1
|
Miroshnichenko DN, Pigolev AV, Pushin AS, Alekseeva VV, Degtyaryova VI, Degtyaryov EA, Pronina IV, Frolov A, Dolgov SV, Savchenko TV. Genetic Transformation of Triticum dicoccum and Triticum aestivum with Genes of Jasmonate Biosynthesis Pathway Affects Growth and Productivity Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2781. [PMID: 39409651 PMCID: PMC11478715 DOI: 10.3390/plants13192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The transformation protocol based on the dual selection approach (fluorescent protein and herbicide resistance) has been applied here to produce transgenic plants of two cereal species, emmer wheat and bread wheat, with the goal of activating the synthesis of the stress hormone jasmonates by overexpressing ALLENE OXIDE SYNTHASE from Arabidopsis thaliana (AtAOS) and bread wheat (TaAOS) and OXOPHYTODIENOATE REDUCTASE 3 from A. thaliana (AtOPR3) under the strong constitutive promoter (ZmUbi1), either individually or both genes simultaneously. The delivery of the expression cassette encoding AOS was found to affect morphogenesis in both wheat species negatively. The effect of transgene expression on the accumulation of individual jasmonates in hexaploid and tetraploid wheat was observed. Among the introduced genes, overexpression of TaAOS was the most successful in increasing stress-inducible phytohormone levels in transgenic plants, resulting in higher accumulations of JA and JA-Ile in emmer wheat and 12-OPDA in bread wheat. In general, overexpression of AOS, alone or together with AtOPR3, negatively affected leaf lamina length and grain numbers per spike in both wheat species. Double (AtAOS + AtOPR3) transgenic wheat plants were characterized by significantly reduced plant height and seed numbers, especially in emmer wheat, where several primary plants failed to produce seeds.
Collapse
Affiliation(s)
- Dmitry N. Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Alexey V. Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Alexander S. Pushin
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Valeria V. Alekseeva
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Vlada I. Degtyaryova
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Evgeny A. Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Irina V. Pronina
- Department of Physiology, Human Ecology and Medical and Biological Sciences, State University of Education, 141014 Mytishi, Russia;
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Sergey V. Dolgov
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Tatyana V. Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| |
Collapse
|
2
|
Roychowdhury R, Ghatak A, Kumar M, Samantara K, Weckwerth W, Chaturvedi P. Accelerating wheat improvement through trait characterization: advances and perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14544. [PMID: 39360330 DOI: 10.1111/ppl.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Wheat (Triticum spp.) is a primary dietary staple food for humanity. Many wheat genetic resources with variable genomes have a record of domestication history and are widespread throughout the world. To develop elite wheat varieties, agronomical and stress-responsive trait characterization is foremost for evaluating existing germplasm to promote breeding. However, genomic complexity is one of the primary impediments to trait mining and characterization. Multiple reference genomes and cutting-edge technologies like haplotype mapping, genomic selection, precise gene editing tools, high-throughput phenotyping platforms, high-efficiency genetic transformation systems, and speed-breeding facilities are transforming wheat functional genomics research to understand the genomic diversity of polyploidy. This review focuses on the research achievements in wheat genomics, the available omics approaches, and bioinformatic resources developed in the past decades. Advances in genomics and system biology approaches are highlighted to circumvent bottlenecks in genomic and phenotypic selection, as well as gene transfer. In addition, we propose conducting precise functional genomic studies and developing sustainable breeding strategies for wheat. These developments in understanding wheat traits have speed up the creation of high-yielding, stress-resistant, and nutritionally enhanced wheat varieties, which will help in addressing global food security and agricultural sustainability in the era of climate change.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Manoj Kumar
- Department of Ornamental Biotechnology, Institute of Plant Sciences, Agricultural Research, Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Szabała BM, Święcicka M, Łyżnik LA. Microinjection of the CRISPR/Cas9 editing system through the germ pore of a wheat microspore induces mutations in the target Ms2 gene. Mol Biol Rep 2024; 51:706. [PMID: 38824203 DOI: 10.1007/s11033-024-09644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland.
| | - Magdalena Święcicka
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| | - Leszek A Łyżnik
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| |
Collapse
|
4
|
Zhakypbek Y, Kossalbayev BD, Belkozhayev AM, Murat T, Tursbekov S, Abdalimov E, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1534. [PMID: 38891342 PMCID: PMC11174537 DOI: 10.3390/plants13111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species. This review discusses in detail the basic principles of phytoremediation and emphasizes its ecological advantages over other methods for cleaning contaminated areas and its technical viability. Much attention has been given to the selection of hyperaccumulator plants for phytoremediation that can grow on heavy metal-contaminated soils, and the biochemical mechanisms that allow these plants to isolate, detoxify, and accumulate heavy metals are discussed in detail. The novelty of our study lies in reviewing the mechanisms of plant-microorganism interactions that greatly enhance the efficiency of phytoremediation as well as in discussing genetic modifications that could revolutionize the cleanup of contaminated soils. Moreover, this manuscript discusses potential applications of phytoremediation beyond soil detoxification, including its role in bioenergy production and biodiversity restoration in degraded habitats. This review concludes by listing the serious problems that result from anthropogenic environmental pollution that future generations still need to overcome and suggests promising research directions in which the integration of nano- and biotechnology will play an important role in enhancing the effectiveness of phytoremediation. These contributions are critical for environmental scientists, policy makers, and practitioners seeking to utilize phytoremediation to maintain the ecological stability of the environment and its restoration.
Collapse
Affiliation(s)
- Yryszhan Zhakypbek
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Bekzhan D. Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Ayaz M. Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan;
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Toktar Murat
- Department of Agronomy and Forestry, Faculty of Agrotechnology, Kozybayev University, Petropavlovsk 150000, Kazakhstan;
- Department of Soil Ecology, Kazakh Research Institute of Soil Science and Agrochemistry named after U.U. Uspanov, Al-Farabi Ave. 75, Almaty 050060, Kazakhstan
| | - Serik Tursbekov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Elaman Abdalimov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| |
Collapse
|
5
|
Masani MYA, Norfaezah J, Bahariah B, Fizree MDPMAA, Sulaiman WNSW, Shaharuddin NA, Rasid OA, Parveez GKA. Towards DNA-free CRISPR/Cas9 genome editing for sustainable oil palm improvement. 3 Biotech 2024; 14:166. [PMID: 38817736 PMCID: PMC11133284 DOI: 10.1007/s13205-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.
Collapse
Affiliation(s)
- Mat Yunus Abdul Masani
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Jamaludin Norfaezah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Bohari Bahariah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
| | - Omar Abdul Rasid
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
6
|
Zhang L, Meng S, Liu Y, Han F, Xu T, Zhao Z, Li Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes (Basel) 2024; 15:668. [PMID: 38927604 PMCID: PMC11203320 DOI: 10.3390/genes15060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Sufang Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Tiemin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhiwei Zhao
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| |
Collapse
|
7
|
Li C, Iqbal MA. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1369416. [PMID: 38601306 PMCID: PMC11004347 DOI: 10.3389/fpls.2024.1369416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.
Collapse
Affiliation(s)
- Chunjia Li
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Muhammad Aamir Iqbal
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| |
Collapse
|
8
|
Broughton S, Castello M, Liu L, Killen J, McMullan C. Anther Culture Protocols for Barley and Wheat. Methods Mol Biol 2024; 2827:243-266. [PMID: 38985275 DOI: 10.1007/978-1-0716-3954-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.
Collapse
Affiliation(s)
- Sue Broughton
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Marieclaire Castello
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Li Liu
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Julie Killen
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Christopher McMullan
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
9
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
10
|
Subburaj S, Agapito-Tenfen SZ. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. FRONTIERS IN PLANT SCIENCE 2023; 14:1255819. [PMID: 37841627 PMCID: PMC10570537 DOI: 10.3389/fpls.2023.1255819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The soybean (Glycine max L.) is an important crop with high agronomic value. The improvement of agronomic traits through gene editing techniques has broad application prospects in soybean. The polyethylene glycol (PEG)-mediated cell transfection has been successfully used to deliver the CRISPR/Cas9-based ribonucleoprotein (RNP) into soybean protoplasts. However, several downstream analyses or further cell regeneration protocols might be hampered by PEG contamination within the samples. Here in this study, we attempted to transfect CRISPR/Cas9 RNPs into trifoliate leaf-derived soybean protoplasts using Neon electroporation to overcome the need for PEG transfection for the first time. We investigated different electroporation parameters including pulsing voltage (V), strength and duration of pulses regarding protoplast morphology, viability, and delivery of CRISPR/Cas9. Electroporation at various pulsing voltages with 3 pulses and 10 ms per pulse was found optimal for protoplast electro-transfection. Following electro-transfection at various pulsing voltages (500 V, 700 V, 1,000 V, and 1,300 V), intact protoplasts were observed at all treatments. However, the relative frequency of cell viability and initial cell divisions decreased with increasing voltages. Confocal laser scanning microscopy (CLSM) confirmed that the green fluorescent protein (GFP)-tagged Cas9 was successfully internalized into the protoplasts. Targeted deep sequencing results revealed that on-target insertion/deletion (InDel) frequencies were increased with increasing voltages in protoplasts electro-transfected with CRISPR/Cas9 RNPs targeting constitutive pathogen response 5 (CPR5). InDel patterns ranged from +1 bp to -6 bp at three different target sites in CPR5 locus with frequencies ranging from 3.8% to 8.1% following electro-transfection at 1,300 V and 2.1% to 3.8% for 700 V and 1,000 V, respectively. Taken together, our results demonstrate that the CRISPR/Cas9 RNP system can be delivered into soybean protoplasts by the Neon electroporation system for efficient and effective gene editing. The electro-transfection system developed in this study would also further facilitate and serve as an alternative delivery method for DNA-free genome editing of soybean and other related species for genetic screens and potential trait improvement.
Collapse
Affiliation(s)
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Climate & Environment Department, Siva Innovasjonssenter, Tromsø, Norway
| |
Collapse
|
11
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
12
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
13
|
Zhang L, Nie FJ, Gong L, Gan XY, Zhang GH, Liu X, Yang WJ, Shi L, Chen YC, Xie RX, Guo ZQ, Song Y. Regenerative plantlets with improved agronomic characteristics caused by anther culture of tetraploid potato ( Solanum tuberosum L.). PeerJ 2023; 11:e14984. [PMID: 37187528 PMCID: PMC10178354 DOI: 10.7717/peerj.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 05/17/2023] Open
Abstract
Objective As the primary means of plant-induced haploid, anther culture is of great significance in quickly obtaining pure lines and significantly shortening the potato breeding cycle. Nevertheless, the methods of anther culture of tetraploid potato were still not well established. Methods In this study, 16 potato cultivars (lines) were used for anther culture in vitro. The corresponding relation between the different development stages of microspores and the external morphology of buds was investigated. A highly-efficient anther culture system of tetraploid potatoes was established. Results It was shown in the results that the combined use of 0.5 mg/L 1-Naphthylacetic acid (NAA), 1.0 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), and 1.0 mg/L Kinetin (KT) was the ideal choice of hormone pairing for anther callus. Ten of the 16 potato cultivars examined could be induced callus with their respective anthers, and the induction rate ranged from 4.44% to 22.67% using this hormone combination. According to the outcome from the orthogonal design experiments of four kinds of appendages, we found that the medium with sucrose (40 g/L), AgNO3 (30 mg/L), activated carbon (3 g/L), potato extract (200 g/L) had a promotive induction effect on the anther callus. In contrast, adding 1 mg/L Zeatin (ZT) effectively facilitated callus differentiation. Conclusion Finally, 201 anther culture plantlets were differentiated from 10 potato cultivars. Among these, Qingshu 168 and Ningshu 15 had higher efficiency than anther culture. After identification by flow cytometry and fluorescence in situ hybridization, 10 haploid plantlets (5%), 177 tetraploids (88%), and 14 octoploids (7%) were obtained. Some premium anther-cultured plantlets were further selected by morphological and agronomic comparison. Our findings provide important guidance for potato ploidy breeding.
Collapse
Affiliation(s)
- Li Zhang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
- College of Agriculture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Feng-jie Nie
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Gong
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Xiao-yan Gan
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Guo-hui Zhang
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Xuan Liu
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Wen-jing Yang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Shi
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yu-chao Chen
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Rui-xia Xie
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Zhi-qian Guo
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Yuxia Song
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Szabała BM. A bifunctional selectable marker for wheat transformation contributes to the characterization of male-sterile phenotype induced by a synthetic Ms2 gene. PLANT CELL REPORTS 2023; 42:895-907. [PMID: 36867203 DOI: 10.1007/s00299-023-02998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE An engineered selectable marker combining herbicide resistance and yellow fluorescence contributes to the characterization of male-sterile phenotype in wheat, the severity of which correlates with expression levels of a synthetic Ms2 gene. Genetic transformation of wheat is conducted using selectable markers, such as herbicide and antibiotic resistance genes. Despite their proven effectiveness, they do not provide visual control of the transformation process and transgene status in progeny, which creates uncertainty and prolongs screening procedures. To overcome this limitation, this study developed a fusion protein by combining gene sequences encoding phosphinothricin acetyltransferase and mCitrine fluorescent protein. The fusion gene, introduced into wheat cells by particle bombardment, enabled herbicide selection, and visual identification of primary transformants along with their progeny. This marker was then used to select transgenic plants containing a synthetic Ms2 gene. Ms2 is a dominant gene whose activation in wheat anthers leads to male sterility, but the relationship between the expression levels and the male-sterile phenotype is unknown. The Ms2 gene was driven either by a truncated Ms2 promoter containing a TRIM element or a rice promoter OsLTP6. The expression of these synthetic genes resulted in complete male sterility or partial fertility, respectively. The low-fertility phenotype was characterized by smaller anthers than the wild type, many defective pollen grains, and low seed sets. The reduction in the size of anthers was observed at earlier and later stages of their development. Consistently, Ms2 transcripts were detected in these organs, but their levels were significantly lower than those in completely sterile Ms2TRIM::Ms2 plants. These results suggested that the severity of the male-sterile phenotype was modulated by Ms2 expression levels and that higher levels may be key to activating total male sterility.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St., 02-787, Warsaw, Poland.
| |
Collapse
|
15
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
16
|
Toda E, Kato N, Higashiyama T, Okamoto T. Genome editing approaches using reproductive cells/tissues in flowering plants. Front Genome Ed 2023; 4:1085023. [PMID: 36714390 PMCID: PMC9873966 DOI: 10.3389/fgeed.2022.1085023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Targeted mutagenesis via programmable nucleases including the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been broadly utilized to generate genome-edited organisms including flowering plants. To date, specific expression of Cas9 protein and guide RNA (gRNA) in reproductive cells or tissues is considered one of the most effective genome-editing approaches for heritable targeted mutagenesis. In this report, we review recent advances in genome editing methods for reproductive cells or tissues, which have roles in transmitting genetic material to the next-generation, such as egg cells, pollen grains, zygotes, immature zygotic embryos, and shoot apical meristems (SAMs). Specific expression of Cas9 proteins in initiating cells efficiently induces targeted mutagenesis via Agrobacterium-mediated in planta transformation. In addition, genome editing by direct delivery of CRISPR/Cas9 components into pollen grains, zygotes, cells of embryos and SAMs has been successfully established to generate genome-edited plant lines. Notably, DNA-free genome editing by the delivery of Cas9-gRNA ribonucleoproteins (RNPs) is not associated with any legislative concerns about genetically modified organisms. In summary, the genome editing methods for reproductive cells or tissues have enormous potential for not only basic studies for plant reproduction but also applied sciences toward molecular plant breeding.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan,Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,*Correspondence: Erika Toda,
| | - Norio Kato
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
17
|
Basu U, Riaz Ahmed S, Bhat BA, Anwar Z, Ali A, Ijaz A, Gulzar A, Bibi A, Tyagi A, Nebapure SM, Goud CA, Ahanger SA, Ali S, Mushtaq M. A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Front Genet 2023; 13:866976. [PMID: 36685816 PMCID: PMC9852743 DOI: 10.3389/fgene.2022.866976] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas-based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing.
Collapse
Affiliation(s)
- Umer Basu
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Addafar Gulzar
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India
| | - Amir Bibi
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Suresh M. Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chengeshpur Anjali Goud
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, India
| | - Shafat Ahmad Ahanger
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Muntazir Mushtaq
- ICAR-National Bureau of Plant Genetic Resources, Division of Germplasm Evaluation, Pusa Campus, New Delhi, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| |
Collapse
|
18
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Rustgi S, Naveed S, Windham J, Zhang H, Demirer GS. Plant biomacromolecule delivery methods in the 21st century. Front Genome Ed 2022; 4:1011934. [PMID: 36311974 PMCID: PMC9614364 DOI: 10.3389/fgeed.2022.1011934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Salman Naveed
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Jonathan Windham
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gözde S. Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
20
|
Dhakate P, Sehgal D, Vaishnavi S, Chandra A, Singh A, Raina SN, Rajpal VR. Comprehending the evolution of gene editing platforms for crop trait improvement. Front Genet 2022; 13:876987. [PMID: 36082000 PMCID: PMC9445674 DOI: 10.3389/fgene.2022.876987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system was initially discovered as an underlying mechanism for conferring adaptive immunity to bacteria and archaea against viruses. Over the past decade, this has been repurposed as a genome-editing tool. Numerous gene editing-based crop improvement technologies involving CRISPR/Cas platforms individually or in combination with next-generation sequencing methods have been developed that have revolutionized plant genome-editing methodologies. Initially, CRISPR/Cas nucleases replaced the earlier used sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), to address the problem of associated off-targets. The adaptation of this platform led to the development of concepts such as epigenome editing, base editing, and prime editing. Epigenome editing employed epi-effectors to manipulate chromatin structure, while base editing uses base editors to engineer precise changes for trait improvement. Newer technologies such as prime editing have now been developed as a "search-and-replace" tool to engineer all possible single-base changes. Owing to the availability of these, the field of genome editing has evolved rapidly to develop crop plants with improved traits. In this review, we present the evolution of the CRISPR/Cas system into new-age methods of genome engineering across various plant species and the impact they have had on tweaking plant genomes and associated outcomes on crop improvement initiatives.
Collapse
Affiliation(s)
- Priyanka Dhakate
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), México-Veracruz, Mexico
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| |
Collapse
|
21
|
Riaz A, Kanwal F, Ahmad I, Ahmad S, Farooq A, Madsen CK, Brinch-Pedersen H, Bekalu ZE, Dai F, Zhang G, Alqudah AM. New Hope for Genome Editing in Cultivated Grasses: CRISPR Variants and Application. Front Genet 2022; 13:866121. [PMID: 35923689 PMCID: PMC9340155 DOI: 10.3389/fgene.2022.866121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) mediated genome editing, crop improvement has progressed significantly in recent years. In this genome editing tool, CRISPR-associated Cas nucleases are restricted to their target of DNA by their preferred protospacer adjacent motifs (PAMs). A number of CRISPR-Cas variants have been developed e.g. CRISPR-Cas9, -Cas12a and -Cas12b, with different PAM requirements. In this mini-review, we briefly explain the components of the CRISPR-based genome editing tool for crop improvement. Moreover, we intend to highlight the information on the latest development and breakthrough in CRISPR technology, with a focus on a comparison of major variants (CRISPR-Cas9, -Cas12a, and -Cas12b) to the newly developed CRISPR-SpRY that have nearly PAM-less genome editing ability. Additionally, we briefly explain the application of CRISPR technology in the improvement of cultivated grasses with regard to biotic and abiotic stress tolerance as well as improving the quality and yield.
Collapse
Affiliation(s)
- Asad Riaz
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Farah Kanwal
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Iqrar Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Farooq
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Claus Krogh Madsen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Zelalem Eshetu Bekalu
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ahmad M. Alqudah
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| |
Collapse
|
22
|
Patial M, Chauhan R, Chaudhary HK, Pramanick KK, Shukla AK, Kumar V, Verma RPS. Au-courant and novel technologies for efficient doubled haploid development in barley ( Hordeum vulgare L.). Crit Rev Biotechnol 2022; 43:575-593. [PMID: 35435095 DOI: 10.1080/07388551.2022.2050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bounteous modern and innovative biotechnological tools have resulted in progressive development in the barley breeding program. Doubled haploids developed (homozygous lines) in a single generation is significant. Since the first discovery of haploid plants in 1920 and, in particular, after discovering in vitro androgenesis in 1964 by Guha and Maheshwari, the doubled haploidy techniques have been progressively developed and constantly improved. It has shortened the cultivar development time and has been extensively used in: genetic studies, gene mapping, marker/trait association, and QTL studies. In barley, the haploid occurrence developed gradually from being a sporadic and random process (spontaneous) to haploid development by in vivo method of modified pollination or by in vitro culture of immature male or female gametophytes. Although significant improvement in DH induction protocols has been made, challenges still exist for improvement in areas such as: low efficiency, albinism, genotypic specificity etc. Here, the paper focuses on: haploidization via different in vitro, in vivo techniques, the recent advances technologies like centromere-mediated haploidization, hap induction gene, and Doubled haploid CRISPR. The au-courant work of different researchers in barley using these technologies is reviewed. Studies on different factors affecting haploid induction and work on genome doubling of barley haploids to produce DH lines via spontaneous and induced technologies has also been highlighted.
Collapse
Affiliation(s)
- Madhu Patial
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | - Ruchi Chauhan
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | | | - Kallol K Pramanick
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | - Arun K Shukla
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, Himachal, India
| | | | | |
Collapse
|
23
|
Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1052. [PMID: 35448780 PMCID: PMC9025237 DOI: 10.3390/plants11081052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/01/2023]
Abstract
Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.
Collapse
Affiliation(s)
- Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Saboor Khan
- Institute of Plant Sciences, University of Cologne, 50667 Cologne, Germany
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
24
|
Mohan C, Easterling M, Yau YY. Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2022; 24:369-385. [PMID: 34667393 PMCID: PMC8517945 DOI: 10.1007/s12355-021-01045-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Plant-based biofuels present a promising alternative to depleting non-renewable fuel resources. One of the benefits of biofuel is reduced environmental impact, including reduction in greenhouse gas emission which causes climate change. Sugarcane is one of the most important bioenergy crops. Sugarcane juice is used to produce table sugar and first-generation biofuel (e.g., bioethanol). Sugarcane bagasse is also a potential material for second-generation cellulosic biofuel production. Researchers worldwide are striving to improve sugarcane biomass yield and quality by a variety of means including biotechnological tools. This paper reviews the use of sugarcane as a feedstock for biofuel production, and gene manipulation tools and approaches, including RNAi and genome-editing tools, such as TALENs and CRISPR-Cas9, for improving its quality. The specific focus here is on CRISPR system because it is low cost, simple in design and versatile compared to other genome-editing tools. The advance of CRISPR-Cas9 technology has transformed plant research with its ability to precisely delete, insert or replace genes in recent years. Lignin is the primary material responsible for biomass recalcitrance in biofuel production. The use of genome editing technology to modify lignin composition and distribution in sugarcane cell wall has been realized. The current and potential applications of genome editing technology for sugarcane improvement are discussed. The advantages and limitations of utilizing RNAi and TALEN techniques in sugarcane improvement are discussed as well.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mona Easterling
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
- Northeast Campus, Tulsa Community College, 3727 East Apache St, Tulsa, OK 74115 USA
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| |
Collapse
|
25
|
Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021; 10:foods10102351. [PMID: 34681400 PMCID: PMC8534962 DOI: 10.3390/foods10102351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Wheat gluten contains epitopes that trigger celiac disease (CD). A life-long strict gluten-free diet is the only treatment accepted for CD. However, very low-gluten wheat may provide an alternative treatment to CD. Conventional plant breeding methods have not been sufficient to produce celiac-safe wheat. RNA interference technology, to some extent, has succeeded in the development of safer wheat varieties. However, these varieties have multiple challenges in terms of their implementation. Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) is a versatile gene-editing tool that has the ability to edit immunogenic gluten genes. So far, only a few studies have applied CRISPR/Cas9 to modify the wheat genome. In this article, we reviewed the published literature that applied CRISPR/Cas9 in wheat genome editing to investigate the current status of the CRISPR/Cas9 system to produce a low-immunogenic wheat variety. We found that in recent years, the CRISPR/Cas9 system has been continuously improved to edit the complex hexaploid wheat genome. Although some reduced immunogenic wheat varieties have been reported, CRISPR/Cas9 has still not been fully explored in terms of editing the wheat genome. We conclude that further studies are required to apply the CRISPR/Cas9 gene-editing system efficiently for the development of a celiac-safe wheat variety and to establish it as a "tool to celiac safe wheat".
Collapse
Affiliation(s)
- Anil K. Verma
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
- Correspondence: or ; Tel.: +39-0715962834
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India;
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Chiara Monachesi
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Giulia N. Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Akash Srivastava
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA;
| | - Simona Gatti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Elena Lionetti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Carlo Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
26
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
27
|
Nagahara S, Higashiyama T, Mizuta Y. Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube. PLANT REPRODUCTION 2021; 34:191-205. [PMID: 34146158 PMCID: PMC8360903 DOI: 10.1007/s00497-021-00418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/05/2021] [Indexed: 05/02/2023]
Abstract
Biolistic delivery into pollen. In recent years, genome editing techniques, such as the CRISPR/Cas9 system, have been highlighted as a new approach to plant breeding. Agrobacterium-mediated transformation has been widely utilized to generate transgenic plants by introducing plasmid DNA containing CRISPR/Cas9 into plant cells. However, this method has general limitations, such as the limited host range of Agrobacterium and difficulties in tissue culture, including callus induction and regeneration. To avoid these issues, we developed a method to genetically modify germ cells without the need for Agrobacterium-mediated transfection and tissue culture using tobacco as a model. In this study, plasmid DNA containing sequences of Cas9, guide RNA, and fluorescent reporter was introduced into pollen using a biolistic delivery system. Based on the transient expression of fluorescent reporters, the Arabidopsis UBQ10 promoter was found to be the most suitable promoter for driving the expression of the delivered gene in pollen tubes. We also evaluated the delivery efficiency in male germ cells in the pollen by expression of the introduced fluorescent marker. Mutations were detected in the target gene in the genomic DNA extracted from CRISPR/Cas9-introduced pollen tubes, but were not detected in the negative control. Bombarded pollen germinated pollen tubes and delivered their contents into the ovules in vivo. Although it is necessary to improve biolistic delivery efficiency and establish a method for the screening of genome-modified seeds, our findings provide important insights for the detection and production of genome-modified seeds by pollen biolistic delivery.
Collapse
Affiliation(s)
- Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| | - Yoko Mizuta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
28
|
Matres JM, Hilscher J, Datta A, Armario-Nájera V, Baysal C, He W, Huang X, Zhu C, Valizadeh-Kamran R, Trijatmiko KR, Capell T, Christou P, Stoger E, Slamet-Loedin IH. Genome editing in cereal crops: an overview. Transgenic Res 2021; 30:461-498. [PMID: 34263445 PMCID: PMC8316241 DOI: 10.1007/s11248-021-00259-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.
Collapse
Affiliation(s)
- Jerlie Mhay Matres
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Akash Datta
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Victoria Armario-Nájera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Xin Huang
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Rana Valizadeh-Kamran
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Kurniawan R Trijatmiko
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Inez H Slamet-Loedin
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines.
| |
Collapse
|
29
|
Singh M, Albertsen MC, Cigan AM. Male Fertility Genes in Bread Wheat ( Triticum aestivum L.) and Their Utilization for Hybrid Seed Production. Int J Mol Sci 2021; 22:ijms22158157. [PMID: 34360921 PMCID: PMC8348041 DOI: 10.3390/ijms22158157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
Hybrid varieties can provide the boost needed to increase stagnant wheat yields through heterosis. The lack of an efficient hybridization system, which can lower the cost of goods of hybrid seed production, has been a major impediment to commercialization of hybrid wheat varieties. In this review, we discuss the progress made in characterization of nuclear genetic male sterility (NGMS) in wheat and its advantages over two widely referenced hybridization systems, i.e., chemical hybridizing agents (CHAs) and cytoplasmic male sterility (CMS). We have characterized four wheat genes, i.e., Ms1, Ms5, TaMs26 and TaMs45, that sporophytically contribute to male fertility and yield recessive male sterility when mutated. While Ms1 and Ms5 are Triticeae specific genes, analysis of TaMs26 and TaMs45 demonstrated conservation of function across plant species. The main features of each of these genes is discussed with respect to the functional contribution of three sub-genomes and requirements for complementation of their respective mutants. Three seed production systems based on three genes, MS1, TaMS26 and TaMS45, were developed and a proof of concept was demonstrated for each system. The Tams26 and ms1 mutants were maintained through a TDNA cassette in a Seed Production Technology-like system, whereas Tams45 male sterility was maintained through creation of a telosome addition line. These genes represent different options for hybridization systems utilizing NGMS in wheat, which can potentially be utilized for commercial-scale hybrid seed production.
Collapse
Affiliation(s)
- Manjit Singh
- Corteva Agriscience, 7250 NW 62ND Avenue, P.O. Box 552, Johnston, IA 50131-0552, USA;
- Correspondence: ; Tel.: +1-515-535-7899
| | - Marc C. Albertsen
- Corteva Agriscience, 7250 NW 62ND Avenue, P.O. Box 552, Johnston, IA 50131-0552, USA;
| | - A. Mark Cigan
- Genus plc, 1525 River Road, DeForest, WI 53532, USA;
| |
Collapse
|
30
|
Singh PK, Gahtyari NC, Roy C, Roy KK, He X, Tembo B, Xu K, Juliana P, Sonder K, Kabir MR, Chawade A. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:710707. [PMID: 34367228 PMCID: PMC8343232 DOI: 10.3389/fpls.2021.710707] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 05/26/2023]
Abstract
Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.
Collapse
Affiliation(s)
- Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Navin C. Gahtyari
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, BAC, Bihar Agricultural University, Sabour, India
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - B. Tembo
- Zambia Agricultural Research Institute (ZARI), Chilanga, Zambia
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
31
|
Maximiano MR, Távora FTPK, Prado GS, Dias SC, Mehta A, Franco OL. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6379-6395. [PMID: 34097395 DOI: 10.1021/acs.jafc.1c01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The natural increase of the world's population implies boosting agricultural demand. In the current non-optimistic global scenario, where adverse climate changes come associated with substantial population growth, the main challenge in agribusiness is food security. Recently, the CRISPR/Cas system has emerged as a friendly gene editing biotechnological tool, enabling a precise manipulation of genomes and enhancement of desirable traits in several organisms. This review highlights the CRISPR/Cas system as a paramount tool for the improvement of agribusiness products and brings up-to-date findings showing its potential applications in improving agricultural-related traits in major plant crops and farm animals, all representing economic-relevant commodities responsible for feeding the world. Several applied pieces of research have successfully demonstrated the CRISPR/Cas ability in boosting interesting traits in agribusiness products, including animal productivity and welfare, crop yield growth, and seed quality, reflecting positive impacts in both socioeconomics and human health aspects. Hence, the CRISPR/Cas system has revolutionized bioscience and biotechnology, and its concrete application in agribusiness goods is on the horizon.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Fabiano T P K Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Guilherme Souza Prado
- Laboratório de Biotecnologia, Embrapa Arroz e Feijão, Goiânia, Goiás 75375-000, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
32
|
Kim YC, Kang Y, Yang EY, Cho MC, Schafleitner R, Lee JH, Jang S. Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:688980. [PMID: 34178006 PMCID: PMC8231707 DOI: 10.3389/fpls.2021.688980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 05/04/2023]
Abstract
The emergence of genome-editing technology has allowed manipulation of DNA sequences in genomes to precisely remove or replace specific sequences in organisms resulting in targeted mutations. In plants, genome editing is an attractive method to alter gene functions to generate improved crop varieties. Genome editing is thought to be simple to use and has a lower risk of off-target effects compared to classical mutation breeding. Furthermore, genome-editing technology tools can also be applied directly to crops that contain complex genomes and/or are not easily bred using traditional methods. Currently, highly versatile genome-editing tools for precise and predictable editing of almost any locus in the plant genome make it possible to extend the range of application, including functional genomics research and molecular crop breeding. Vegetables are essential nutrient sources for humans and provide vitamins, minerals, and fiber to diets, thereby contributing to human health. In this review, we provide an overview of the brief history of genome-editing technologies and the components of genome-editing tool boxes, and illustrate basic modes of operation in representative systems. We describe the current and potential practical application of genome editing for the development of improved nutritious vegetables and present several case studies demonstrating the potential of the technology. Finally, we highlight future directions and challenges in applying genome-editing systems to vegetable crops for research and product development.
Collapse
Affiliation(s)
- Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Eun-Young Yang
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Myeong-Cheoul Cho
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | | | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
33
|
Kausch AP, Wang K, Kaeppler HF, Gordon-Kamm W. Maize transformation: history, progress, and perspectives. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:38. [PMID: 37309443 PMCID: PMC10236110 DOI: 10.1007/s11032-021-01225-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/14/2021] [Indexed: 06/14/2023]
Abstract
Maize functional genomics research and genetic improvement strategies have been greatly accelerated and refined through the development and utilization of genetic transformation systems. Maize transformation is a composite technology based on decades' efforts in optimizing multiple factors involving microbiology and physical/biochemical DNA delivery, as well as cellular and molecular biology. This review provides a historical reflection on the development of maize transformation technology including the early failures and successful milestones. It also provides a current perspective on the understanding of tissue culture responses and their impact on plant regeneration, the pros and cons of different DNA delivery methods, the identification of a palette of selectable/screenable markers, and most recently the development of growth-stimulating or morphogenic genes to improve efficiencies and extend the range of transformable genotypes. Steady research progress in these interdependent components has been punctuated by benchmark reports celebrating the progress in maize transformation, which invariably relied on a large volume of supporting research that contributed to each step and to the current state of the art. The recent explosive use of CRISPR/Cas9-mediated genome editing has heightened the demand for higher transformation efficiencies, especially for important inbreds, to support increasingly sophisticated and complicated genomic modifications, in a manner that is widely accessible. These trends place an urgent demand on taking maize transformation to the next level, presaging a new generation of improvements on the horizon. Once realized, we anticipate a near-future where readily accessible, genotype-independent maize transformation, together with advanced genomics, genome editing, and accelerated breeding, will contribute to world agriculture and global food security.
Collapse
Affiliation(s)
- Albert P. Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, RI 02892 USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
| | | |
Collapse
|
34
|
Lyzenga WJ, Pozniak CJ, Kagale S. Advanced domestication: harnessing the precision of gene editing in crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:660-670. [PMID: 33657682 PMCID: PMC8051614 DOI: 10.1111/pbi.13576] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
Human population growth has increased the demand for food crops, animal feed, biofuel and biomaterials, all the while climate change is impacting environmental growth conditions. There is an urgent need to develop crop varieties which tolerate adverse growth conditions while requiring fewer inputs. Plant breeding is critical to global food security and, while it has benefited from modern technologies, it remains constrained by a lack of valuable genetic diversity, linkage drag, and an effective way to combine multiple favourable alleles for complex traits. CRISPR/Cas technology has transformed genome editing across biological systems and promises to transform agriculture with its high precision, ease of design, multiplexing ability and low cost. We discuss the integration of CRISPR/Cas-based gene editing into crop breeding to advance domestication and refine inbred crop varieties for various applications and growth environments. We highlight the use of CRISPR/Cas-based gene editing to fix desirable allelic variants, generate novel alleles, break deleterious genetic linkages, support pre-breeding and for introgression of favourable loci into elite lines.
Collapse
Affiliation(s)
- Wendy J. Lyzenga
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sateesh Kagale
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
35
|
Genome editing reagent delivery in plants. Transgenic Res 2021; 30:321-335. [PMID: 33728594 DOI: 10.1007/s11248-021-00239-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Genome editing holds the potential for rapid crop improvement to meet the challenge of feeding the planet in a changing climate. The delivery of gene editing reagents into the plant cells has been dominated by plasmid vectors delivered using agrobacterium or particle bombardment. This approach involves the production of genetically engineered plants, which need to undergo regulatory approvals. There are various reagent delivery approaches available that have enabled the delivery of DNA-free editing reagents. They invariably involve the use of ribonucleoproteins (RNPs), especially in the case of CRISPR/Cas9-mediated gene editing. The explant of choice for most of the non-DNA approaches utilizes protoplasts as the recipient explant. While the editing efficiency is high in protoplasts, the ability to regenerate individual plants from edited protoplasts remains a challenge. There are various innovative delivery approaches being utilized to perform in planta edits that can be incorporated in the germline cells or inherited via seed. With the modification and adoption of various novel approaches currently being used in animal systems, it seems likely that non-transgenic genome editing will become routine in higher plants.
Collapse
|
36
|
Zhang L, Wang Y, Li T, Qiu H, Xia Z, Dong Y. Target-specific mutations efficiency at multiple loci of CRISPR/Cas9 system using one sgRNA in soybean. Transgenic Res 2021; 30:51-62. [PMID: 33387102 DOI: 10.1007/s11248-020-00228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Soybean has a palaeopolyploid genome with nearly 75% of the genes present in multiple copies. Although the CRISPR/Cas9 system has been employed in soybean to generate site-directed mutagenesis, a systematical assessment of mutation efficiency of the CRISPR/Cas9 system for the multiple-copy genes is still urgently needed. Here, we successfully optimize one sgRNA CRISPR/Cas9 system in soybean by testing the efficiency, pattern, specificity of the mutations at multiple loci of GmFAD2 and GmALS. The results showed that simultaneous site-directed mutagenesis of two homoeologous loci by one sgRNA, the mutation frequency in the T0 generation were 64.71% for GmPDS, 60.0% for GmFAD2 and 42.86% for GmALS, respectively. The chimeric and heterozygous mutations were dominant types. Moreover, association of phenotypes with mutation pattern at target loci of GmPDS11 and GmPDS18 could help us further demonstrate that the CRISPR/Cas9 system can efficiently generate target specific mutations at multiple loci using one sgRNA in soybean, albeit with a relatively low transformation efficiency.
Collapse
Affiliation(s)
- Ling Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Yingzhe Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Tong Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Hongmei Qiu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Zhengjun Xia
- Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| |
Collapse
|
37
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
38
|
Cho JY, Bhowmik P, Polowick PL, Dodard SG, El-Bakkari M, Nowak G, Fenniri H, Hemraz UD. Cellular Delivery of Plasmid DNA into Wheat Microspores Using Rosette Nanotubes. ACS OMEGA 2020; 5:24422-24433. [PMID: 33015458 PMCID: PMC7528298 DOI: 10.1021/acsomega.0c02830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Plant genetic engineering offers promising solutions to the increasing demand for efficient, sustainable, and high-yielding crop production as well as changing environmental conditions. The main challenge for gene delivery in plants is the presence of a cell wall that limits the transportation of genes within the cells. Microspores are plant cells that are, under the right conditions, capable of generating embryos, leading to the formation of haploid plants. Here, we designed cationic and fluorescent rosette nanotubes (RNTs) that penetrate the cell walls of viable wheat microspores under mild conditions and in the absence of an external force. These nanomaterials can capture plasmid DNA to form RNT-DNA complexes and transport their DNA cargo into live microspores. The nanomaterials and the complexes formed were nontoxic to the microspores.
Collapse
Affiliation(s)
- Jae-Young Cho
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Patricia L Polowick
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sabine G Dodard
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Mounir El-Bakkari
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Goska Nowak
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Hicham Fenniri
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
- Departments of Chemical, Biomedical Engineering, Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
39
|
Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S. CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00104] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Ohnoutková L, Vlčko T. Homozygous Transgenic Barley ( Hordeum vulgare L.) Plants by Anther Culture. PLANTS 2020; 9:plants9070918. [PMID: 32698526 PMCID: PMC7412030 DOI: 10.3390/plants9070918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
Abstract
Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.
Collapse
|
41
|
Brandt KM, Gunn H, Moretti N, Zemetra RS. A Streamlined Protocol for Wheat ( Triticum aestivum) Protoplast Isolation and Transformation With CRISPR-Cas Ribonucleoprotein Complexes. FRONTIERS IN PLANT SCIENCE 2020; 11:769. [PMID: 32587597 PMCID: PMC7298111 DOI: 10.3389/fpls.2020.00769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 05/03/2023]
Abstract
The genetic engineering method CRISPR has been touted as an efficient, inexpensive, easily used, and targeted genetic modification technology that is widely suggested as having the potential to solve many of the problems facing agriculture now and in the future. Like all new technologies, however, it is not without challenges. One of the most difficult challenges to anticipate and detect is gene targets that are inaccessible due to the chromatin state at their specific location. There is currently no way to predict this during the process of designing a sgRNA target, and the only way to detect this issue before spending time and resources on full transformations is to test the cleavage ability of the sgRNA in vivo. In wheat, this is possible using protoplast isolation and PEG transformation with Cas9 ribonucleoprotein complexes. Therefore, we have developed a streamlined protocol for testing the accessibility of sgRNA targets in wheat. The first steps involve digesting wheat leaf tissue in an enzymatic solution and then isolating viable protoplasts using filters and a sucrose gradient. The protoplasts are then transformed using Cas9 ribonucleoprotein complexes via PEG-mediated transformation. DNA is isolated from the CRISPR-Cas-edited protoplasts and PCR is performed to amplify the gene target region. The PCR product is then used to assess the editing efficiency of the chosen sgRNA using Sanger sequencing. This simplified protocol for the isolation and transformation of wheat protoplast cells using Cas9 ribonucleoprotein complexes streamlines CRISPR transformation projects by allowing for a fast and easy test of sgRNA accessibility in vivo.
Collapse
Affiliation(s)
- Kali M. Brandt
- Wheat Breeding and Genetics, Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | | | |
Collapse
|
42
|
Li J, Wang Z, He G, Ma L, Deng XW. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics 2020; 47:263-272. [PMID: 32694014 DOI: 10.1016/j.jgg.2020.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/04/2023]
Abstract
Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops. High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat. The emerging effective genome editing tool, CRISPR/Cas9 system, makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles. To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat, we compared four different RNA polymerase (Pol) III promoters (TaU3p, TaU6p, OsU3p, and OsU6p) and three types of sgRNA scaffold in the protoplast system. We show that the TaU3 promoter-driven optimized sgRNA scaffold was most effective. The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles, whose orthologs, OsNP1 in rice and ZmIPE1 in maize, encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility. Triple homozygous mutations in TaNP1 genes result in complete male sterility. We further demonstrated that any one wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility. Taken together, this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system.
Collapse
Affiliation(s)
- Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China
| | - Guangming He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Bilichak A, Sastry‐Dent L, Sriram S, Simpson M, Samuel P, Webb S, Jiang F, Eudes F. Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1307-1316. [PMID: 31729822 PMCID: PMC7152605 DOI: 10.1111/pbi.13296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 05/08/2023]
Abstract
Recent advances in genome engineering technologies based on designed endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EXZACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome. Here, we describe for the first time, an alternative ZFN delivery method where plant cells are transfected with ZFN protein that eliminates the need for stable nuclease genomic integration and allows generation of edited, but not transgenic cells or tissues. For this study, we designed ZFNs targeting the wheat IPK1 locus, purified active ZFN protein from bacterial cultures, complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat microspores or embryos. NGS analysis of ZFN-treated material showed targeted edits at the IPK1 locus in independent experiments. This is the first description of plant microspore genome editing by a ZFN when delivered as a protein complexed with CPP.
Collapse
Affiliation(s)
- Andriy Bilichak
- Lethbridge Research and Development CenterAgriculture and Agri‐Food CanadaLethbridgeABCanada
- Present address:
Morden Research and Development CenterAgriculture and Agri‐Food CanadaMordenMBCanada
| | | | - Shreedharan Sriram
- Corteva AgriscienceThe Agriculture Division of DowDuPontIndianapolisINUSA
| | - Matthew Simpson
- Corteva AgriscienceThe Agriculture Division of DowDuPontIndianapolisINUSA
| | - Pon Samuel
- Corteva AgriscienceThe Agriculture Division of DowDuPontIndianapolisINUSA
| | - Steve Webb
- Corteva AgriscienceThe Agriculture Division of DowDuPontIndianapolisINUSA
| | - Fengying Jiang
- Lethbridge Research and Development CenterAgriculture and Agri‐Food CanadaLethbridgeABCanada
| | - Francois Eudes
- Lethbridge Research and Development CenterAgriculture and Agri‐Food CanadaLethbridgeABCanada
| |
Collapse
|
44
|
Wang K, Gong Q, Ye X. Recent developments and applications of genetic transformation and genome editing technologies in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1603-1622. [PMID: 31654081 DOI: 10.1007/s00122-019-03464-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/19/2019] [Indexed: 05/24/2023]
Abstract
Wheat (Triticum aestivum) is a staple crop across the world and plays a remarkable role in food supplying security. Over the past few decades, basic and applied research on wheat has lagged behind other cereal crops due to the complex and polyploid genome and difficulties in genetic transformation. A breakthrough called as PureWheat was made in the genetic transformation of wheat in 2014 in Asia, leading to a noticeable progress of wheat genome editing. Due to this great achievement, it is predicated that wheat biotechnology revolution is arriving. Genome editing technologies using zinc finger nucleases, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats-associated endonucleases (CRISR/Cas) are becoming powerful tools for crop modification which can help biologists and biotechnologists better understand the processes of mutagenesis and genomic alteration. Among the three genome editing systems, CRISR/Cas has high specificity and activity, and therefore it is widely used in genetic engineering. Generally, the genome editing technologies depend on an efficient genetic transformation system. In this paper, we summarize recent progresses and applications on genetic transformation and genome editing in wheat. We also examine the future aspects of genetic transformation and genome editing. We believe that the technologies for wheat efficient genetic engineering and functional studies will become routine with the emergence of high-quality genomic sequences.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Gong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
45
|
Ahmadi B, Ebrahimzadeh H. In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. PLANT CELL REPORTS 2020; 39:299-316. [PMID: 31974735 DOI: 10.1007/s00299-020-02509-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/13/2020] [Indexed: 05/11/2023]
Abstract
Androgenesis has become the most frequently chosen method of doubled haploid (DH) production in major crops. Theoretically, plantlets derived from in vitro cultured microspore encompass half of the normal chromosome number of donor plants and thus, considered to be haploid. However, depending on species/genotype and the method of haploid production, either via anther or isolated microspore culture, different ratios of spontaneous DHs and diploid (2n) or even polyploid plants originating from somatic tissues or unreduced gametes may also arise in the cultures. Adopting the method of haploid identification, anti-microtubular agent for restoring fertility, and discriminating spontaneous DHs from undesired heterozygote plants will substantially affect the success of androgenesis in breeding programs. The recent advances in the last 2 decades have made it possible to characterize the in vitro regenerants efficiently either prior to genome duplication or using in breeding programs. The herein described approaches and antimicotubular agents are, therefore, expected to improve the efficiency of DH-based breeding pipeline through the in vitro androgenesis.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran.
| | - Hamed Ebrahimzadeh
- Department of Tissue and Cell Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| |
Collapse
|
46
|
The Effect of Caffeine and Trifluralin on Chromosome Doubling in Wheat Anther Culture. PLANTS 2020; 9:plants9010105. [PMID: 31952150 PMCID: PMC7020159 DOI: 10.3390/plants9010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Challenges for wheat doubled haploid (DH) production using anther culture include genotype variability in green plant regeneration and spontaneous chromosome doubling. The frequency of chromosome doubling in our program can vary from 14% to 80%. Caffeine or trifluralin was applied at the start of the induction phase to improve early genome doubling. Caffeine treatment at 0.5 mM for 24 h significantly improved green plant production in two of the six spring wheat crosses but had no effect on the other crosses. The improvements were observed in Trojan/Havoc and Lancer/LPB14-0392, where green plant numbers increased by 14% and 27% to 161 and 42 green plants per 30 anthers, respectively. Caffeine had no significant effect on chromosome doubling, despite a higher frequency of doubling in several caffeine treatments in the first experiment (67-68%) compared to the control (56%). In contrast, trifluralin significantly improved doubling following a 48 h treatment, from 38% in the control to 51% and 53% in the 1 µM and 3 µM trifluralin treatments, respectively. However, trifluralin had a significant negative effect on green plant regeneration, declining from 31.8 green plants per 20 anthers (control) to 9-25 green plants per 20 anthers in the trifluralin treatments. Further work is required to identify a treatment regime with caffeine and/or anti-mitotic herbicides that consistently increases chromosome doubling in wheat without reducing green plant regeneration.
Collapse
|
47
|
Ferrie AMR, Bhowmik P, Rajagopalan N, Kagale S. CRISPR/Cas9-Mediated Targeted Mutagenesis in Wheat Doubled Haploids. Methods Mol Biol 2020; 2072:183-198. [PMID: 31541447 DOI: 10.1007/978-1-4939-9865-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9-based genome editing technology has the potential to revolutionize agriculture, but many plant species and/or genotypes are recalcitrant to conventional transformation methods. Additionally, the long generation time of crop plants poses a significant obstacle to effective application of gene editing technology, as it takes a long time to produce modified homozygous genotypes. The haploid single-celled microspores are an attractive target for gene editing experiments, as they enable generation of homozygous doubled haploid mutants in one generation. Here, we describe optimized methods for genome editing of haploid wheat microspores and production of doubled haploid plants by microspore culture.
Collapse
Affiliation(s)
| | | | | | - Sateesh Kagale
- National Research Council Canada, Saskatoon, SK, Canada.
| |
Collapse
|
48
|
Jansing J, Schiermeyer A, Schillberg S, Fischer R, Bortesi L. Genome Editing in Agriculture: Technical and Practical Considerations. Int J Mol Sci 2019; 20:E2888. [PMID: 31200517 PMCID: PMC6627516 DOI: 10.3390/ijms20122888] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023] Open
Abstract
The advent of precise genome-editing tools has revolutionized the way we create new plant varieties. Three groups of tools are now available, classified according to their mechanism of action: Programmable sequence-specific nucleases, base-editing enzymes, and oligonucleotides. The corresponding techniques not only lead to different outcomes, but also have implications for the public acceptance and regulatory approval of genome-edited plants. Despite the high efficiency and precision of the tools, there are still major bottlenecks in the generation of new and improved varieties, including the efficient delivery of the genome-editing reagents, the selection of desired events, and the regeneration of intact plants. In this review, we evaluate current delivery and regeneration methods, discuss their suitability for important crop species, and consider the practical aspects of applying the different genome-editing techniques in agriculture.
Collapse
Affiliation(s)
- Julia Jansing
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | - Rainer Fischer
- Indiana Biosciences Research Institute (IBRI), 1345 W. 16th St. Suite 300, Indianapolis, IN 46202, USA.
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
49
|
Uniyal AP, Mansotra K, Yadav SK, Kumar V. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech 2019; 9:223. [PMID: 31139538 PMCID: PMC6529479 DOI: 10.1007/s13205-019-1760-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
A large number of computational tools have been documented in recent years for identification of target-specific valid single-guide (sg) RNAs (18-20 nucleotide long sequence) that is an important component for the efficient utilization of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated Protein) system. Despite optimization of Cas9, other major concerns are on-target efficiency and off-target activity that depend upon the sequence(s) of target-specific sgRNA(s). However, a very little attention has been paid for identification of the best-hit sgRNA for precise targeting as well as minimizing the off-target effects. The aim of this present work is to offer comparative insight into existing CRISPR software tools with their unique features (including targeted genome) and utilities. These available web tools were found to be designed based upon only a few limited mathematical models. Among all these available web tools, three (Benchling, Desktop and CRISPR-P) have been curated as exclusively available for plant genome-editing purpose. These three software tools have been comprehensively described and analyzed with single same target enquiry from two randomly selected genes (IDM2 and IDM3 from Arabidopsis thaliana). Interestingly, all these selected tools generated different results (sgRNAs) even for the same query. In fact, the sequence of sgRNA is considered an important parameter to determine the efficiency and specificity of sgRNAs for precise genome editing. Thus, there is an urgent requirement to pay attention for a validated sgRNA-designing tool for precise DNA editing in plants. In conclusion, this work will encourage building up a consensus for developing a universal valid sgRNA designing for different organisms including plants.
Collapse
Affiliation(s)
- Ajay Prakash Uniyal
- Department of Plant Sciences, School for Basic and Applied Sciences, Central University of Punjab, Bathinda, 161001 India
| | - Komal Mansotra
- Department of Plant Sciences, School for Basic and Applied Sciences, Central University of Punjab, Bathinda, 161001 India
| | | | - Vinay Kumar
- Department of Plant Sciences, School for Basic and Applied Sciences, Central University of Punjab, Bathinda, 161001 India
| |
Collapse
|
50
|
Koeppel I, Hertig C, Hoffie R, Kumlehn J. Cas Endonuclease Technology-A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. Int J Mol Sci 2019; 20:ijms20112647. [PMID: 31146387 PMCID: PMC6600890 DOI: 10.3390/ijms20112647] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Domestication and breeding have created productive crops that are adapted to the climatic conditions of their growing regions. Initially, this process solely relied on the frequent occurrence of spontaneous mutations and the recombination of resultant gene variants. Later, treatments with ionizing radiation or mutagenic chemicals facilitated dramatically increased mutation rates, which remarkably extended the genetic diversity of crop plants. However, a major drawback of conventionally induced mutagenesis is that genetic alterations occur simultaneously across the whole genome and at very high numbers per individual plant. By contrast, the newly emerging Cas endonuclease technology allows for the induction of mutations at user-defined positions in the plant genome. In fundamental and breeding-oriented research, this opens up unprecedented opportunities for the elucidation of gene functions and the targeted improvement of plant performance. This review covers historical aspects of the development of customizable endonucleases, information on the mechanisms of targeted genome modification, as well as hitherto reported applications of Cas endonuclease technology in barley and wheat that are the agronomically most important members of the temperate cereals. Finally, current trends in the further development of this technology and some ensuing future opportunities for research and biotechnological application are presented.
Collapse
Affiliation(s)
- Iris Koeppel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Christian Hertig
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Robert Hoffie
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|