibrinolysis, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor uPA(R), and plasminogen activator inhibitor-1 (PAI-1). Increased knowledge on contributors of Aβ-related disease progression may favor new therapeutic approaches for early modifiable risk factors.
Collapse
Affiliation(s)
- Nicole Ziliotto
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
10
|
Hanas JS, Hocker JRS, Vannarath CA, Lerner MR, Blair SG, Lightfoot SA, Hanas RJ, Couch JR, Hershey LA. Distinguishing Alzheimer's Disease Patients and Biochemical Phenotype Analysis Using a Novel Serum Profiling Platform: Potential Involvement of the VWF/ADAMTS13 Axis. Brain Sci 2021; 11:brainsci11050583. [PMID: 33946285 PMCID: PMC8145311 DOI: 10.3390/brainsci11050583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.
Collapse
Affiliation(s)
- Jay S. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
- Veterans Administration Hospital, Oklahoma City, OK 73104, USA;
- Correspondence:
| | - James R. S. Hocker
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Christian A. Vannarath
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Megan R. Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | - Scott G. Blair
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | | | - Rushie J. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - James R. Couch
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| | - Linda A. Hershey
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| |
Collapse
|
11
|
Malan L, Hamer M, von Känel R, van Wyk RD, Sumner AE, Nilsson PM, Lambert GW, Steyn HS, Badenhorst CJ, Malan NT. A Stress Syndrome Prototype Reflects Type 3 Diabetes and Ischemic Stroke Risk: The SABPA Study. BIOLOGY 2021; 10:162. [PMID: 33670473 PMCID: PMC7922484 DOI: 10.3390/biology10020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Type 3 diabetes (T3D) accurately reflects that dementia, e.g., Alzheimer's disease, represents insulin resistance and neurodegeneration in the brain. Similar retinal microvascular changes were observed in Alzheimer's and chronic stressed individuals. Hence, we aimed to show that chronic stress relates to T3D dementia signs and retinopathy, ultimately comprising a Stress syndrome prototype reflecting risk for T3D and stroke. A chronic stress and stroke risk phenotype (Stressed) score, independent of age, race or gender, was applied to stratify participants (N = 264; aged 44 ± 9 years) into high stress risk (Stressed, N = 159) and low stress risk (non-Stressed, N = 105) groups. We determined insulin resistance using the homeostatic model assessment (HOMA-IR), which is interchangeable with T3D, and dementia risk markers (cognitive executive functioning (cognitiveexe-func); telomere length; waist circumference (WC), neuronal glia injury; neuron-specific enolase/NSE, S100B). Retinopathy was determined in the mydriatic eye. The Stressed group had greater incidence of HOMA-IR in the upper quartile (≥5), larger WC, poorer cognitiveexe-func control, shorter telomeres, consistently raised neuronal glia injury, fewer retinal arteries, narrower arteries, wider veins and a larger optic cup/disc ratio (C/D) compared to the non-Stressed group. Furthermore, of the stroke risk markers, arterial narrowing was related to glaucoma risk with a greater C/D, whilst retinal vein widening was related to HOMA-IR, poor cognitiveexe-func control and neuronal glia injury (Adjusted R2 0.30; p ≤ 0.05). These associations were not evident in the non-Stressed group. Logistic regression associations between the Stressed phenotype and four dementia risk markers (cognitiveexe-func, telomere length, NSE and WC) comprised a Stress syndrome prototype (area under the curve 0.80; sensitivity/specificity 85%/58%; p ≤ 0.001). The Stress syndrome prototype reflected risk for HOMA-IR (odds ratio (OR) 7.72) and retinal glia ischemia (OR 1.27) and vein widening (OR 1.03). The Stressed phenotype was associated with neuronal glia injury and retinal ischemia, potentiating glaucoma risk. The detrimental effect of chronic stress exemplified a Stress syndrome prototype reflecting risk for type 3 diabetes, neurodegeneration and ischemic stroke.
Collapse
Affiliation(s)
- Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
| | - Mark Hamer
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK;
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roelof D. van Wyk
- Surgical Ophthalmologist, 85 Peter Mokaba Street, Potchefstroom 2531, South Africa;
| | - Anne E. Sumner
- Section on Ethnicity and Health, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
- National Institute of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, SE-205 02 Malmö, Sweden;
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Hendrik S. Steyn
- Statistical Consultation Services, North-West University, Potchefstroom 2520, South Africa;
| | - Casper J. Badenhorst
- Anglo American Corporate Services, Sustainable Development Department, Johannesburg 2017, South Africa;
| | - Nico T. Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
| |
Collapse
|
12
|
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer's disease. Mech Ageing Dev 2021; 195:111444. [PMID: 33539904 DOI: 10.1016/j.mad.2021.111444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Aging plays an important role in the etiology of the most common age-related diseases (ARDs), including Alzheimer's disease (AD). The increasing number of AD patients and the lack of disease-modifying drugs warranted intensive research to tackle the pathophysiological mechanisms underpinning AD development. Vascular aging/dysfunction is a common feature of almost all ARDs, including cardiovascular (CV) diseases, diabetes and AD. To this regard, interventions aimed at modifying CV outcomes are under extensive investigation for their pleiotropic role in ameliorating and slowing down cognitive impairment in middle-life and elderly individuals. Evidence from observational and clinical studies confirm the notion that the earlier the interventions are conducted, the most favorable are the effects on cognitive function. Therefore, epidemiological research should focus on the early detection of deviations from a healthy cognitive aging trajectory, through the stratification of adult individuals according to the rate of aging. Here, we review the interplay between vascular and cognitive dysfunctions associated with aging, to disentangle the complex mechanisms underpinning the development and progression of neurodegenerative disorders, with a specific focus on AD.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Liana Spazzafumo
- Epidemiologic Observatory, Regional Health Agency, Regione Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
13
|
Ziliotto N, Zivadinov R, Jakimovski D, Baroni M, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Ramanathan M, Marchetti G, Bernardi F. Relationships Among Circulating Levels of Hemostasis Inhibitors, Chemokines, Adhesion Molecules, and MRI Characteristics in Multiple Sclerosis. Front Neurol 2020; 11:553616. [PMID: 33178104 PMCID: PMC7593335 DOI: 10.3389/fneur.2020.553616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested cross talk among components of hemostasis, inflammation, and immunity pathways in the pathogenesis, neurodegeneration, and occurrence of cerebral microbleeds (CMBs) in multiple sclerosis (MS). Objectives: This study aimed to evaluate the combined contribution of the hemostasis inhibitor protein C (PC) and chemokine C-C motif ligand 18 (CCL18) levels to brain atrophy in MS and to identify disease-relevant correlations among circulating levels of hemostasis inhibitors, chemokines, and adhesion molecules, particularly in CMB occurrence in MS. Methods: Plasma levels of hemostasis inhibitors (ADAMTS13, PC, and PAI1), CCL18, and soluble adhesion molecules (sNCAM, sICAM1, sVCAM1, and sVAP1) were evaluated by multiplex in 138 MS patients [85 relapsing-remitting (RR-MS) and 53 progressive (P-MS)] and 42 healthy individuals (HI) who underwent 3-T MRI exams. Association of protein levels with MRI outcomes was performed by regression analysis. Correlations among protein levels were assessed by partial correlation and Pearson's correlation. Results: In all patients, regression analysis showed that higher PC levels were associated with lower brain volumes, including the brain parenchyma (p = 0.002), gray matter (p < 0.001), cortex (p = 0.001), deep gray matter (p = 0.001), and thalamus (p = 0.001). These associations were detectable in RR-MS but not in P-MS patients. Higher CCL18 levels were associated with higher T2-lesion volumes in all MS patients (p = 0.03) and in the P-MS (p = 0.003). In the P-MS, higher CCL18 levels were also associated with lower volumes of the gray matter (p = 0.024), cortex (p = 0.043), deep gray matter (p = 0.029), and thalamus (p = 0.022). PC-CCL18 and CCL18-PAI1 levels were positively correlated in both MS and HI, PC–sVAP1 and PAI1–sVCAM1 only in MS, and PC–sICAM1 and PC–sNCAM only in HI. In MS patients with CMBs (n = 12), CCL18–PAI1 and PAI1–sVCAM1 levels were better correlated than those in MS patients without CMBs, and a novel ADAMTS13–sVAP1 level correlation (r = 0.78, p = 0.003) was observed. Conclusions: Differences between clinical phenotype groups in association of PC and CCL18 circulating levels with MRI outcomes might be related to different aspects of neurodegeneration. Disease-related pathway dysregulation is supported by several protein level correlation differences between MS patients and HI. The integrated analysis of plasma proteins and MRI measures provide evidence for new relationships among hemostasis, inflammation, and immunity pathways, relevant for MS and for the occurrence of CMBs.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States.,Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Yada N, Yoshimoto K, Kawashima H, Yoneima R, Nishimura N, Tai Y, Tsushima E, Miyamoto M, Ono S, Matsumoto M, Fujimoto T, Nishio K. Plasma Level of von Willebrand Factor Propeptide at Diagnosis: A Marker of Subsequent Renal Dysfunction in Autoimmune Rheumatic Diseases. Clin Appl Thromb Hemost 2020; 26:1076029620938874. [PMID: 32705883 PMCID: PMC7383728 DOI: 10.1177/1076029620938874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Patients with systemic autoimmune rheumatic diseases (SARDs) such as rheumatoid arthritis, systemic lupus erythematosus (SLE), Sjögren syndrome, and systemic sclerosis, which are chronic inflammatory diseases, are prone to develop renal dysfunction, which is related to vascular endothelial cell damage. Material and Methods: We evaluated plasma levels of von Willebrand factor (VWF), VWF propeptide (VWF-pp), disintegrin-like and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), and VWF multimer pattern in patients with SARDs at diagnosis and investigated whether they may serve as markers to identify patients destined to develop renal dysfunction within 1 year. Renal dysfunction was defined as subsequent reduced estimated glomerular filtration rate (eGFR) by >25% or the new appearance of abnormal urine findings such as proteinuria (protein > 30 mg/dL) or hematuria (red blood cells >20/HPF in urine sediments). Overall, 63 patients with SARDs were studied. Results and Conclusions: We observed a significant increase of VWF-pp and a significant decrease of ADAMTS13 in patients with SARDs compared with normal healthy controls. The highest level of VWF-pp was observed in patients with SLE among the groups. The levels of VWF and multimer pattern of VWF were not different compared with normal healthy controls. Von Willebrand factor propeptide predicted a subsequent decrease in eGFR at a cutoff point of 210% (sensitivity, 78.6%; specificity, 73.5%) and new urinary abnormal findings at a cutoff point of 232% (sensitivity, 77.8%; specificity, 77.8%) Using these cutoff points, multivariable analysis revealed that VWF-pp was a significant risk factor for renal dysfunction at an odds ratio of 8.78 and 22.8, respectively, and may lead to a new therapeutic approach to prevent vasculitis and renal dysfunction.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyomi Yoshimoto
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hiromasa Kawashima
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Ryo Yoneima
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Nobushiro Nishimura
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshiaki Tai
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Emiko Tsushima
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Makiko Miyamoto
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shiro Ono
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Matsumoto
- Department of Transfusion Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Fujimoto
- Department of Rheumatology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenji Nishio
- Department of General Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
15
|
Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, Lehallier B, Quake SR, Wyss-Coray T. Brain Endothelial Cells Are Exquisite Sensors of Age-Related Circulatory Cues. Cell Rep 2020; 30:4418-4432.e4. [PMID: 32234477 PMCID: PMC7292569 DOI: 10.1016/j.celrep.2020.03.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Brain endothelial cells (BECs) are key constituents of the blood-brain barrier (BBB), protecting the brain from pathogens and restricting access of circulatory factors. Yet, because circulatory proteins have prominent age-related effects on adult neurogenesis, neuroinflammation, and cognitive function in mice, we wondered whether BECs receive and potentially relay signals between the blood and brain. Using single-cell RNA sequencing of hippocampal BECs, we discover that capillary BECs-compared with arterial and venous BECs-undergo the greatest transcriptional changes in normal aging, upregulating innate immunity and oxidative stress response pathways. Short-term infusions of aged plasma into young mice recapitulate key aspects of this aging transcriptome, and remarkably, infusions of young plasma into aged mice exert rejuvenation effects on the capillary transcriptome. Together, these findings suggest that the transcriptional age of BECs is exquisitely sensitive to age-related circulatory cues and pinpoint the BBB itself as a promising therapeutic target to treat brain disease.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Hanadie Yousef
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Davis Lee
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Winnie Chen
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA; Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Mbagwu SI, Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci 2020; 10:E31. [PMID: 31935960 PMCID: PMC7016814 DOI: 10.3390/brainsci10010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.
Collapse
Affiliation(s)
- Smart Ikechukwu Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, 435101 Nnewi Campus, Nigeria
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
17
|
Ikram MA. The disjunctive cause criterion by VanderWeele: An easy solution to a complex problem? Eur J Epidemiol 2019; 34:223-224. [PMID: 30835016 PMCID: PMC6447512 DOI: 10.1007/s10654-019-00501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|