1
|
Regmi R, Newman TE, Khentry Y, Kamphuis LG, Derbyshire MC. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets. BMC Genomics 2023; 24:582. [PMID: 37784009 PMCID: PMC10544508 DOI: 10.1186/s12864-023-09686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Several phytopathogens produce small non-coding RNAs of approximately 18-30 nucleotides (nt) which post-transcriptionally regulate gene expression. Commonly called small RNAs (sRNAs), these small molecules were also reported to be present in the necrotrophic pathogen Sclerotinia sclerotiorum. S. sclerotiorum causes diseases in more than 400 plant species, including the important oilseed crop Brassica napus. sRNAs can further be classified as microRNAs (miRNAs) and short interfering RNAs (siRNAs). Certain miRNAs can activate loci that produce further sRNAs; these secondary sRNA-producing loci are called 'phased siRNA' (PHAS) loci and have only been described in plants. To date, very few studies have characterized sRNAs and their endogenous targets in S. sclerotiorum. RESULTS We used Illumina sequencing to characterize sRNAs from fungal mycelial mats of S. sclerotiorum spread over B. napus leaves. In total, eight sRNA libraries were prepared from in vitro, 12 h post-inoculation (HPI), and 24 HPI mycelial mat samples. Cluster analysis identified 354 abundant sRNA clusters with reads of more than 100 Reads Per Million (RPM). Differential expression analysis revealed upregulation of 34 and 57 loci at 12 and 24 HPI, respectively, in comparison to in vitro samples. Among these, 25 loci were commonly upregulated. Altogether, 343 endogenous targets were identified from the major RNAs of 25 loci. Almost 88% of these targets were annotated as repeat element genes, while the remaining targets were non-repeat element genes. Fungal degradome reads confirmed cleavage of two transposable elements by one upregulated sRNA. Altogether, 24 milRNA loci were predicted with both mature and milRNA* (star) sequences; these are both criteria associated previously with experimentally verified miRNAs. Degradome sequencing data confirmed the cleavage of 14 targets. These targets were related to repeat element genes, phosphate acetyltransferases, RNA-binding factor, and exchange factor. A PHAS gene prediction tool identified 26 possible phased interfering loci with 147 phasiRNAs from the S. sclerotiorum genome, suggesting this pathogen might produce sRNAs that function similarly to miRNAs in higher eukaryotes. CONCLUSIONS Our results provide new insights into sRNA populations and add a new resource for the study of sRNAs in S. sclerotiorum.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
- Present address: Microbiome for One Systems Health, CSIRO, Urrbrae, South Australia, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
2
|
Feró O, Karányi Z, Nagy É, Mosolygó-L Á, Szaker HM, Csorba T, Székvölgyi L. Coding and noncoding transcriptomes of NODULIN HOMEOBOX (NDX)-deficient Arabidopsis inflorescence. Sci Data 2023; 10:364. [PMID: 37286661 DOI: 10.1038/s41597-023-02279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Arabidopsis NODULIN HOMEOBOX (NDX) is a plant-specific transcriptional regulator whose role in small RNA biogenesis and heterochromatin homeostasis has recently been described. Here we extend our previous transcriptomic analysis to the flowering stage of development. We performed mRNA-seq and small RNA-seq measurements on inflorescence samples of wild-type and ndx1-4 mutant (WiscDsLox344A04) Arabidopsis plants. We identified specific groups of differentially expressed genes and noncoding heterochromatic siRNA (hetsiRNA) loci/regions whose transcriptional activity was significantly changed in the absence of NDX. In addition, data obtained from inflorescence were compared with seedling transcriptomics data, which revealed development-specific changes in gene expression profiles. Overall, we provide a comprehensive data source on the coding and noncoding transcriptomes of NDX-deficient Arabidopsis flowers to serve as a basis for further research on NDX function.
Collapse
Affiliation(s)
- Orsolya Feró
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, University of Debrecen, Debrecen, H-4032, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Nagy
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, University of Debrecen, Debrecen, H-4032, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Ágnes Mosolygó-L
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, University of Debrecen, Debrecen, H-4032, Hungary
| | - Henrik Mihály Szaker
- MATE University, Genetics and Biotechnology Institute, Gödöllő Pest, H-2100, Hungary
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - Tibor Csorba
- MATE University, Genetics and Biotechnology Institute, Gödöllő Pest, H-2100, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, University of Debrecen, Debrecen, H-4032, Hungary.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
3
|
Li Y, Kim EJ, Voshall A, Moriyama EN, Cerutti H. Small RNAs >26 nt in length associate with AGO1 and are upregulated by nutrient deprivation in the alga Chlamydomonas. THE PLANT CELL 2023; 35:1868-1887. [PMID: 36945744 DOI: 10.1093/plcell/koad093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.
Collapse
Affiliation(s)
- Yingshan Li
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Adam Voshall
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Etsuko N Moriyama
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| |
Collapse
|
4
|
NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis. Nat Commun 2022; 13:5058. [PMID: 36030240 PMCID: PMC9420119 DOI: 10.1038/s41467-022-32709-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chromosome arms. Here we show that NDX is primarily a heterochromatin regulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericentromeric het-siRNA loci that mediate transposon silencing, and are antagonistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericentromeres where NDX is enriched in wild-type plants, and increased interchromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key regulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways. Arabidopsis NDX was previously reported as a regulator of euchromatic gene expression. Here the authors show that NDX functions at pericentromeric regions and regulates heterochromatin homeostasis by controlling siRNA production and non-CG methylation.
Collapse
|
5
|
Nunn A, Rodríguez‐Arévalo I, Tandukar Z, Frels K, Contreras‐Garrido A, Carbonell‐Bejerano P, Zhang P, Ramos Cruz D, Jandrasits K, Lanz C, Brusa A, Mirouze M, Dorn K, Galbraith DW, Jarvis BA, Sedbrook JC, Wyse DL, Otto C, Langenberger D, Stadler PF, Weigel D, Marks MD, Anderson JA, Becker C, Chopra R. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:944-963. [PMID: 34990041 PMCID: PMC9055812 DOI: 10.1111/pbi.13775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.
Collapse
Affiliation(s)
- Adam Nunn
- ecSeq Bioinformatics GmbHLeipzigGermany
- Department of Computer ScienceLeipzig UniversityLeipzigGermany
| | - Isaac Rodríguez‐Arévalo
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Zenith Tandukar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Katherine Frels
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | | | | | - Panpan Zhang
- Institut de Recherche pour le DéveloppementUMR232 DIADEMontpellierFrance
- Laboratory of Plant Genome and DevelopmentUniversity of PerpignanPerpignanFrance
| | - Daniela Ramos Cruz
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Jandrasits
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Christa Lanz
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Anthony Brusa
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Marie Mirouze
- Institut de Recherche pour le DéveloppementUMR232 DIADEMontpellierFrance
- Laboratory of Plant Genome and DevelopmentUniversity of PerpignanPerpignanFrance
| | - Kevin Dorn
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
- USDA‐ARSSoil Management and Sugarbeet ResearchFort CollinsCOUSA
| | - David W Galbraith
- BIO5 InstituteArizona Cancer CenterDepartment of Biomedical EngineeringUniversity of ArizonaSchool of Plant SciencesTucsonAZUSA
| | - Brice A. Jarvis
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | - John C. Sedbrook
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | - Donald L. Wyse
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | | | | | - Peter F. Stadler
- Department of Computer ScienceLeipzig UniversityLeipzigGermany
- Max Planck Institute for Mathematics in the SciencesLeipzigGermany
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - M. David Marks
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
| | - James A. Anderson
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Claude Becker
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Ratan Chopra
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
6
|
Reshetnyak G, Jacobs JM, Auguy F, Sciallano C, Claude L, Medina C, Perez-Quintero AL, Comte A, Thomas E, Bogdanove A, Koebnik R, Szurek B, Dievart A, Brugidou C, Lacombe S, Cunnac S. An atypical class of non-coding small RNAs is produced in rice leaves upon bacterial infection. Sci Rep 2021; 11:24141. [PMID: 34921170 PMCID: PMC8683429 DOI: 10.1038/s41598-021-03391-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
Non-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22 nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences, with about half of them encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and xisRNA loci predominantly coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.
Collapse
Affiliation(s)
- Ganna Reshetnyak
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jonathan M Jacobs
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43201, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43201, USA
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Coline Sciallano
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lisa Claude
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Clemence Medina
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alvaro L Perez-Quintero
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurore Comte
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Emilie Thomas
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Adam Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Ralf Koebnik
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Dievart
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
| | - Christophe Brugidou
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Severine Lacombe
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sebastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Müller SY, Matthews NE, Valli AA, Baulcombe DC. The small RNA locus map for Chlamydomonas reinhardtii. PLoS One 2020; 15:e0242516. [PMID: 33211749 PMCID: PMC7676726 DOI: 10.1371/journal.pone.0242516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.
Collapse
Affiliation(s)
- Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas E. Matthews
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrian A. Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Čermák V, Tyč D, Přibylová A, Fischer L. Unexpected variations in posttranscriptional gene silencing induced by differentially produced dsRNAs in tobacco cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194647. [PMID: 33127485 DOI: 10.1016/j.bbagrm.2020.194647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
In plants, posttranscriptional gene silencing (PTGS) is induced by small RNAs (sRNAs) generated from various dsRNA precursors. To assess the impact of dsRNA origin, we compared downregulation of GFP expression triggered by inverted repeat (IR), antisense (AS) and unterminated sense (UT) transcripts transiently expressed from the estradiol-inducible promoter. The use of homogeneously responding tobacco BY-2 cell lines allowed monitoring the onset of silencing and its reversibility. In this system, IR induced the strongest and fastest silencing accompanied by dense DNA methylation. At low induction, silencing in individual cells was binary (either strong or missing), suggesting that a certain threshold sRNA level had to be exceeded. The AS variant specifically showed a deviated sRNA-strand ratio shifted in favor of antisense orientation. In AS lines and weakly induced IR lines, only the silencer DNA was methylated, but the same target GFP sequence was not, showing that DNA methylation accompanying PTGS was influenced both by the level and origin of sRNAs, and possibly also by the epigenetic state of the locus. UT silencing appeared to be the least effective and resembled classical sense PTGS. The best responding UT lines behaved relatively heterogeneously possibly due to complexly arranged T-DNA insertions. Unlike IR and AS variants that fully restored GFP expression upon removal of the inducer, only partial reactivation was observed in some UT lines. Our results pointed out several not yet described phenomena and differences between the long-known silencer variants that may direct further research and affect selection of proper silencer variants for specific applications.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Dimitrij Tyč
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Adéla Přibylová
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Lukáš Fischer
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic.
| |
Collapse
|
9
|
Mimulus sRNAs Are Wound Responsive and Associated with Transgenerationally Plastic Genes but Rarely Both. Int J Mol Sci 2020; 21:ijms21207552. [PMID: 33066159 PMCID: PMC7589798 DOI: 10.3390/ijms21207552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Organisms alter development in response to environmental cues. Recent studies demonstrate that they can transmit this plasticity to progeny. While the phenotypic and transcriptomic evidence for this “transgenerational plasticity” has accumulated, genetic and developmental mechanisms remain unclear. Plant defenses, gene expression and DNA methylation are modified as an outcome of parental wounding in Mimulus guttatus. Here, we sequenced M. guttatus small RNAs (sRNA) to test their possible role in mediating transgenerational plasticity. We sequenced sRNA populations of leaf-wounded and control plants at 1 h and 72 h after damage and from progeny of wounded and control parents. This allowed us to test three components of an a priori model of sRNA mediated transgenerational plasticity—(1) A subset of sRNAs will be differentially expressed in response to wounding, (2) these will be associated with previously identified differentially expressed genes and differentially methylated regions and (3) changes in sRNA abundance in wounded plants will be predictive of sRNA abundance, DNA methylation, and/or gene expression shifts in the following generation. Supporting (1) and (2), we found significantly different sRNA abundances in wounded leaves; the majority were associated with tRNA fragments (tRFs) rather than small-interfering RNAs (siRNA). However, siRNAs responding to leaf wounding point to Jasmonic Acid mediated responses in this system. We found that different sRNA classes were associated with regions of the genome previously found to be differentially expressed or methylated in progeny of wounded plants. Evidence for (3) was mixed. We found that non-dicer sRNAs with increased abundance in response to wounding tended to be nearby genes with decreased expression in the next generation. Counter to expectations, we did not find that siRNA responses to wounding were associated with gene expression or methylation changes in the next generation and within plant and transgenerational sRNA plasticity were negatively correlated.
Collapse
|